BAYESIAN NETWORKS

Chapter 14.1-3

Outline

\diamond Syntax
\diamond Semantics
\diamond Parameterized distributions

Bayesian networks

A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions

Syntax:
a set of nodes, one per variable
a directed, acyclic graph (link \approx "directly influences")
a conditional distribution for each node given its parents:

$$
\mathbf{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)
$$

In the simplest case, conditional distribution represented as a conditional probability table (CPT) giving the distribution over X_{i} for each combination of parent values

Example

Topology of network encodes conditional independence assertions:

Weather is independent of the other variables
Toothache and Catch are conditionally independent given Cavity

Example

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
Network topology reflects "causal" knowledge:

- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call

Example contd.

Compactness

A CPT for Boolean X_{i} with k Boolean parents has 2^{k} rows for the combinations of parent values

Each row requires one number p for $X_{i}=$ true (the number for $X_{i}=$ false is just $1-p$)

If each variable has no more than k parents, the complete network requires $O\left(n \cdot 2^{k}\right)$ numbers
I.e., grows linearly with n, vs. $O\left(2^{n}\right)$ for the full joint distribution

For burglary net, $1+1+4+2+2=10$ numbers (vs. $2^{5}-1=31$)

Global semantics

Global semantics defines the full joint distribution as the product of the local conditional distributions:

$$
P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

e.g., $P(j \wedge m \wedge a \wedge \neg b \wedge \neg e)$

Global semantics

"Global" semantics defines the full joint distribution as the product of the local conditional distributions:

$$
\begin{aligned}
& \quad P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \text { parents }\left(X_{i}\right)\right) \\
& \text { e.g., } P(j \wedge m \wedge a \wedge \neg b \wedge \neg e) \\
& \quad=P(j \mid a) P(m \mid a) P(a \mid \neg b, \neg e) P(\neg b) P(\neg e) \\
& \quad=0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998 \\
& \quad \approx 0.00063
\end{aligned}
$$

Local semantics

Local semantics: each node is conditionally independent of its nondescendants given its parents

Theorem: Local semantics \Leftrightarrow global semantics
Markov blanket

Each node is conditionally independent of all others given its Markov blanket: parents + children + children's parents

Example: Car diagnosis

Initial evidence: car won't start
Testable variables (green), "broken, so fix it" variables (orange)
Hidden variables (gray) ensure sparse structure, reduce parameters

Example: Car insurance

Summary

Bayes nets provide a natural representation for (causally induced) conditional independence

Topology + CPTs $=$ compact representation of joint distribution
Generally easy for (non)experts to construct
Canonical distributions (e.g., noisy-OR) = compact representation of CPTs
Continuous variables \Rightarrow parameterized distributions (e.g., linear Gaussian)

