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Adaptive Resource Management for Flow-Based
IP/ATM Hybrid Switching Systems
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Abstract—This paper addresses a fundamental problem in
resource management for flow-based hybrid switching systems.
Such systems aim at efficient transport of layer-3 connection-
less IP traffic over layer-2 connection-oriented ATM switching
fabrics. One idea behind flow-based hybrid switching is to de-
compose individual IP packet streams into flows and then to
classify them into short-lived and long-lived flows. While the
short-lived flows are good for forwarding by the embedded
software through permanent virtual connections (PVC’s), the
long-lived flows are more effectively transmitted by hardware
through switched virtual connections (SVC’s). Clearly the flow
identification/classification mechanism will have great impact on
the utilization of the system’s resources. Unlike the traditional
emphasis on resources such as link bandwidth and cell buffer size,
our paper focuses on the resources which are directly associated
with packet processing power, signaling capacity, and flow cache
table size. Our study indicates that the presently availablestatic
flow classificationmethods have a vital shortcoming in balancing
the utilization of the system’s resources. We propose a novel
approach for adaptive flow classificationbased on the min–max
objective for the system resource utilizations to match with
the time-varying traffic/resource characteristics. Based on the
monotone properties and sensitivity analysis of the resource
utilizations as functions of the control parameters, we first prove
that the optimal solution of the static min–max problem is
achieved at a unique balance point for the resource utilizations.
With the intuition gained from the static results, we then design
an adaptive controller formulated as a hierarchical stochastic
automata control system with local search. The optimality of the
proposed adaptive controller is tested against the static optimal
control based on real trace simulations. The simulation studies
in highly nonstationary environments show the viability of the
proposed flow adaptation for dynamic resource management
in hybrid switching system design. The algorithm is simple
to implement and only requires the adaptation of two global
variables at time intervals of every few seconds based on the
present usage of resources.

Index Terms—Adaptive resource management, cut-through
switching, flow-based IP/ATM hybrid switching, flow cache
management, flow classification.
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I. INTRODUCTION

I P TRAFFIC is becoming the killer application for asyn-
chronous transfer mode (ATM) networks. One challenge

in current network research is how to effectively transport
internetworking protocol (IP) traffic over ATM networks. IP
was independently developed on the basis of a connectionless
model, while ATM was originally designed for connection-
oriented services. IP traffic is usually switched using packet
software-forwarding technology, which is expensive and has
substantially limited forwarding capacity. In contrast, ATM
switches are designed with high transmission bandwidth, but
having limited connection setup processing capacity due to
its complex signalling structure developed for connection-
oriented services.

The RFC 1932 [1] at IETF indicates the trend of IP over
ATM toward a hybrid approach to support both layer-3 IP
software forwarding and layer-2 ATM hardware switching. It
is understood that short-lived flows composed of a few packets
are well suited for hop-by-hop layer-3 software-forwarding
while long-lived flows containing a large number of packets
are good for layer-2 hardware switching. Multiprotocol over
ATM (MPOA) is an example of hybrid switching which
supports both the default forwarding across subnetwork bor-
ders via MPOA servers (MPS’s) and cut-through switching
to bypass MPS’s. In the recent release of MPOA document
at the ATM forum [2], flow identification/classification is
considered to be the key component for cut-through switching
at an ingress MPOA client (MPC). Other hybrid switching
approaches have been proposed under such names as IP
switching, cell switched router (CSR), tag switching, and
aggregate route-based IP switching (ARIS) [3]–[6], where
layer-3 routing and label binding/swapping are used as a
substitute for layer-2 ATM routing and signalling for ATM
hardware switching connection setup. The technology is gen-
erally calledmultiprotocol label switching(MPLS) [7], which
can be further classified into the data-driven approach [3], [5]
and the topology driven approach [4], [6]. The data-driven
approach is flow-based, which is to set up a layer-2 connection
on the first few packet arrivals of each flow. A flow identifica-
tion/classification algorithm needs to be implemented on-line
to decide whether a cut-through connection is to be set up for
each incoming flow. Hence, one key issue in the flow-based
hybrid switch design is the on-line identification/classification
of each flow into long-lived or short-lived flow upon its first
few arriving packets.

Most ATM system analyses so far have focused on cell
transmission bandwidth allocation and cell buffer dimension-
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Fig. 1. Schematic flow diagram for a flow-based hybrid switching system.

ing/scheduling for user information transfer. Breaking down
the cost of any ATM switching system, it is not difficult to
recognize that a significant portion of the system cost will be
for other resources directly associated with packet processing
power, signalling capacity, and flow cache table size. Let us
define these major resources: 1)software-forwarding capacity,
i.e., the available rate to forward packets by embedded soft-
ware; 2)connection-setup capacity, i.e., the available rate to
set up local hardware switched connections for transport of
long-lived flows; and 3)active-connection capacity, i.e., the
number of cache table entries available for maintaining the
states of all active flows.

Fig. 1 shows a logical diagram for a flow-based hybrid
switching system. Incoming packets are identified and clas-
sified into short-lived and long-lived flows. The short-lived
flows are sent to layer 3 for software-forwarding, consuming
the software-forwarding resource. The long-lived flows are
cut-through switched via a layer-2 connection, taking both
connection-setup and active-connection resources. Obviously,
an inadequate allocation of any of these resources can cause
substantial damage to network performance.

Note that the three resources may not reside in the
same physical system. For example, MPOA flow identifi-
cation/classification takes place at ingress MPC’s. Packets
of a short-lived flow are forwarded via a default forwarding
path (PVC) to its default MPOA server (MPS). It is then
the MPS’s responsibility to find the next hop for further
forwarding. Hence, its software-forwarding resource actually
refers to the processing capacity at the default MPS, which
is shared by multiple peer MPC’s. Also, for an IP switching
system such as an Ipsilon IP switch or CSR, a cut-through
switched connection is to be set up between two adjacent
switches and the state information for the connection need to
be cached in the table at both switches. So the flow cache
table resource is nonlocal and dependent on the cache table
occupancy at both switches.

One can further break down the resource allocation within
a switch. A typical mid-sized switch is configured by a central
control card and multiple trunk cards. If the switch is designed
with distributed processing structure, all three resources can
be located at each individual trunk card. Otherwise, they will
be located at the central control card and shared by all the
trunk cards. Moreover, these resources are not dedicated to

nonreservation-based IP services, but more likely to be shared
with other reservation-based services. The reservation-based
services especially have higher priority to use the resources
over the nonreservation-based IP services. Hence, not only
the IP traffic characteristics but also the resource availabilities
themselves are unknowna priori and change with time.

In addition, the overall resource availability at each individ-
ual switching system is based on its own design strategies,
which vary depending on time, vendors, technologies, and
applications. Especially in the product design stage, it is
difficult to predict future applications and their traffic charac-
teristics, of which variation can drastically change the demand
for individual resources. In consequence, the utilization of
the major resources at a switching system is likely to be
highly unbalanced and time-varying. A system which may
have sufficient resources for today’s demand may soon be-
come partially overloaded for tomorrow’s demand due to
its highly unbalanced operation and changing traffic/resource
characteristics.

To gain a better understanding of the resource demands, let
us first study the flow statistics for today’s Internet/intranet
traffic. Three traces are used for this study, each of which is
20 min long and collected at a different site. One is from a
100-Mb/s fast Ethernet on campus at the Cisco Systems Inc.,
collected in June 1997. One is from the 100-Mb/s fast Ethernet
backbone at Lawrence Berkeley Laboratory in July 1997, and
the other is from a 100-Mb/s Internet backbone FDDI ring at
the FIXWEST on Sept. 26, 1996, downloaded from the anony-
mous FTP site atwww.nlanr.net/Traces/FR/960926/. For
the convenience of later reference, we call themcisco-trace,
lbl-trace, and fixwest-trace, respectively. The utilizations for
cisco-traceand lbl-trace at the time of collection were about
5%. The utilization forfixwest-traceat the time of collection
was about 27%. For consideration of the corresponding re-
source demand on a high-speed link, we linearly upscale the
average resource demand required for each above trace as if
running at 100% utilization on a 100-Mb/s link. Our statistical
analysis then shows that the average flow arrival rate is on the
order of 1–10 K per second and the average number of active
flows on the order of 10–100 K, given that each individual
flow is identified by a distinct pair ofsource-address, source-
port and destination-address, destination-port. For flows to
be identified with a coarser granularity such as by each pair of
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source-addressanddestination-address, our statistics based on
the same traces with the upscaling show that the flow arrival
rate is on the order of 1 K per second and the number of
active flows on the order of 10 K.

For some existing ATM products, the switched connection
setup capacity is in the range of several hundred per second
for the entire switch, which is far from sufficient for IP
applications. Their active-connection capacity, for example,
measured by the maximum number of VPC’s and VCC’s
supportable on an OC-3 trunk port, is in the range of 4 K,
which is also inadequate to support active flows. Since a large
portion of the IP traffic flows are short-lived, flow-based hybrid
switching technologies hold the promise of effective transport
of IP traffic over ATM cloud. On the one hand, sending short-
lived flows via layer-3 software-forwarding can greatly reduce
the number of cut-through switched flows, saving the limited
resources on switched connection setup and VPC/VCC space.
On the other hand, sending long-lived flows through layer-
2 hardware cut-through switching can substantially alleviate
the burden on layer-3 software-forwarding. The effectiveness
of a flow-based hybrid switching system largely relies on
the design of a flow identification/classification algorithm to
balance the short-lived and long-lived flows.

So far, the proposed flow identification/classification algo-
rithms are static and the selection of the control parameters
is solely based on some empirical real trace simulations. A
chosen static flow identification/classification may work well
in one system and/or for one application at one time, but is
likely to fail to apply at other times, to other systems, and/or
for different applications. Here we propose a novel approach,
i.e., adaptive flow identification/classification, based on a
min–max objective, which is to ensure any given switching
system to operate in a mode such that the maximum of its three
major resource utilizations is minimized in a highly variable
traffic environment with time-varying resource availabilities.
There are two major contributions in this paper. First, we show
that the static version of the min–max problem can be reduced
to a static balance problem with the existence of a unique
balance point, at which the global optimal solution is achieved.
This result has important implication in the sense that, to
find the static optimal operation point, it suffices to design
a controller with local search of a unique balance point. This
result also provides tremendous intuitions on how to design
an adaptive controller in terms of the min–max objective.
Second, we design an adaptive controller which is formulated
as a hierarchical automata control system with local search.
The optimality of the proposed controller is tested against the
static optimal control based on the real Internet/intranet trace
simulations. The simulation study also shows the viability of
the proposed algorithm for dynamic resource management in
hybrid switching systems, as well as its robustness to the time
variation of traffic characteristics and system resources. The
algorithm only requires the adaptation of two global variables
at time intervals of every few seconds based on the present
usage of the three resources.

The remaining part of this paper is organized as follows.
Section II reveals the critical restrictions of static flow identifi-
cation/classification on resource management. Section III pro-

(a) (b)

Fig. 2. Flow statistics atT = 64 s. (a) CDF of flows with less thanm
packets and (b) CDF of packets for flows less thanm packets.

poses the concept of adaptive flow identification/classification
and formulates the problem in terms of a min–max objective.
In Section IV we prove that the optimal solution of the
static min–max problem is achieved at a unique balance point
among the three resource utilizations. Section V designs a
hierarchical stochastic automata control system based on the
general min–max design objective. The simulation study of
the proposed algorithm is given in Section VI, while Section
VII provides the conclusion and the directions of future work.

II. STATIC FLOW IDENTIFICATION/CLASSIFICATION

A flow is identified as a sequence of packets that are treated
identically by the routing function [3]. In this paper, every
packet in a flow is identified by its flow identifier with timeout

. Adjacent packets with an identical flow identifier belong to
the same flow as long as their interarrival time is less than.
In other words, a flow terminates when timeelapses without
receiving a new packet with the same identifier. The flow
identifier can be defined at various granularities. In this paper,
we only consider the granularity of the flow identifier defined
by a pair of source-address, source-port , and destination-
address, destination-port} . Namely, all the packets in a flow
must have this same flow identifier which are found in their
IP headers. For simplicity, we call flows at this granularity the
host port flows. Classifying flows at this granularity allows
for QoS differentiations of various applications.

One classification approach proposed in [3], [5] is to classify
host port flows into long-lived and short-lived flows by their
applications, such asftp, http, or ipip, which are directly
identifiable from each packet’s port ID’s. It is purely dependent
on the longterm statistical measurement of the average flow
duration and the average number of packets per flow, with
respect to each application. An application flow with its
average flow duration and average number of packets per flow
smaller than the respective predefined thresholds is classified
as short-lived, otherwise, it is classified as long-lived. So, by
looking at the port ID of the first packet of a flow, a decision
can be made for whether to set up a cut-through connection
for the flow.

Our analysis of the backbone trace,fixwest-trace, however,
shows a great variation of flow duration and packet number
per flow from one flow to another for some major appli-
cation such ashttp or dns. This renders application-based
flow classification inefficient. Fig. 2(a) shows the cumulative
distribution of the number of packets per flow identified at
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a given timeout s, with respect to each of the
three dominant applicationshttp, dns,and ipip. (The other
applications represent less than 28% of the total traffic in
packets). It is clear that mosthttp and dns flows contain a
small number of packets. For instance, there are 87%http
flows and 97%dnsflows with less than 20 packets. Yet these
flows only generate 45% of the totalhttp packets and 46% of
the totaldnspackets, as can be seen in Fig. 2(b) for the packet
percentage ofhttp anddnsflows with less than or equal to
packets per flow. In other words, the remaining 13% ofhttp
flows and 3% ofdns flows will generate 55% of the total
http packets and 54% of the totaldns packets.Http and dns
flows are short-lived on average compared withipip flow, as
can be seen from Fig. 2. If bothhttp anddnsare classified as
short-lived flows while all the other applications are assumed
to be hardware switched, about 50% of the overall packets
in the trace will have to be software-forwarded, which can
easily exceed the software-forwarding capacity at a switch.
In contrast, when both are classified as long-lived flows,
they alone will require the capacity of holding 50 000 active
connections and handling 600 connection setups per second on
average, which is excessive for an average of 27-Mb/s traffic
load. It is obvious that the application-based flow classification
will result in highly unbalanced usage of the system resources.

Another classification approach recently proposed in [8] is
to introduce a counter to every flow such that the firstpacket
arrivals in each flow are always software-forwarded and the
remaining packets will be hardware-switched, independent of
applications. Since both timeout and counter value are
statically assigned, we call it the static algorithm. The
preliminary study in [8] examined the effect of on system
resources at the host to host granularity for a given s.
They found that the static algorithm effectively separates
short-lived flows from long-lived flows as compared to the
application-based algorithm. Note that the active-connection
resource taken by each individual long-lived flow is released
upon its termination (i.e., once the packet interarrival time
exceeds ). Our investigation on the joint effect of and

using fixwest-traceindicates that the average demand on
each individual resource can be significantly affected by the
selection of and .

In the MPOA document [2], a default algorithm is proposed.
A flow is classified to be long-lived if there are more than

packet arrivals within a given time interval . Each
active flow entry in the cache table is assigned a holding
time and it is deleted when the holding time expires. A
similar application-independent algorithm, where are
used for flow identification and for flow cache entry
management, was recently examined in [9] for the Ipsilon
IP switching system. Again, the algorithm is found to give
superior performance over the application-based algorithm.

Up until now, all of the algorithms have been static, i.e.,
their control parameters such as or are
statically assigned. The studies in [8], [9] focused on the
selection of such static values based on some available IP traf-
fic statistics, without considering the constraint on individual
resource availabilities. In this paper, we propose an adaptive
flow identification/classification. That is, the control variables

are dynamically adjusted according to both the time-varying IP
traffic characteristics and the present constraint on individual
resource availabilities, such that the maximum utilization of
the three constrained resources will be minimized. Our analysis
will be built upon a so-called algorithm. Here, is
used to timeout a flow before it is cut-through switched,is
to timeout a cached flow entry when the flow is cut-through
switched, and is the number of arriving packets detected
before cut-through switching. Hence, the algorithm is
a special case of the algorithm with . The
design principle can be generally applied to other algorithms
such as the above model. Note that since our study
focuses on the fundamental issues in flow adaptation algorithm
development, we are not concerned with the implementation
details introduced due to the nonlocal nature of the resources,
as mentioned in the introductory section.

III. A DAPTIVE FLOW IDENTIFICATION/CLASSIFICATION

The proposed adaptive flow identification/classification al-
gorithm is based on the static algorithm, subject to
a periodic adaptation of the control parameters to the
traffic/resource change. For control simplicity, we fixat 15
s, a value which we found to be statistically large enough to
relay most of the packets in a flow.

The resource demand at discrete timeare denoted by
, and for software-forwarding, connection-

setup, and active-connection, respectively. Without loss of
generality, we assume fixed resource capacities for a given sys-
tem, denoted by and , respectively. Several
possible cost functions can be selected for the adaptive control
optimization. Here we choose to minimize the maximum of
the three resource utilizations. In other words, our objective
is to avoid the overloading of individual resource(s). Hence, a
natural choice of the metric to be measured is the instantaneous
utilization of the three resources, expressed by

(1)

As in the design of any feedback control systems, it is
highly undesirable to have the controll system adapt to high-
frequency disturbance, which otherwise may drive the control
system unstable. To avoid such overreactions to small demand
variations, we use a first-order low-pass filter operation to
damp the variation in , i.e.,

for (2)

where is the weighting factor taken between 0 and 1. One
can strengthen the damping by choosing a small. It is
equivalent to taking the moving average operation.

Based on the stochastic control framework, the min–max
control problem can be expressed as

(3)

with
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TABLE I
THE UTILIZATION MONOTONE PROPERTY WITH RESPECT TOTn AND Xn

where is the cost function, and and
are the time sequences of the two control variables.

Note that takes the time average operation of
the maximum of the three utilizations, whose expectation,
represented by , is to be minimized as time goes
to infinity.

The following monotone property can be identified.
Property 1: All three resource utilizations,

and , are monotonic functions of
and , described in Table I.

Consider two control sequences and
. Denote if , with at

least one inequality. We say that is a monotoni-
cally increasing function of if and only if

, for and vice versa. A similar
definition applies to .

Property 1 can be understood easily from the physical mean-
ing of each individual resource. For instance, let us examine
the first row in Table I. Increasing has the effect of merging
multiple flows with the same flow identifier into a single flow,
as more adjacent flow interarrival times become less than
when increases. In consequence, the flow arrival rate will
be reduced, which results in the decrease of, assuming that
no other system conditions are changed. By the same token, the
software-forwarding capacity requirement, measured by,
will also be reduced. On the other hand, since the merged flows
tend to be longer and require more connection holding time,
the active-connection capacity requirement,, is expected to
increase with . Further consider the second row in Table I.
Increasing means more flows become short-lived without
requiring connection resources, causing the reduction of both

and . The increase of is obvious due to the increased
software forwarding of short-lived flows.

It is worth mentioning that the cost function in (3) can
be redesigned to reflect the performance difference caused by
the individual resource overflows. The actual monetary cost
of different resources may also be built into the cost function
to help system engineers to optimize the resource allocation
in system design stage.

IV. THEORETICAL DEVELOPMENT

The proposed adaptive control problem falls into the cate-
gory of nonlinear stochastic feedback control, which is gener-
ally difficult to tackle in terms of optimal control design. There
is even no general approach available to test the optimality
of such control system design unless the problem can be
formulated within the Markov control framework. While the
design of a controller based on rigorous theoretical test of its
optimality under certain traffic assumptions will be pursued
in the future, the emphasis of this paper is placed on the

design of a heuristic adaptive flow classification algorithm
for near-optimal control given a wide range of real traffic
characteristics.

For simplicity, here we consider the static design of
and , i.e., and . The following
theoretical developments and hence the engineering insights
explored for such a static design will help us greatly to develop
and evaluate the heuristic adaptive control algorithm in the
next section. Similar to (3), we define the static control by

(4)

with

for (5)

Hence, the static control is to find a fixed pair, denoted by
, which minimizes the maximum of the three time-

averaged utilizations. The theoretical development below is to
show that the global optimal solution of (4) corresponds to a
unique balance point of the three time-averaged utilizations,
i.e., .

The following property is identified by empirical sensitivity
analysis and Property 1.

Property 2: , and cannot in-
crease or decrease simultaneously with respect toand/or

.
It is obvious from Property 1 that Property 2 holds either

when one of and changes, or when both and
change simultaneously but in different directions. Yet Property
1 cannot be used to exclude the possibility of simultaneous
increase/decrease of all three utilizations when bothand
change in one direction. To show this is also impossible, let

. We have

(6)

Without loss of generality, assume that bothand are
reduced by and . From Table I, . The
following condition then must be satisfied for and

:

(7)

with

(8)

Let us examine if such a condition holds by empirical sen-
sitivity analysis using real trace simulations. Fig. 3 shows
an example of the three average utilizations as a function
of and based onlbl-trace simulation. As we can see,
the software-forwarding demand is sensitive to but
insensitive to , except at small ’s. That is, when
is already reasonably large, further increasingwill no
longer effectively relay more packets into a flow. In contrast,
changing always has a direct impact on the volume of
software-forwarding packets. In consequence,is likely to
be small. On the other hand, the flow cache table demandis



CHE et al.: ADAPTIVE RESOURCE MANAGEMENT FOR HYBRID SWITCHING SYSTEMS 549

(a) (b)

(c)

Fig. 3. The average resource demands at each given(T;X).

TABLE II
SENSITIVITY ANALYSIS

sensitive to but insensitive to , unless is small. This is
because the time duration of a flow in the flow cache table is
directly related to the timeout value. Changing may not
significantly affect the flow cache table demand unless it can
substantially change the number of long-lived flows requesting
cut-through setup. This is likely to occur only whenis small
since a large portion of the flows in current Internet/intranet
are found to consist of a small number of packets, which
are unlikely to be classified into long-lived flows unless
is small. Thus, is expected to be relatively large. In other
words, the condition is unlikely to hold in practice,
such that the possibility of simultaneous increase (decrease)
of the three average utilizations with the decrease (increase)
of and can be largely neglected.

To further verify the above analysis, we performed the
simulation study for the three Internet/intranet traces, where
the control parameters are statically assigned in a wide
range and . Listed in Table II are the
collected measurement of at the four boundary
pairs. For all the three traces, is found significantly greater
than . From the monotone property, these values at the
boundaries cover the worst case measurement. Hence, Property
2 is preserved.

Theorem 1: Assume that , are continuous func-
tions of and , whose boundary conditions satisfy

Then, there exists one and only one balance point, i.e.,

(9)

with .

Fig. 4. Schematic diagram of�13.

Note that the boundary conditions hold in general and can
be derived from the physical meaning of the three utilizations.

Proof: Consider a set
. We first show that must increase or

decrease simultaneously. In Fig. 4, we draw a circle of radius
in the first quadrant of the plane. Notice that

and at and and
at . As changes from to
clockwise along the circle, we know from Property 1 that

monotonically decreases to zero while monotonically
increases from zero. Hence, there must be a unique point on
the circle in the first quadrant where at each given .
Hence, must represent a unique curve in Fig. 4.

Then, consider two distinct points on the curve, i.e,
and . By contradiction, let us show that we
must have and , or and .
Assuming and , from Property 1, we
have and . It
implies that we cannot have both and ,
contradictory to the assumption. Similarly, it is easy to show
that and cannot occur. Hence,
must increase or decrease simultaneously, as shown in Fig. 4.
From the above result and Property 1, then must be
a decreasing function of with the limit value

. Define
for with the limiting value . From
Property 2, must be a nondecreasing function of

. Hence, there must be a balance point
where as in (9), and this balance
point must be unique.

We can further show that is an increasing func-
tion of . For , we must have
in (6), which is equivalent to

From Property 1, both and must be nonzero. Also
from , we get . Therefore,
must be an increasing function of .

Theorem 2: The optimal solution of the min–max objective
(4) corresponds to the unique balance point.
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Proof: Let be a global optimal solution of (4).
We first claim

(10)

which can be proved by contradiction. Assume
. Then

must be the optimal value in (4). From
Property 1, such that

. Also from Property 1,
,

contradicting the fact that
is the optimal value. Similarly, assume

. Then must be
the optimal value in (4). From Property 1, such
that . Also from
Property 1, , again, contradicting
the fact that is the optimal value. Hence, (10)
must hold. Similarly, one can change to
and show

(11)

There are two distinct cases in (10):

Case 1: ;
Case 2: .

For case 1, at from (10) and
(11). For case 2, one can only get at

from (10) and (11). Assume at .
Then must be the optimal value in (4). Recall that

is a decreasing function of and is an increasing
function of in . We must be able to find a pair

with and such that
at . But we also have ,

contradicting the fact that is the optimal value.
In consequence, at in case 2 as well.

Since the balance point is unique by Theorem 1, the optimal
solution of (4) must also be unique.

Hence, our static optimization problem is reduced to a bal-
ance problem for finding a unique balance point. Although the
analysis cannot be generally extended to solving the adaptive
optimization problem defined in (3), the understanding of such
static optimal control helps us greatly to develop an effective
adaptive control algorithm for near optimal control. Especially
when the traffic characteristics change slowly, the quasi-
static approximation can be applied to the adaptive control
design. In other words, one can define the unique balance
point in moving-average sense instead of longterm average,
which is equivalent to replacing in (5) by
in (2). Hence, the optimal adaptive control can be designed
through the adaptive tracking of such a unique balance point in
moving-average. The adaptive tracking is achieved through the
adaptive assignment of at the th adaptation interval,

. Since the moving-average balance point is expected to be
unique at any given time, the quasi-static control only requires
the local adaptation of on the basis of
and , at the th adaptation interval.

In the next section, we design an effective adaptive algo-
rithm based on the quasi-static control principle, where the

problem is formulated as a stochastic learning automata system
for the local search of a unique balance point in moving
average. The optimality of the proposed controller will be
examined against the static optimal solution by real trace
simulation study.

V. ADAPTIVE CONTROL DESIGN

A. Control Architecture

Depending on the relative differences among
and , seven operation regions can be identified:

which
is the balanced region;

where is relatively
overloaded;

where is relatively
overloaded;

where is relatively
overloaded;

where both and
are relatively overloaded;

where both and
are relatively overloaded;

where both and
are relatively overloaded.

Choosing the criterion , instead of
prevents overreaction to small disturbances, thus ensur-

ing the stability of the control system. We define
if and only if , for some small .

We then describe such a system by a finite state machine
where each state is associated with one region. The system
often drifts away from state to other unbalanced states
due to the nonstationary traffic variation and/or the resource
capacity change. Our control objective is to drive the system to
converge to in finite steps with near-optimal performance.
Based on the quasi-static approximation, we assume that the
optimal control in terms of (3) corresponds to the successful
tracking of such a unique balanced state. As described be-
low, the problem can be formulated as a hierarchical stochastic
learning automata system [10].

A stochastic learning automata system is composed of
states. In our case, . Among them, there is a desired
state, to which the system is driven to converge under nonsta-
tionary disturbances. In our case, this state is the balanced state

. The inputs from the environment are measured at discrete
time , which are , and in our case. They
are used to identify the system state at time. Assigned to
each state are a set ofactionsand its associated probability
set. In our case, each action is represented by a pre-assigned
adaptation of to at time . To drive
the system from any undesired state to state, an action is
probabilistically selected from the action set based on the given
probability set. The probability set in a particular state, for ex-
ample, , is self-adjusted by alearning algorithmat time
given that the system was in state at time . The learning
algorithm is designed using the information at both current
and previous states (including the previous action selected).
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Fig. 5. Hierarchical structure of the control system.

We first define our stochastic learning automata system in
mathematical terms. Use to represent the system state at
time . For a state , assume there are possible
actions associated with it, denoted by .
One of them, denoted by , is probabilistically se-
lected from using the present probability vector

. Such a probability vector at time
is adjusted by a learning algorithm

(12)

Note that the next state is the outcome of
both the action in state and the present
random traffic arrivals. Hence, is updated based
on and . This is a learning
algorithm in the sense that the adjustment of the probability
for taking a particular action in the future is determined by
the outcome induced by the same action at
time . If the outcome is a favorable (unfavorable) state, the
probability for taking the same action in the future is increased
(decreased), whereas the probabilities for the other actions
are relatively reduced (increased). Such probability update
prevents the system from being trapped in an unbalanced state
or jumping among several unbalanced states indefinitely.

Fig. 5 shows the structure of a two-level hierarchical learn-
ing automata system in our problem setting. The reason behind
the specific choice of the number of actions for each state
will soon be clarified. The input from the environment are
the instantaneous utilizations , measured at
time . The first level is to identify the current state

based on , obtained from (2). At
the second level, the probability vector of the previous
state is updated to by (12); the new
control action as output will then be selected fromby the
probability vector of the current state .
The control output is described by , which
represents the incremental change of the control variables

from the previous . Obviously, con-
trolling the increment has the advantage of
requiring a much smaller control action set in each state as
compared to the direct control of .

Finally, some design rules need to be specified. We require
that both and , whenever updated, be immedi-
ately applied to the existing and forthcoming flows. More
specifically, whenever a nonzero is identified, any
forthcoming flow will require forwarding packets before

Fig. 6. Schematic plots of�i = �
o + �i which divides the overload region

from the underload region: (a) software-forwarding, (b) connection-setup, and
(c) active-connection.

cut-through switching. Further, all the existing flows, which
have forwarded more than packets but have not been
cut-through switched, will request the setup of cut-through
connection immediately. Similar rules apply to the adaptation
of .

For simplicity, here we have assumed the instant setup of
each cut-through connection. In practice, however, packets
which arrive during the cut-through connection setup period
will still be software forwarded. The actual cut-through con-
nection setup time is system dependent. For the Ipsilon IP
switching, the setup time is on the order of 10s [9]. The
study in [9] indicates that such a short setup time has negligible
impact on the overall switching performance. In this case, our
assumption of zero setup time can be directly applied. For
MPOA, the setup time can be much longer because of the end-
to-end address resolution, table caching, and signaling delays.
In our modeling, the extra packet forwarding required during
the connection setup can be taken into account by setting a
proper minimum value of in the adaptation.

B. Algorithm Design

To identify a proper action set associated with each state
and so to design an effective learning algorithm, let us first
qualitatively characterize the properties of the seven states with
respect to in the static sense. Based on the monotone
properties of each individual resource with respect toand
in Table I, one can readily obtain the phase diagram of the three
resource utilizations in Fig. 6 where an equi-utilization curve is
drawn to divide the operation into overloaded and underloaded
regions for each resource. Assume that the optimal solution is
found at , where all three average utilizations are
balanced at . For each resource, we then draw the equi-
utilization curve at , with respect to (note that
the same can be achieved with different ’s when only
a single resource is considered). Of course, the cross point
among the three curves, when they are all plotted together,
represents the optimal solution . In our application,
since we use a balanced region instead of a
balanced point , the single optimal point is
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Fig. 7. Phase diagram.

TABLE III
CONTROL ACTIONS (�Tn;�Xn) IN EACH STATE: 0 FOR NO

ACTION,+ FOR POSITIVE VALUE, AND � FOR NEGATIVE VALUE

extended to an optimal operation region. This is why we have
chosen for the equi-utilization curve in Fig. 6,
where is properly adjusted to reflect , which
defines the boundaries.

Fig. 7 shows the three overlapped curves, which naturally
divides the assignment into seven regions as defined by
the states . Associated with each unbalanced region
in Fig. 7, we further use arrows to describe the possible actions
to adjust and for the purpose of driving each unbalanced
region into the balanced region . For instance, in where
both and are overloaded, from Table I one can identify
that increasing has the effect of simultaneously reducing
and . Similarly, in where is relatively overloaded, it
is shown in Table I that both reducing and increasing
can have the same effect of reducing. This is why three
possible actions are selected in : reducing (action 1),
increasing (action 2), or both (action 3), each of which is
represented by one arrow within region. The proper actions
in the remaining unbalanced regions can then be similarly
constructed from Table I.

Our adaptive algorithm is designed on the basis of the phase
diagram in Fig. 7. First, since the balance point is expected to
be unique by the quasi-static approximation, the local search
of on the basis of the present should
be sufficient. In other words, only the incremental changes

need to be assigned to the control actions in
each region, with respect to and

. As summarized in Table III for the design of
and , we use “0” for no change, “” for some

positive value, and “ ” for some negative value. Both
and must be positive. In practice, is defined in packet
units and in second units.

The actual value of each action can be optimized by careful
tunning of the action value based on real trace simulations. For
all our simulation studies, we simply fix and assign

TABLE IV
THE ASSIGNMENT OF�Xn 2 f0;�;+g DEPENDING ONXn�1

, as listed in Table IV. Our real trace study indicates that
is more sensitive to than to when is

small. In other words, when is small, taking
or can significantly change the balance among the three
utilizations, which may lead to undesired control oscillation.
This is because many flows in IP traffic consist of a few
packets. When is small, taking or may
substantially change the balance between short-lived flows and
long-lived flows. To prevent this from happening, we assign
a noninteger value to when . A noninteger
can be implemented through a simple probabilistic assignment.
For instance, taking the control variable means that
75% of flow arrivals will be classified by while the
other 25% will be classified by .

For the three possible control actions associated with each
of and in Table III, a probabilistic assignment
is used to choose one of the three actions. We need to
develop a learning algorithm as defined in (12) to update the
corresponding probability vectors and .
Every vector has three probability elements, defined for three
actions and denoted by with

, for .
The design of the learning algorithm is summerized in Table

V. We can use Fig. 6 to understand the entries in the learning
algorithm. Suppose that action 1 was taken at ,
moving the system to . According to the phase
diagram in Fig. 7, it is very likely that such a move from

to is partially due to the overreacting of action 1 at
. The learning algorithm should then be able to reduce the

probability of action 1 at , which is achieved by increasing
the probability of the other action(s), such as action 2 in the
phase diagram. In Table V, such a probability adjustment is
represented by , which is to weaken action 1 while
strengthen action 2 once the state is moved to through
one adaptation. The purpose is to reduce the likelihood for
the stochastic learning automata system to repeat the same
mistake when it comes back to state. If action 1 in state

somehow leads to state instead of , it is obvious
from Fig. 7 that such a transition is unlikely to be caused by
action 1 but by other traffic/resource variation factors. Hence,
no probability adjustment is required as indicated bynull in
Table V for the transition from to upon action 1.

All the possible probability adjustments for different
state transitions can be similarly constructed as listed in
Table V. For some transitions, however, one may not be
able to exactly identify if the transition is attributed to the
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TABLE V
PROBABILITY ADJUSTMENT FORACTIONS IN STATE R(n). “i+” M EANS TO INCREASE THE

PROBABILITY OF ACTION i AND “ i�” M EANS TO REDUCE THE PROBABILITY OF ACTION i

action taken in the previous state. For instance, consider
the transition from to upon action 1. From the
phase diagram, it is not clear if such a transition is caused
by action 1 in , which otherwise would require further
knowledge of the operating point within regions and .
In this situation, we simply choose to weaken action 1 while
strengthen action 2 in state for the purpose of reducing
the likelihood of repetition of such transitions.

There are two types of probability adjustment in Table V.
One only deals with the probability adjustment of action 1
and action 2, expressed by

(13)

with action 1 action 2 and is a properly se-
lected tunning parameter in the range of . The other
type requires the probability adjustment of all three actions,
expressed by

(14)

with action 1 action 2 action 3 .

C. Design Complexity

There are three basic components in the design of the
above adaptive algorithm. The first one is for the function of
flow identification/classification given the current .
It requires a timer and a counter at each layer-3 flow
cache table entry, where provides the arrival time of the
previous packet and gives the number of packet arrivals in
the current flow. Assume there is a global time clockwhich
provides the current time. Upon each packet arrival at entry,
the component takes the following four steps.

• If , set to start a new flow identification.
• If and , set to continue

flow classification.
• If and , set up connection for a

long-lived flow.
• Set to upgrade packet arrival time.

Note that is the current packet interarrival time. These

steps are identical for both static and adaptive flow identifica-
tion/classification schemes.

The second component provides the on-line measurement
and filter operation for the present utilization of individual
resources, i.e., to identify .

The third component is designed for periodic update of the
global parameters . The following steps are required
per adaptation.

• Identify the current state (with no more than three
subtractions and three comparisons).

• Decide whether a probability vector is to be updated (with
no more than four comparisons).

• Update the probability vector by (13) or (14) (with no
more than three additions, five multiplications and two
divisions).

• Choose a control action (with no more than two compar-
isons, plus one random number generation).

• Update and (with no more than two addi-
tions/subtractions).

Since the adaptation time interval is in the range of a few
seconds. the time complexity of this component is negligible
as compared to the first component.

VI. SIMULATION STUDY

In this section, the performance of the proposed adaptive
flow classification algorithm is tested based on the real In-
ternet/intranet trace simulations. Two important performance
aspects will be examined. First, the optimality of the proposed
adaptive algorithm is tested against the optimal static solution
in a relatively smooth traffic environment, given vastly dif-
ferent initial conditions. Second, we show the robustness of
the adaptive algorithm to the abrupt changes of input traffic
characteristics and available resource capacities, where the
quasi-static approximation may no longer hold.

The following parameters are provided for the simulation
study. The adaptation time interval is set to 2 s. The criterion
for is measured by . The weighting
factors for damped utilization are chosen as

. The parameter in the learning algorithm is
fixed at 0.5.

To test the optimality of the proposed algorithm, we first
consider the Internet backbone traffic, represented byfixwest-
trace. The following fixed resource capacities are assumed to
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Fig. 8. Transient behavior of initial impact with(T0; X0) = (4; 20);
(6; 4); (8; 9). (a)–(c) Adaptive control performance, (d), (e) control sequence,
and (f)–(h) static control performance.

be available:

pktps flwps

flw
(15)

where is considered to be relatively more constrained.
To see the impact of different selections of the initial control
parameters on the transient convergence behavior of
the adaptive controller, three sets of are selected,
i.e., , and . In order to stimulate a highly
nonstationary transient period, all our simulations further start
from zero initial resource utilizations. Fig. 8 shows the first
200-s convergence behavior of the three instantaneous resource
utilizations defined in (1). Focusing on the adaptive results
in Fig. 8(a)–(c), we observe that the substantial overloading
and underloading of the initial impact are soon extinguished
despite the vastly different initial conditions. After the initial
70-s period, all ’s are approaching 80%. Also plotted
in Fig. 8(d) and (e) are the control sequences of ,
which are approaching , respectively.Fixwest-traceis
found to be rather smooth during the 20-min collection. This
is why all ’s are soon stabilized and ’s stay
almost unchanged after the initial impact.

The smoothness of the traffic lends us a natural means to
examine the optimality of the proposed algorithm. For com-
parison purposes, we ran multiple static control simulations
based on the same trace, each of which is conducted with a
different pair . A complete static search gave us the
same near-optimal solution as found by the
adaptive algorithm, where all the three utilizations approach
to the balanced point 80%. Clearly, the performance of the
adaptive control quickly converges to the optimal solution in
spite of vastly different initial conditions.

Also plotted in Fig. 8(f)–(h) are the simulation results
of the static flow classification for simply assigned
by the three different sets of the initial condition ,
where the three utilizations are highly unbalanced for the two

TABLE VI
RESOURCEUTILIZATIONS AND LOSS RATES SAMPLED AT DIFFERENT TIMES

OF DAY WITH A STATIC PARAMETER ASSIGNMENT (T;X) = (5; 5).

cases which are not optimal in static sense. In other words,
the optimal solution for the static classification
is strongly dependent on traffic characteristics and resource
availability, which area priori unknown.

Note that the trace used for the simulation is only 20 min
long, which is relatively stationary in the sense that the daily
traffic level and pattern changes have not come into play.
Hence, even if a fixed operation point is found to be optimal at
some time of a day, it is likely for the same system to operate in
a highly unbalanced mode as the daily traffic level and pattern
change. For instance, let us study three 5-min traces from the
same fast Ethernet hub at Cisco Systems, Inc., at different
times on March 4, 1997. Given that the capacities of the three
resources are fixed at ,
with the static control we found for the trace
collected at 10:00 am Pacific time. From Table VI, we see that
all the average utilizations are well balanced with less than 4%
relative difference. Also listed in Table VI are the statistics of
the other two 5-min traces collected at 12:50 pm and 3:15
pm, using the same static control . As
one can see, the utilizations now become highly unbalanced,
especially for the heavy load trace collected at 3:15 pm. The
low utilizations at 12:50 pm are the consequences of the low
traffic volume during the lunch break time.

Let us now examine the optimality of the proposed adaptive
algorithm in an intranet environment. We found that all the
100-Mb/s fast Ethernets, where the traces were collected,
are highly underutilized (about 5% on average). A flow-
based hybrid access switching system in a LAN environ-
ment is expected to support multiple fast Ethernets. For
instance, consider a hybrid access switching system which
has eight 100-Mb/s fast Ethernet ports. The aggregated traffic
is therefore generated by the superposition of eight 5-min
fast Ethernet traces, collected at Cisco Systems, Inc. The
aggregated traffic volume is 34 Mb/s on average. We set the re-
source capacities at .
Fig. 9(a)–(e) shows the convergence behavior of the adaptive
control for approaching the optimal balance point

, starting at the initial condition .
The same optimial balance point has been verified by the static
control at fixed displayed in Fig. 9(f)–(h).
Again, we have seen the fast convergence of the adaptive
control to the unique balance point regardless of the initial
conditions.

Next, we examine the adaptivity and robustness of the
proposed algorithm to potential abrupt traffic changes, where
the quasi-static approximation may no longer hold.Fixwest-
trace is adopted here and its major applications are abruptly
turned off and on. The three dominant applications in the
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Fig. 9. Control performance on an intranet trace: (a)–(c) adaptive
control performance with initial condition(T0;X0) = (15; 15), (d)–(e)
control sequence(Tn; Xn), and (f)–(h) static control performance at
(To; Xo) = (3; 3).

Fig. 10. Adaptive resource allocation to abrupt traffic change.

trace areipip, dns, andhttp, each of which consists of 18%,
16%, and 38% of the total packets, respectively. Different
applications may have different requirements on resources at
the same given . Hence, turning these applications off
and on within a 20-min time period would create a somewhat
exaggerated worst-case scenario for the daily traffic change.
Within the first 100 s, theipip traffic is turned off. Thehttp
traffic is then turned off within the next two separate time
intervals, i.e., and in seconds.
The dns traffic is turned off last within . The
same resource capacities defined in (15) are assumed to be
available. Fig. 10 shows the time adaptation of the dynamic
resource management to the abrupt traffic changes. The initial
value is set at , which is far from the optimal
point. To concentrate on the effect of the abrupt traffic changes,
the first 32-s transient period of the initial impact has been
neglected in the plots. Also displayed in Fig. 10 are the
control sequences of and , as well as the traffic level
variations. Obviously, the proposed algorithm has quickly
adapted to the abrupt traffic changes and converges quickly
to the new balance point with only one or two adaptations.

Fig. 11. Adaptive resource allocation to abrupt traffic change with less
software-forwarding capacity.

Upon each turn off and turn on, as explicitly shown in the last
plot of Fig. 10, we do see some momentary undershoot and
overshoot behavior of the individual ’s. This is a common
phenomenon in control systems. With finer parameter tunning,
which is beyond the scope of this paper, such momentary
undershoots and overshoots can be further reduced. It is clear
that after each abrupt traffic change the adaptive algorithm can
soon resume the resource balancing, which is expected to be
unique and optimal in moving average sense.

Let us now consider another set of resources, given by
using the same

units as in (15). Compared to the previous set, this system
has significantly less software-forwarding capacity but more
connection-setup and active-connection resources. The results
are presented in Fig. 11. Again, the proposed algorithm re-
sumes the resource balancing shortly after each abrupt traffic
changes.

So far, all our case studies have been focused on the
effect of traffic characteristics on the performance of the
adaptive algorithm, assuming fixed resource capacities. In
practice, this assumption is unlikely to be true, as discussed
in Section I. It is important to study the performance of the
adaptive approach with time-varying resource capacities. Our
simulation study is based onfixwest-trace. We first assume that
the maximum resource capacities are

. The static optimal control has been iden-
tified at , achieving the balanced average
utilization of 50%. Consider then the variation of the three
resource capacities. They are first reduced to 40% of their
maxima, in turn with 100-s duration each, at time 68, 268,
and 468 s, respectively. They are then changed to 80% of
their maxima at time 668, 718, and 768 s, respectively. Such
resource capacity time variations are depicted in Fig. 12(i).
We first show the simulation result of the static control at the
fixed in Fig. 12(a)–(c). As one can see,
the resource capacity variations easily drive the utilizations
out of balance, resulting in constant overflow of individual
resource(s) while the other resources are highly under-utilized.
In contrast, Fig. 12(d)–(f) provides the corresponding simula-
tion results of the adaptive control with the initial condition

. It is obvious that the adaptive algorithm
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Fig. 12. Adaptive resource allocation to abrupt resource capacity changes:
(a)–(c): static control performance with(T;X) = (10; 8), (d)–(f) adaptive
control performance at initial condition(T0; X0) = (10;8), (g), (h) control
sequence(Tn; Xn), and (i) resource capacity change patterns.

effectively adjusts its control parameters to balance the whole
resource utilizations despite the abrupt change of individual
resource capacities. That is, the residual capacities of all
resources are fully utilized to absorb the potential overflow
of individual resources.

In summary, our simulation study exhibits the viability
of the proposed flow adaptation to the dynamic allocation
of constrained resources under time-varying traffic/resource
conditions.

VII. CONCLUSIONS AND FUTURE WORK

In the design of hybrid switching systems, we introduced
a new concept of adaptive flow classification, which offers
a unique way to dynamically minimize the maximum of the
three major system resource utilizations under time varying
traffic/resource environment. A static version of the min–max
problem was shown to be equivalent to a balance problem
with the existence of a unique balance point. Based on the
quasi-static approximation, the adaptive control problem can
be transformed into the tracking of the single balance point
in moving average. An effective adaptive flow classification
algorithm was then developed based on the stochastic learning
automata system formulation. Our simulation study based on
real Internet/intranet traces revealed the significant advantage
of the adaptive flow classification approach over the static
approach. The adaptive algorithm is found robust in the
presence of abrupt changes of traffic characteristics and system
resources with fast convergence. Since the time complexity
of adaptation is negligible as compared to other
functions in a real system, more sophisticated algorithms
can be developed for further performance improvement. For
instance, one may build the monetary cost of individual
resources into the control model such that the overall cost
of the resources is to be minimized in the switch product
design. One can also extend this paper to include other
resource constraints. An important issue which we did not

address in this paper is related to flow entry search upon
each packet arrival. Since the flow cache table could be
large, especially for flows defined at fine granularities such
as host port granularity, designing efficient algorithms for
flow cache entry search is crucial for the success of the cut-
through switching technologies. This issue is currently under
investigation.
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