
First-Order Logic

1

CSE 4308/5360 – Artificial Intelligence I
Vassilis Athitsos

University of Texas at Arlington

Limitations of Propositional Logic

• In the 4x4 wumpus world, how can we say that pits
cause breezes in adjacent squares?

2

Limitations of Propositional Logic

• In the 4x4 wumpus world, how can we say that pits
cause breezes in adjacent squares?

– We need 16 different rules like this:
 B_1_2 <=> (P_1_1 OR P_2_2 OR P_1_3)

3

Limitations of Propositional Logic

• In the 4x4 wumpus world, how can we say that pits
cause breezes in adjacent squares?

– We need 16 different rules like this:
 B_1_2 <=> (P_1_1 OR P_2_2 OR P_1_3)

• How can we say that adding 1 to an even number
produces an odd number?

4

Limitations of Propositional Logic

• In the 4x4 wumpus world, how can we say that pits
cause breezes in adjacent squares?

– We need 16 different rules like this:
 B_1_2 <=> (P_1_1 OR P_2_2 OR P_1_3)

• How can we say that adding 1 to an even number
produces an odd number?

– We need infinite symbols and infinite rules.

– A symbol O1 for “1 is odd”, a symbol E2 for “2 is even”, …

5

Limitations of Propositional Logic

• In the 4x4 wumpus world, how can we say that pits
cause breezes in adjacent squares?

– We need 16 different rules like this:
 B_1_2 <=> (P_1_1 OR P_2_2 OR P_1_3)

• How can we say that adding 1 to an even number
produces an odd number?

– We need infinite symbols and infinite rules.

– A symbol O1 for “1 is odd”, a symbol E2 for “2 is even”, …

• What do these limitations buy us?

– Simple syntax: just symbols and connectives.

– Inference algorithms (like TT-Entails) that are horribly slow
(exponential time), but at least terminate in finite time. 6

First-Order Logic

• In first-order logic, we have a richer language, that
can explicitly represent:

– Objects (called constants).
• John, Mary, house backpack, Arlington, Texas…

– Relations (also called predicates). These are boolean
functions (they can only evaluate to true or false).

• Siblings(John, Mary)

• >(100, 5)

• Red(laptop551)

• Team(John, Mary, Sue, Jim)

– Functions.
• Capital(Texas)

• Mother(John)

• 25 + 12 (here, + is a function).

7

Relations and Functions

• Should "sibling" be a relation or a function?

– Relation: siblings(John, Mary)

– Function: sibling(John) returns Mary.

8

Relations and Functions

• Should "sibling" be a relation or a function?

– Relation: siblings(John, Mary)

– Function: sibling(John) returns Mary.

• "Sibling" should be a relation, because someone can
have many (or no) siblings. A function can only
return one value.

9

Relations and Functions

• Should "sibling" be a relation or a function?

– Relation: siblings(John, Mary)

– Function: sibling(John) returns Mary.

• "Sibling" should be a relation, because someone can
have many (or no) siblings. A function can only
return one value.

• Should "mother" be a relation or a function?

– Relation: mother(Liz, John)

– Function: mother(John) returns Liz.

10

Relations and Functions

• Should "sibling" be a relation or a function?

– Relation: siblings(John, Mary)

– Function: sibling(John) returns Mary.

• "Sibling" should be a relation, because someone can
have many (or no) siblings. A function can only
return one value.

• Should "mother" be a relation or a function?

– Relation: mother(Liz, John)

– Function: mother(John) returns Liz.

• "Mother" can be either a relation or a function.

– A person (or animal) has only one mother.

 11

Basic Elements of First Order Logic

• In propositional logic we only had symbols and
connectives.

• In first-order logic we have NO SYMBOLS. Instead,
we have:

– Constants.

– Predicates.

– Functions.

– Connectives (and, or, not, if, iff).

– The equal sign = (a "special" predicate).

– Variables.

– Quantifiers, ∀ (for every), ∃ (there exists).

12

Variables and Quantifiers

• Variables can only be used together with quantifiers.

• Quantifiers need variables in order to be used.

• Examples:

– ∀ x, y: brothers(x, y) => siblings(x, y)

– ∃ x: 2*5 + x = 18.

13

Examples

• For the wumpus world, to say that "pits cause breezes
in adjacent squares" using propositional logic, we need
16 rules like this:

 B_1_2 <=> (P_1_1 OR P_2_2 OR P_1_3)

• In first-order logic, how can we say the same thing?

14

Examples

• For the wumpus world, to say that "pits cause breezes
in adjacent squares" using propositional logic, we need
16 rules like this:

 B_1_2 <=> (P_1_1 OR P_2_2 OR P_1_3)

• In first-order logic, how can we say the same thing?

∀ x1, y1: Breeze(x1, y1) <=>
 ∃ x2, y2: Pit(x2, y2) AND Adjacent(x1, y1, x2, y2)

15

Examples

• For the wumpus world, to say that "there is only one
monster" using propositional logic, we need 16 rules
like this:

 M_2_3 => not(M_1_1 OR M_1_2 OR M_1_3 …)

• In first-order logic, how can we say the same thing?

16

Examples

• For the wumpus world, to say that "there is only one
monster" using propositional logic, we need 16 rules
like this:

 M_2_3 => not(M_1_1 OR M_1_2 OR M_1_3 …)

• In first-order logic, how can we say the same thing?

∀ x1, y1 : Monster(x1, y1) =>
 ∀ x2, y2 : Monster(x2, y2) => (x1, y1) = (x2, y2)

17

Representing Integers

• How do we represent integers in propositional logic?

– We cannot, at least not explicitly. Propositional logic has
no room for objects or constants, just for symbols.

– We can only represent properties of integers. We can use
symbols to represent boolean statements about integers.

– Example: symbol O143 can represent the statement “143
is an odd number”, which is a true statement.

– Example: symbol P143 can represent the statement “143
is a prime number”, which is a false statement.

• Overall, we need an infinite number of symbols and
rules, to express basic properties like “the sum of
two odd numbers is an even number”.

18

Representing Integers

• How do we represent integers in first-order logic?

– Define 0, a constant.

– Define a successor function.
1 = successor(0)
2 = successor(successor(0))

– We do not have to explicitly define constants 1, 2, and so
on. They are implicitly defined as return values of the
successor function.

– We can define predicates such as odd(number),
even(number), prime(number) and so on.

• How can we specify which numbers are odd and
which numbers are even, with finitely many
statements?

19

Representing Integers

• How can we specify which numbers are odd and
which numbers are even, with finitely many
statements?

even(0)
∀ x: even(x) => odd(successor(x))
∀ x: odd(x) => even(successor(x))

• These three statements describe for infinitely many
integers whether they are even or odd.

• Contrast that to propositional logic, where you
would need infinitely many symbols and rules.

20

Adjacency in the Wumpus World

• For the wumpus world, to say that "pits cause breezes
in adjacent squares" using first-order logic, we use this
rule:

∀ x1, y1: Breeze(x1, y1) <=>
 ∃ x2, y2: Pit(x2, y2) AND Adjacent(x1, y1, x2, y2)

• How can we define the Adjacent relation?

21

Adjacency in the Wumpus World

• For the wumpus world, to say that "pits cause breezes
in adjacent squares" using first-order logic, we use this
rule:

∀ x1, y1: Breeze(x1, y1) <=>
 ∃ x2, y2: Pit(x2, y2) AND Adjacent(x1, y1, x2, y2)

• How can we define the Adjacent relation?

• ∀ x1, y1: Adjacent(x1, y1, successor(x1), y1)

• ∀ x1, y1: Adjacent(x1, y1, x1, successor(y1))

• ∀ x1, y1, x2, y2: Adjacent(x1, y1, x2, y2) <=>

 Adjacent(x2, y2, x1, y1) 22

Examples from the Textbook

• How do we say that brothers are siblings?

23

Examples from the Textbook

• How do we say that brothers are siblings?

∀ x, y : Brothers(x, y) => Siblings(x, y)

24

Examples from the Textbook

• How do we say that “siblings” is a symmetric
relation?

25

Examples from the Textbook

• How do we say that “siblings” is a symmetric
relation?

∀ x, y : Siblings(x, y) => Siblings(y, x)

26

Examples from the Textbook

• How do we say that one’s mother is one’s female
parent?

27

Examples from the Textbook

• How do we say that one’s mother is one’s female
parent?

∀ x, y : (x = Mother(y)) => (Female(x) ∧ Parent(x, y))

• Alternative: making Mother a relation.

∀ x, y : Mother(x, y) => (Female(x) ∧ Parent(x, y))

28

Examples from the Textbook

• How do we say that a first cousin is a child of a parents’
sibling?

29

Examples from the Textbook

• How do we say that a first cousin is a child of a parents’
sibling?

∀ x, y : FirstCousin(x, y) <=>
 ∃ p, ps : Parent(p,x) ∧ Sibling(ps,p) ∧ Parent(ps,y)

30

First-Order Logic Syntax

• What is the simplest possible sentence in first-order
logic?

31

First-Order Logic Syntax

• What is the simplest possible sentence in first-order
logic?

– A predicate applied to constants:

predicate(constant1, … constantn)

• Examples:

32

First-Order Logic Syntax

• What is the simplest possible sentence in first-order
logic?

– A predicate applied to constants:

predicate(constant1, … constantn)

• Examples:

Siblings(John, Mary)

>(5, 3)
White(cloud)

33

First-Order Logic Syntax

• Are these valid first-order logic sentences?

1

John

Mother(Mary)

Mother(Father(Mother(Mary)))

34

First-Order Logic Syntax

• Are these valid first-order logic sentences?

1

John

Mother(Mary)

Mother(Father(Mother(Mary)))

• No. Each of these lines refers to an object.

• In first-order logic you can refer to an object in three ways:
– Using a constant, like 1, John.

– Using a variable (that has been introduced using a quantifier).

– Using a function call, like Mother(Mary), or more complicated, nested
calls, like Mother(Father(Mother(Mary)))

35

First-Order Logic Syntax

• Objects are an important part of first-order logic.

• However, an object by itself cannot be a first-order
logic sentence.

– A sentence must have a boolean value.

• Then, where do objects appear in sentences?

36

First-Order Logic Syntax

• Objects are an important part of first-order logic.

• However, an object by itself cannot be a first-order
logic sentence.

– A sentence must have a boolean value.

• Then, where do objects appear in sentences?

• Objects (constants, variables, function calls) appear:

– As arguments to predicates.

– On the left and right side of an equal sign.

37

First-Order Logic Syntax

• At the top level, a first-order logic sentence must be one of
the following:
– An application of a predicate.

Example: cousins(mother(Mary), father(father(John)))

– An equality test.

Example: mother(Mary) = Jane

– An application of an existential or universal quantifier.

Example: ∀ x, y : Mother(x, y) => (Female(x) ∧ Parent(x, y))

– An application of a connective to combine simpler sentences.

Example: Female(Jane) ∧ Parent(Jane, Edward)

38

Number of Possible Worlds

• In propositional logic, suppose that you have 100
symbols. How many possible worlds do you have?

39

Number of Possible Worlds

• In propositional logic, suppose that you have 100
symbols. How many possible worlds do you have?

– 2100. One for each row of the truth table.

40

Number of Possible Worlds

• In propositional logic, suppose that you have 100
symbols. How many possible worlds do you have?

– 2100. One for each row of the truth table.

• In first-order logic, how can we even count the
number of possible worlds?

• It is more complicated.

41

Number of Possible Worlds

• Suppose that we have:

– Five constants.

– No functions.

– One predicate, that takes one argument.

• How many possible worlds can we have?

42

Number of Possible Worlds

• Suppose that we have:

– Five constants.

– No functions.

– One predicate, that takes one argument.

• How many possible worlds can we have?

• For each possible argument of the predicate, we
must specify if the predicate returns true or false.

• We have five possible arguments.

• In total, 25 possible worlds.

43

Number of Possible Worlds

• Suppose that we have:

– Five constants.

– No functions.

– One predicate, that takes two arguments.

• How many possible worlds can we have?

44

Number of Possible Worlds

• Suppose that we have:

– Five constants.

– No functions.

– One predicate, that takes two arguments.

• How many possible worlds can we have?

• For each possible combination of arguments of the
predicate, we must specify if the predicate returns
true or false.

• We have 25 possible combinations of arguments.

• In total, 225 possible worlds.

45

Number of Possible Worlds

• Suppose that we have:
– Five constants.

– No functions.

– Three predicates, that take two arguments.

– One predicate that takes one argument.

• How many possible worlds can we have?

46

Number of Possible Worlds

• Suppose that we have:
– Five constants.

– No functions.

– Three predicates, that take two arguments.

– One predicate that takes one argument.

• How many possible worlds can we have?

• For each possible combination of arguments of each
predicate, we must specify if the predicate returns true or
false.

• For two arguments, we have 25 combinations of arguments.
We have three such predicates, so we must specify 75 values.

• For one argument, we have 5 combinations of arguments. We
have one such predicate, so we must specify 5 values.

• In total, 25+75 = 280 possible worlds.
47

Inference via Propositionalization

• Suppose that we have:
– Five constants.

– No functions.

– Three predicates, that take two arguments.

– One predicate that takes one argument.

• In such cases, we can automatically convert our first-order
logic knowledge base to an equivalent propositional logic
knowledgebase.

• For each possible combination of arguments of each
predicate, we must define a symbol in the propositional logic
version.

• We have 80 total predicate values to specify, so we would
need a propositional logic knowledge base with 80 symbols.

• Then, we can do inference using TT-Entails.
48

Inference via Propositionalization

• Inference via propositionalization can be an attractive option.

• For example, in the wumpus world, we can use first-order
logic for our knowledge base, so that we do not have to write
16 different versions of every rule.

• Then, our software can translate our knowledge base to
propositional logic, and use TT-Entails.

• This way, we get the elegance of first-order logic, and the
finite-time inference algorithms of propositional logic.

49

Propositionalization: An Example

• Suppose we have two constants: Edward and Mary.

• Suppose that we have two predicates:
– Tall, takes one argument.

– Parent, takes two arguments.

• Suppose we have this knowledge base:

Tall(Edward) ∧ not(Tall(Mary))
not(Parent(Edward, Mary))

• What (and how many) symbols do we have to define to
propositionalize this knowledge base?

50

Propositionalization: An Example

• Suppose we have two constants: Edward and Mary.

• Suppose that we have two predicates:
– Tall, takes one argument.

– Parent, takes two arguments.

• Suppose we have this knowledge base:

Tall(Edward) ∧ not(Tall(Mary))
not(Parent(Edward, Mary))

• What (and how many) symbols do we have to define to
propositionalize this knowledge base?

• 6 symbols:
– Tall_Edward, Tall_Mary.

– Parent_Edward_Edward, Parent_Edward_Mary,
Parent_Mary_Edward, Parent_Mary_Mary.

51

Propositionalization: An Example

• Suppose we have two constants: Edward and Mary.

• Suppose that we have two predicates:
– Tall, takes one argument.

– Parent, takes two arguments.

• Suppose we have this knowledge base:

Tall(Edward) ∧ not(Tall(Mary))
not(Parent(Edward, Mary))

• How do we translate the knowledge base to propositional
logic?

52

Propositionalization: An Example

• Suppose we have two constants: Edward and Mary.

• Suppose that we have two predicates:
– Tall, takes one argument.

– Parent, takes two arguments.

• Suppose we have this knowledge base:

Tall(Edward) ∧ not(Tall(Mary))
not(Parent(Edward, Mary))

• How do we translate the knowledge base to propositional
logic?

Tall_Edward ∧ not(Tall_Mary)
not(Parent_Edward_Mary)

 53

Propositionalization: An Example

• Suppose we have this knowledge base:

Tall(Edward) ∧ not(Tall(Mary))
not(Parent(Edward, Mary))

• How do we translate the knowledge base to propositional
logic?

Tall_Edward ∧ not(Tall_Mary)
not(Parent_Edward_Mary)

• Note that the knowledge base does not use all six symbols.

• For example, Parent_Mary_Edward is not used.

• Then, why do we need to have such a symbol in the truth
table?

54

Propositionalization: Symbols Needed

• When we propositionalize a first-order logic knowledge base,
we need symbols in the truth table not only for the
knowledge base, but also for every possible statement we can
form using the constants, predicates, and functions that are
used.

• Why? Because for any possible statement S, we may want to
check if the knowledge base entails that statement S.

• In order for the propositional logic translation to be
equivalent to the first-order logic knowledge base, it should
allow us to ask any question that we can ask using first-order
logic.

• Parent_Mary_Edward is not needed in the knowledge base,
but we may want to ask if the knowledge base entails
Parent_Mary_Edward.

55

Propositionalization Limitations

• Suppose we have two constants: Edward and Mary.

• Suppose that we have one predicate:
– Tall, takes one argument.

• Suppose that we have one function.
– Mother, takes one argument.

• Suppose we have this knowledge base:

Tall(Edward) ∧ not(Tall(Mary))
not(Parent(Edward, Mary))

• What (and how many) symbols do we have to define to
propositionalize this knowledge base?

56

Propositionalization Limitations

• Suppose we have two constants: Edward and Mary.

• Suppose that we have one predicate:
– Tall, takes one argument.

• Suppose that we have one function.
– Mother, takes one argument.

• Suppose we have this knowledge base:

Tall(Edward) ∧ not(Tall(Mary))
not(Parent(Edward, Mary))

• What (and how many) symbols do we have to define to
propositionalize this knowledge base?

• Infinitely many symbols!!!

57

Propositionalization Limitations

• Suppose we have two constants: Edward and Mary.

• Suppose that we have one predicate:
– Tall, takes one argument.

• Suppose that we have one function.
– Mother, takes one argument.

• We need a symbol for Tall(Mary).

• We need a symbol for Tall(Mother(Mary)).

• We need a symbol for Tall(Mother(Mother(Mary))).

• And so on, for ever.

58

Number of Worlds in First-Order Logic

• In any first order logic domain where you do NOT
have functions, you can do propositionalization.

• Thus, the number of possible worlds is the same
both in the first-order logic representation and in the
propositional logic representation.

• However, if you have even a single function, you
cannot do propositionalization.

– You would need infinitely many symbols.

• Whenever you have even a single function, the
number of all possible worlds is INFINITE.

59

Inference in First-Order Logic

• If you have no functions, you can do inference using:

– Propositionalization.

– TT-Entails in the propositional-logic version.

• The complexity of inference in that case is
exponential, but finite.

60

Inference in First-Order Logic

• If you have functions: we will NOT study any
inference algorithms for that case in this course.

– We will be briefly looking at the basics of those
methods: resolution, and other inference methods.

• What I want you to know:

– For first-order logic, there is no sound and complete
inference algorithm that runs in finite time.

– There are sound and complete algorithms that:
• If the knowledge base entails the statement, the algorithms will

return true in a finite (exponential in the worst case) amount of
time.

• If the knowledge base does NOT entail the statement, the
algorithms might return false in a finite amount of time, but they
might also never terminate.

61

Inference Recap

• Inference takes exponential time (in the worst case) in
propositional logic.

• In first order logic, inference takes:
– Exponential time (in the worst case) if the knowledge base entails the

statement.

– Infinite time (in the worst case) if the knowledge base does not entail
the statement.

• The time complexity of inference makes it difficult to solve
large problems using propositional and first order logic.

• In many interesting cases (but not all cases), there are
alternatives that provide good trade-offs.
– Languages that are somewhat similar to first-order logic.

– Inference algorithms that are fast.

• Such an interesting case will be our next topic: planning.
62

