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Abstract—In this paper, we propose a framework for the performance
analysis and flow classification design of Multi-Protocol Over ATM (MPOA)
network. The study based on the real Internet/intranet traces shows that
even at high cost with long delay for each shortcut setup, MPOA can offer
significant performance gain over the traditional routed network in an in-
ter ELAN communication environment. In comparison, the MPOA perfor-
mance gain in an Internet backbone environment is much less significant,
mainly because of the dominant short-lived flows contributed by both dns
and http applications. We also propose a flow classification algorithm,
which substantially reduces the implementation complexity while achieves
the same level of performance as compared to the default flow classification
algorithm proposed by MPOA standard. A simple timeout mechanism is
also introduced to the flow cache table management for significant perfor-
mance improvement. We further develop a stable, adaptive flow classifi-
cation algorithm, which achieves a near-optimal solution to minimize the
constrained MPOA resource utilizations.

1 Introduction

After more than two years of effort by the Multi-Protocol Over
ATM (MPOA) Working Group at the ATM Forum, MPOA was
ratified as an industry standard in July, 1997. MPOA is an in-
ter emulated LAN (ELAN) communication technology, which
supports the transport of connectionless traffic via both layer-3
hop-by-hop forwarding through intermediate routers and layer-
2 shortcut switching through ATM network. The objective is
to alleviate the burden of rapidly increasing inter subnet traf-
fic on routers, which have increasingly become the bottleneck
in traditional routed network . To the best of our knowledge,
the effectiveness of MPOA technology has not been well stud-
ied. Major concerns have been raised with regard to its perfor-
mance, mainly because of the complex signalling structure and
large processing/propagation delays involved in each shortcut
setup. In other words, the network resources required by short-
cut setup may substantially undermine its claimed throughput
performance.

In this paper, we develop a framework to characterize indi-
vidual MPOA resources and propose a unified measure to quan-
titatively capture the overall resource requirement. The MPOA
performance can therefore be studied on the basis of the real
Internet/intranet trace simulations. Note that MPOA is data-
driven, i.e., a shortcut setup is triggered by the first few packets
of a flow and thus traffic flow dynamics have substantial impact
on MPOA performance. One major contribution of this work is
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to show that MPOA can indeed provide significant performance
gain over the traditional routed network in an inter ELAN envi-
ronment. Even at high cost with large round-trip delay for each
shortcut setup, its performance gain can reach more than a ten
fold provided that a sufficiently large cache table size is avail-
able to accommodate most of the long-lived flows. In contrast,
the performance gain in an Internet backbone environment is
found to be much less significant, mainly due to the short-lived
flow nature of dns and htp traffic.

Flow classification (FC) and cache table management (CTM)
are the two critical MPOA design issues, which have not been
carefully examined. In an MPOA network, each multiprotocol
client (MPC) runs a FC algorithm to identify every long-lived
flow for shortcut setup; the state information for each shortcut
connection is maintained by a CTM scheme. Hence, the MPOA
performance is largely dependent on the design of FC algorithm
and CTM scheme. The default FC algorithm proposed by the
MPOA standard [4] is found inefficient in our study. The CTM
in [4] requires a specified holding time to be assigned to each
cached flow entry with possible extension of an extra holding
time upon request. Yet, no scheme is proposed to effectively
manage such a flow cache table for the overall network perfor-
mance improvement.

In this paper we propose a FC algorithm, which substantially
reduces the implementation complexity while achieves the same
level of performance as compared to the default one in [4]. A
simple timeout mechanism is also introduced in the CTM for
significant performance improvement. We further present an
adaptive FC algorithm to achieve a near-optimal performance
gain, which is simple to implement with a single control param-
eter.

A few works are available on the performance analysis and
FC algorithm design for the flow-based IP/ATM hybrid switch-
ing systems, which are mainly based on the Ipsilon IP switching
architecture [1, 2]. However, there are two basic distinctions
between MPOA and Ipsilon IP switching, which makes the sep-
arate study on MPOA necessary. First, the cost and delay for
shortcut setup in MPOA are generally much greater than those
for cut-through connection setup in Ipsilon IP switching. This
is because the MPOA’s complex signalling procedure for short-
cut setup and its associated two end-to-end round-trip delays.
Second, per connection maintenance cost in MPOA is gener-
ally much less than that in Ipsilon IP switching. This is because
MPOA maintains a "hard state” for each shortcut connection,
whereas the Ipsilon IP switching maintains a "soft state” for
each cut-through connection. The paper (1] placed the empha-
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Figure 1: MPOA network and its shortcut setup procedures

sis on per connection maintenance cost under the assumptions
of small processing cost and zero delay on cut-through setup.
The study in [2] examined the delay effect while neglected both
setup and maintenance costs for cut-through connections. In
contrast, the MPOA analysis requires consideration of both long
delay and high cost involved in shortcut setup while neglecting
per connection maintenance cost.

The rest of the paper is organized as follows. Section 5.2 pro-
poses an MPOA framework for performance analysis. Section
5.3 develops an adaptive FC algorithm and examines its perfor-
mance. Section 5.4 is the conclusion.

2 Framework

This section is composed of three subsections. Section 2.1 for-
mulates the process of each individual flow by a finite state
machine. Section 2.2 identifies the requirement of MPOA re-
sources and their associated costs for the process of aggregate
flow dynamics. Section 2.3 then proposes a design objective to
minimize the overall cost in FC algorithm design and resource
management.

2.1 A Finite State Machine per Flow

As shown in Fig. 1, an MPOA network is logically divided
into ELANs [5]. Each ELAN is composed of multiprotocol
servers (MPSs), edge devices (EDs) and directly attached hosts.
Each ED is further attached by one or more legacy shared-media
LANSs. Unlike the traditional inter-networking where EDs and
MPSs are regular routers, MPOA employs the client-server model
where EDs are clients and MPSs are servers. An MPS performs
. internetworking route calculation for all the associated EDs and
directly attached hosts, and thus the number of devices partic-
ipating in route calculation is substantially reduced, which in-
creases the routing scalability. An important component in each
ED is the so called multiprotocol client (MPC) that performs the
MPOA client functions including FC, CTM and shortcut setup.
To explain how a flow is shortcut switched in Fig. 1, let us
assume that an end-user Al on an Ethernet behind MPC1 of
ELANI1 wants to send a data flow to another end-user B3 on an-
other Ethernet attached to MPC3 of ELAN3. In this case MPC1
is the ingress MPC and MPC3 is the egress MPC. Such a flow is

first to be identified by the FC algorithm in MPC1. During the
identification period, all its input packets will be hop-by-hop
forwarded through intermediate MPSs to B3. Once it is identi-
fied as a long-lived flow, MPC1 will generate a shortcut setup
request to MPC3. There are two steps for a successful short-
cut setup. The first step is to resolve the MPC3’s ATM address
through the next hop resolution protocol (NHRP) via MPSs, i.e.,
the hop-by-hop forwarding path. The binding information from
the layer-3 address of B3 to the MPC3’s ATM address will then
be cached in the MPC1’s flow cache table. The second step is to
establish a virtual channel connection (VCC) through the stan-
dard ATM signalling protocol via ATM network. This step may
be bypassed if there already exists a VCC from MPC1 to MPC3.
Notice that the management of all the VCCs at MPC1 requires
a VPI/VCI table, which is separate from the flow cache table.
In the worst case, a shortcut setup process requires two round
trip delays, during which all the input packets of the flow are
hop-by-hop forwarded.

One can describe the process of each flow by a finite state
machine in Fig. 2. State ID represents the idle period before
the first packet arrival of the flow. State S is the flow identifi-
cation period before making a request for shortcut setup. State
SN is the time period required to resolve the ATM address of the
egress MPC. State SCS is the time period for ATM signalling to
establish a VCC. While in states S, SN and SCS, all input pack-
ets of the flow are software forwarded. State CT is the only state
during which all input packets are shortcut switched. Note that
a flow can terminate at any time as described by the transition
from any other state to state ID in Fig. 2. Further, the direct
transition from state SN to state CT represents the situation in
which the ATM signalling is bypassed. A transition probability
1 — 3 is assigned to describe the possibility for a flow to find an
existing VCC to its egress MPC.

The actual value of 8 depends on VPI/VCI table manage-
ment. The VPI/VCI table management again largely depends
on the spatial distribution of the traffic flows. Multiple flows
between each pair of ingress MPC and egress MPC may share
a single VCC. Since the spatial distribution of the traffic flows
cannot be extracted from the collected traces due to the address
filtering for security consideration, our design will be solely
based on a single node simulation without taking into account of
the VPI/VCI management. Instead, we shall examine the sen-
sitivity of MPOA performance to 8 by simply considering two
extreme values, namely, 3 = 0and 8 = 1.

2.2 MPOA Resource Classification

For each flow, one can use the finite state machine to character-
ize its present demand on individual MPOA resources accord-
ing to its current state or transition. For aggregate flows, the
demand on individual resources can therefore be measured by
the number of flows staying in each individual state or taking
each individual transition at a given time interval At. Defined
below are the demand of aggregate flows on five major MPOA
resources at the nth time interval:
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Figure 2: Finite state machine for flow state in a MPC

o f(n): software-forwarding demand, measured by the num-
ber of packets generated per second by flows in states S, SN
and SCS;

o r(n): address-resolution demand, measured by the number
of flows taking transition from state S to state SN;

¢ a(n): active-address-binding demand, measured by the num-
ber of flows in states SCS and CT;

¢ s(n): ATM-signaling demand, measured by the number of
flows taking transition from state SN to state SCS;

¢ ¢(n): active-shortcut demand, measured by the number of
VCCs in state CT.

Note that f(n), r(r) and s(n) are the rate measurement defined
by the number of packets or flows per second, which are more
related to the demands on CPU processing powers. a(n) and
¢(n) are the cumulative measurement defined by the number of
flows, which are related to the memory requirement for table
management. The capacities of the individual resources avail-
able in a given system are further represented by Finax, Rmax,
Amax, Smax and Crax, respectively. For simplicity, we assume
these capacities are fixed, although our work generally applies
to variable capacities.

Accordingly, Fi,ax and Ry,  refer to the packet forwarding
and NHRP capacities of the MPCs and MPSs along the hop-by-
hop software forwarding path. Sp,.x represents the signalling
capacity of the MPCs and ATM switches along the shortcut
switched path. These are nonlocal resources. Both A« and
Chax are referred to the flow cache table size and the VPI/VCI
table size at the local ingress MPC. With these definitions, we
implicitly assumed that the demands a(n) and c(n) at the ingress
MPC are solely constrained by the corresponding local resources
Amax and Cpax, respectively. In practice, however, the state in-
formation of each flow needs to be maintained at both ingress
and egress MPCs, and a shortcut connection consumes the VPI
/VCI table resource in each intermediate ATM switch along the
path. Based on our single node simulation, such nonlocal re-
source constraints will not be considered.

Since each VCC between a given pair of ingress/egress MPCs
can be shared by multiple flows, the demand on Cp,.x is ex-
pected to be significantly less than that on Ap,,x. We then as-
sume that resource Cpax is unconstrained. We further assume
that all the three nonlocal resources, Finax, Rmax and Spax, are
unconstrained. Hence, Anax becomes the only constrained re-

source. That is, a long-lived flow will be blocked from shortcut
switching if and only if Amax is fully occupied by the existing
flows, and a blocked flow due to Ap,.x overflow can still be soft-
ware forwarded without loss. Note that the unconstrained non-
local resources are not for free. On the contrary, the objective
of our adaptive FC algorithm design is to minimize the nonlocal
resource utilizations subject to the local resource constraint.

2.3 Cost Function and Design Objective

Let us first consider the cost for maintaining and updating the
two local resources at the ingress MPC. Define the cost per unit
time per VPI/VCI entry in the active-shortcut demand by C,, and
the cost per unit time per cached flow entry in the active-address-
binding demand by C,. The aggregate cost of the two demands
at the nth At interval can then be represented by a(n) x C, x
At+c¢(n) x C, x At. For the three nonlocal resources, we define
C' as the cost per packet in the software-forwarding demand,
C as the cost per flow in the address-resolution demand, and
Cj as the cost per flow in the ATM-signalling demand. The total
cost on all the resources at the nth At interval can therefore be
described by

C(n) = a(n)CoAt+c(n)CcAt+ f(r)Cs +1(n)Cr +5(n)Cs.
(1)
Also, we need to develop a unified cost measure among the five
different cost factors. For simplicity, we take Cy = 1, which
is the cost per software-forwarding packet. That is, all the other
cost factors will be measured in the units of software-forwarding
packet. For instance, taking C,, = 20 (C; = 20) means that the
cost of address resolution (ATM signalling) to set up a short-
cut connection per flow is equivalent to the cost of software-
forwarding 20 packets. Since MPOA maintains a "hard state”
for each shortcut connection, the cost of maintaining and updat-
ing both VCC and flow cache tables are comparatively negligi-
ble, i.e., C, ~ 0 and C. ~ 0. We then have
C(n) = f(n) + r(n)Cr + s(n)C; 2)
where f(n) is the number of software-forwarding packets and
r(n)Cy + s(n)C; is the equivalent switching overhead.

Given this cost structure, we can introduce a performance
measure, called switching gain, G, which is defined as the ra-
tio of the total number of software-forwarded and hardware-
switched data packets to the total number of software-forwarded
data packets plus the switching overhead. Accordingly,

> p{d(n) + f(n)}
Yalf(n) +r(n)Cr + s(n)Cs}

where d(n) represents the number of hardware-switched pack-
ets at the nth At interval. Notice that for pure layer-3 forward-
ing, we getd(n) =r(n) =s(n) =0andsoG=1.IfG < 1,a
negative performance gain is achieved by the hybrid switching
as compared to the pure software forwarding. Otherwise, a pos-
itive gain is achieved and the value of G provides us a quantita-
tive measure on how many times the processing power is saved
by the hybrid switching over the pure software forwarding. Our

G= 3
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objective is to maximize G, constrained by the local flow cache
table size, through the design of an adaptive FC algorithm. For
the adaptive FC, the instantaneous demand on each individual
resource is controllable through the adaptive assignment of a
control vector Z,, based on the present condition of flow dy-
namics and resource utilizations at time n. Denote the control
sequence up to time n by X, = {£,}|3. We have

max{x.} G - 4)
Indeed, when such a control objective is achieved at every ingress
MPC, the overall usage on the MPOA network processing re-
sources is expected to be minimized. Note that the adaptive
control is important to achieve near-optimal performance, es-
pecially given the time varying behavior of the traffic and the
dynamic sharing nature of the resources.

Three Internet/intranet traces are used in the simulation study,
which are refered to cisco-trace, Ibl-trace and fixwest-trace, re-
spectively. The cisco-trace is a 20-minute trace collected from
a 100-BT campus network at Cisco Systems Inc. on March 4,
1997. The Ibl-trace is a 16-minute trace collected from a 100-
BT at Lawrence Burkeley Laboratory (LBL) on July 14, 1997.
The fixwest-trace is a 20-minute trace collected from the FDDI
Internet backbone at FIXWEST on Oct. 21, 1996. The utiliza-
tions at the time of data collections are 5.5%, 4.0%, and 27.3%,
respectively.

3 Flow Classification Design and Perfor-
mance Evaluation

The following three key MPOA design issues will be examined
in this section: (a) adaptive FC algorithm design for optimal
performance gain, (b) effective flow cache table management,
and (c) evaluation of G under the conditions of high cost and
long delay for shortcut setup.

3.1 Static FC Algorithms

A flow is identified as a sequence of packets that are treated
identically by routing function. The flow identifier can be de-
fined at various granularity levels. Examples are #ost+port gran-
ularity and host granularity. The former is described by a pair
of {source address, source port} and {destination address, des-
tination port}. The latter is by a pair of {source address} and
{destination address}. In this work, we only consider flows
at host granularity.

Three static FC algorithms were proposed, which are called
the application -based, X/Y /T, and X/Z/T algorithms, re-
spectively [1, 4, 2]. The application -based algorithm is to clas-
sify application flows based on the measured average flow du-
ration and average number of packets per flow for each appli-
cation. The algorithm was found ineffective as compared to the
other two algorithms [2, 3] and thus will not be considered. Both
the X/Y/T and X/Z/T algorithms use a timeout, T, for the
flow cache entry management. The X/Y/T algorithm is to re-
quest a shortcut setup if and only if X packets with the same
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Figure 3: Performance comparison of the X/Y/T algorithm with
the X/Z/T algorithm

flow identifier have been forwarded within Y seconds, which is
the same as the default FC algorithm proposed in the MPOA
specification [4]. The X/Z/T algorithm is to request a short-
cut setup if and only if X packets with the same flow identifier
are software forwarded, where the interarrival time between any
two successive packets are smaller than Z. The X/Y/T algo-
rithm keeps a cumulative counter of the forwarded packets and
the timestamps in a fixed time window size Y per flow. Upon
each packet arrival, the timestamps are updated by deleting the
old ones while adding the new one, in addition to update the
counter. In contrast, the X/Z/T algorithm maintains a cumu-
lative counter of the forwarded packets and a single timestamp
for the last forwarded packet. Upon each packet arrival, both
timestamp and counter are updated. Obviously, the X/Z/T al-
gorithm has the time/space complexity much less than that of
the X/Y/T algorithm, which is O(1) versus O(X) per flow.

Let us compare the performance of the two static algorithms.
For simplicity, our simulation study assumes C, = C;. Fur-
ther, the time required to resolve a destination ATM address is
assumed identical to the time for ATM signalling to establish a
VCC, which is denoted by T,4. Taking C, = C; = 20, 8 =1,
and T4 = 200 ms while fixing Y = Z at 15 sec and T at 30
sec, depicted in Fig. 3 are the results of switching gain (G) and
the average number of flows (E[a(n)]) as a function of X for
Ibl-trace, with respect to the two static algorithms. As one can
see, the two algorithms achieve similar performance. In conclu-
sion, the X/Z /T algorithm should be adopted since it achieves
similar performance as the X /Y /T algorithm with much less
complexity.

The following adaptive algorithm will be built upon the X /Z /T
algorithm through the adaptation of the control vector Z,, =
{Xn, Zn,Tn} at each time interval n.

3.2 Design Complexity Reduction

The proposed adaptive control problem falls into the category of
nonlinear stochastic feedback control, which is generally diffi-
cult to tackle in terms of optimal control design. To explore the
possible design simplification, we first examine the sensitivity
of G to individual control parameters Z, X, and T in the static
sense. Setting C, = C; = 20 and T; = 600 ms, we performed
multiple simulations on the basis of lbl-trace and cisco-trace,
where one control parameter is selected to change at a time in a
wide range. The results are summerized in Fig. 4.

1500



15 =0 15 = 20
p=0
10f—e 1 10
© B=1 © B=1 @10 0
5 5 B=
(a) (b) (c)
0 0 0
0 20, 40 60 0 20, 40 0 20 4060 80
30 =0 30 =0 40
20 p=0
20
o B=1 B=1 o
10 10/ 2 B=1
(d) (e) (]
0 0 0
0 20_40 60 O 20 40 0 20 40_60 80
¥4 X T

Figure 4: Sensitivity of G to Z, X, and T. Upper ones for Ibl-
trace, and lower ones for cisco-trace. (a),(d): X = 20, T = 30;
(b)(e): Z =15,T = 30;(c),(f): Z=15,X =20

From Figs. 4a,d, G is found insensitive to Z when Z is greater
than Ssec. It means that most end-to-end traffic streams have
their packet interarrival time less than 5sec, and hence further
increasing Z will no longer significantly change the flow dy-
namics. Similarly from Figs. 4b,e, G is found insensitive to X
once X > 5, especially when g is large. Notice that increasing
X has the combination effect of reducing the number of shortcut
setups and increasing the number of software forwarding pack-
ets. When X is large, the gain through the reduction of short-
cut setups is virtually cancelled out by the increase of software
forwarding packets. When X becomes small, the significant in-
crease of G with X in Figs. 4b,e suggests that a large portion
of flows are actually short-lived with only a few packets in each
flow. From Figs. 4¢.f, G is found sensitive to 7" and monoton-
ically increases with T'. From the given constraint in (4), the
selection of T" will be largely restricted by the flow cache table
size,

The above static sensitivity analysis suggests that it suffices to
fix Z and X at some reasonably large values, e.g., Z,, = 15 sec
and X, = 20, Vn. Hence, T}, becomes the only adaptive control
parameter in the adaptive FC design.

Now consider two control sequences 7, = {T),,}|3 and 7', =
{T;.}|3. Denote 'y > T if T, > Trn, Ym, with at least
one inequality. We say that a function f(7,) is a monotoni-
cally increasing function of 7, if and only if f(77,,) > f(7»)
for 7', > T,. The following monotone properties can then be
identified:

O Both G(T,) and pa(Tn) are monotonically increasing func-
tions of 7,.

The monotone properties are directly obtained by inspection. As
7» increases, a flow entry will stay longer in active and hence
more packets will be relayed through the shortcut. In conse-
quence, both shortcut setup rate and software-forwarding packet
rate will be reduced, which leads to the increase of G but at the
expense of increasing p,.

Since p, is a monotonically increasing function of 7,, in-
creasing p, is equivalent to increase the control sequence. Fur-
ther, because G is also a monotonically increasing function of
Tn, increasing control sequence is equivalent to increase G. Also

since flows which are blocked due to flow cache table overflow
can still be software forwarded without incuring any loss, occa-
sional cache table overflow should not reduce G. Hence, G can
be expected to be maximized at high p,(7,,) values. In other
words, the algorithm design for maximizing G can be trans-
formed to the design of an algorithm which maximizes p, (7,)
with zero or small flow cache table overflows. However, it is dif-
ficult to determine exactly how large the p,(7,) values should
be such that GG is maximized, which is largely determined by the
flow arrival statistics which is unknown a priori. In the next sec-
tion, we propose two adaptive algorithms which achieve near-
optimal performance.

3.3 Adaptive FC Algorithm Design
A. LRU-based Algorithm

An algorithm which achieves near-optimal solution is the so
called least recently used (LRU) algorithm, which ensures the
maximization of 7, at any time n without cache table overflow.
The LRU algorithm [7] was originally proposed for the page-
replacement for computer virtual memory scheduling. Consider
the cache table management by the LRU algorithm, Upon each
shortcut setup request, a free flow entry will be allocated if it
is available, otherwise the flow entry which has been idle for
the longest period of time will be re-allocated to the new flow.
Note that the LRU algorithm does not always give near-optimal
solution because of its nonblocking nature, which may cause
the so called thrashing effect. That is, when the cache table
size is too small compared with the number of shortcut setup
requests, the flow entries can be frequently added and deleted,
leading to frequent shortcut setups and so the substantial reduc-
tion of G. However, since up to X packets in a flow will be
software forwarded each time the flow is blocked for shortcut
setup, the thrashing effect is much less significant for flow cache
management than that for virtual memory management. Hence,
the LRU algorithm can be expected to provide near-optimal so-
lutions, except for very small cache table size.

A widely used technique for implementing the LRU algo-
rithm is to keep a stack of doubly linked list of data structures,
each of which is further doubly linked to the corresponding flow
entry in the flow cache table. The data structure which corre-
sponds to the least recently used flow entry is placed at the bot-
tom of the stack whereas the data structure corresponding to the
most recently used flow entry is placed at the top of the stack.
Upon each packet arrival at a given flow entry, the correspond-
ing data structure in the stack will be moved to the top of the
stack with the exchange of six pointers. For cisco-trace and lbl-
trace, each of them has an average bit rate around 5 Mbps and
the average packet size of 200 bytes, equivalent to about 3,000
updates per second.

B. T-based Algorithm

An alternative approach is to periodically update T, at n, which
ensures p,(7o) < 1 but close to 1. It is directly achieved from
the monotone property. First, in order to avoid over-reaction
to small demand variations, we introduce a first-order low-pass
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filter operation to damp the variation in p,(7y), i.e.,
Pa(Tn) = (1 = w)pa(Tn-1) +wpa(Tn) (5

where w is the weighting factor taken values between O and 1.
One can strengthen the damping by choosing a small w. Since
pa(T7) is a monotonically increasing function of 7, the follow-
ing simple control scheme can be applied,

if ﬁa(ﬁz—l) 2 Pmazs

T, = {
©)

with 0 < pmin < Pmaz < 1. Here, Tpnip serves as the lower
bound to avoid the thrashing effect. We call this adaptive FC
algorithm the T-based algorithm.

In our simulation study, the update interval At is fixed at 2
sec. After each update, every active flow entry is checked to
see if it should be deleted by comparing its idle time with the
present T7,. It requires one subtraction and one comparison op-
eration per active flow entry. Unlike the LRU-based algorithm,
no separate data structure needs to be built for the T-based algo-
rithm. For both cisco-trace and Ibl-trace, the maximum number
of concurrently active flows is about 600. So up to 600 flow en-
tries need to be checked at every At interval, i.e., up to 300 flow
entry checks per second. Thus, the complexity of the T'-based
algorithm is at least one order of magnitude less than that of the
LRU-based algorithm.

Since p, is a monotonic function of 7, the proposed T'-
based algorithm can guarantee the stability of the adaptive con-
trol given the proper selection of the control parameters {AT',
AT, pmaz, Pmin }- The explicit control of T, also provides us
a direct prediction of the desired holding time for each flow en-
try in the cache table, which can be used to request extra hold-
ing time for the long-lasting active flow entries as defined in the
MPOA standard. Since the LRU-based algorithm is expected
to offer near-optimal performance with reasonably large cache
table size, it can be used as a benchmark for the performance
analysis of the T'-based algorithm.

Tn—l + ATI,
max{Tn—1 — AT, Trmin}

if ﬁa(’];l—l) S Pmins

3.4 Performance analysis

We first examine the MPOA performance by running both the
T-based and LRU-based algorithms with [bl-trace and cisco -
trace. Choosing w = 0.5, AT} = 2, AT, = 5, At = 2 sec,
C, =C; =20,8 =0, and T; = 200 ms, depicted in Fig. 5
are the performance of G as a function of the cache table size
for both algorithms. For the T-based algorithm, two different
parameter settings are selected as indicated in Fig. 5.

When the cache table size is sufficiently large (about 600 en-
tries), both algorithms can achieve G = 22 and 60 with respect
to Ibl-trace and cisco-trace, respectively. Although the LRU-
based algorithm out-performs the T'-based algorithm for most of
the cache table sizes, the difference between the two is small. It
implies that the T'-based algorithm also offers near-optimal per-
formance. We note that G is not very sensitive to the changes
of pmaz from 0.95 to 0.98 and py,;n, from 0.8 to 0.95, which
implies that the selection of the thresholds is not critical for the
T-based algorithm to achieve near-optimal control. When the
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Figure 5: Switching gain G for the two adaptive FC schemes:
(a) Ibl-trace and (b) cisco-trace.
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Figure 6: Switching gain G for the T'-based algorithm with dif-
ferent assignments of (C,., Ty, 8): () Ibl-trace and (b) cisco-
trace.

cache table size becomes extremely small, however, the LRU-
based algorithm led to the negative performance gain (G < 1)
because of the thrashing effect, whereas the T-based algorithm
out-performs the LRU-based algorithm. Further, the two algo-
rithms converge to identical performance as the cache table size
increases. This is because T, can be arbitrarily large for both
algorithms when the cache table size becomes unconstrained.
Next, we examine the performance in both best and worst
case scenarios using the T'-based algorithm. Consider both C\.
and C in the range of [20, 50]. That is, the resource requirement

" per address resolution and also per ATM singalling is equivalent

to that of 20 to 50 software-forwarding packets, where 50 is ex-
pected to be the worst case scenario. Further take Ty in the
range of [0.2,2] sec, where 2 sec is expected to be the worst
case scenario. For instance, in an inter ELAN communication
environment with 3 to 6 hops, the typical delay for an SVC
setup is about 0.1 ~ 0.6 sec [8]. Hence, the best case scenario
is represented by (Cr,T4,8) = (20,0.2,0) while the worst
case scenario is by (Cr, T4, 8) = (50,2,1) given Cs = C.
The following parameters are set for the simulation: w = 0.5,
AZ, = 2 sec, ATy = 5 sec, Trnin = 3 sec, pmaz = 0.98,
Pmin =-0.95, and At = 2 sec.

The simulation results are presented in Fig. 6 with differ-
ent assignments of (Cy, T4, 3). When the cache table size be-
comes sufficiently large, the switching gain G can reach 22 and
60 for the best case scenario, and 9 and 22 for the worst case
scenario, with respect to Ibl-trace and cisco-trace, respectively.
That is, MPOA can achieve significant switching gain in an in-
ter ELAN environment. Notice that the performance degrada-
tion by changing 3 from O to 1 is less than 40% at each given
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Figure 7: Switching gain G v.s. flow cache table size for fixwest-
trace

(Cr,Tq). Similarly, the performance degradation by changing
(Cr,Tq) from the best (20, 0.2) to the worst (50, 2) is less than
60% at each given 5. When the cache table size is significantly
small, we observe some reduction of G with the increase of the
table size. This is due to the selection of T},,;, = 3 sec, which is
too small for the worst case scenario to guard against the thrash-
ing effect. Such behavior is expected to disappear when Ty, is
set at a relatively larger value.

In the above T-based algorithm, we set X at 20. To study
the sensitivity of the performance to X, we further used the
LRU-based algorithm to find an optimal X for the maximum
switching gain using [bl-trace, at each given table size of 200,
300 and 400 respectively. Our comparison study indicates that
such maximum performance achieved by the LRU-based algo-
rithm using the optimal X is within the 5% difference from the
performance achieved by the T-based algorithm using the fixed
X = 20 at each given table size. In other words, not only the
performance is insensitive to X given the range of X is prop-
erly selected, but also the T'-based algorithm indeed provides
the near-optimal performance. The same T-based algorithm has
also been tested against the LRU-based algorithm on the basis
of other 5 traces collected at two different 100-BT campus net-
works at Cisco Systems Inc. and all the results are consistent.

So far the studies are based on the intranet traces. We now ex-
amine the performance of the T-based algorithm using a back-
bone Internet trace, fixwest-trace. Fix (C,, T4, 8) at (20,0.2,0.5)
with C; = C, while the rest parameters remain unchanged.
As one can see in Fig. 7, G saturates at about 3.8 even as the
cache table size approaches 40,000. Obviously, MPOA achieves
much less switching gain in the backbone Internet environment
as compared to that in the campus intranet environment. Given
the 27.3% utilization of fixwest-trace on a 100 M bps FDDI ring,
its cache table demand is also significant. For instance, the cor-
responding cache table demand on an OC-3 link in backbone
networks may well exceed 100,000.

Clearly, it must be the difference between the flow dynamics
of campus intranet and backbone Internet that has the major im-
pact on the MPOA performance. Here we further decompose the
flow dynamics into different applications at the host+port gran-

Table 1: Average flow statistics

trace (prot,port) flow% | pkt% | byte% pktpf
(tcp, 4240=unknown) 0.0 36.1 104 556773
(tcp, 6000-6063=Xwin) 0.3 8.8 36 666.6
cisco (udp, 111=sunrpc) 2.3 0.1 0.0 1.2
(udp, 1020=unknown) 0.4 8.7 9.6 54277
(udp, 8224=unknown) 2.1 04 1.9 4.5
(tcp, 80=http) 5.5 3.0 2.7 11.2
(tcp, S14=cmd) 0.0 4.2 8.6 2392.7
bl (tcp, 1023=rsv) 0.0 4.8 3.5 43673.0
(tcp, 6000-6063=Xwin) 0.1 4.3 5.1 978.5
(udp, 53=dns) 53 1.7 0.6 6.3
(udp, 1021=unknown) 0.2 416 278 5270.5
(tcp,20=ftp-data) 0.5 7.7 1.0 213.0
Sfixwest (tcp, 80=hitp) 33.6 36. 432 135
(udp, 53=dns) 40.1 15.3 7.0 4.8
(ipip_or MBONE) 22 | 181 | 180 | 1024

ularity. Listed in Table 1 are the detailed average statistics of
such flow dynamics for the three traces, given the flow timeout
value T' = 128 sec. For clarity, only the statistics of major ap-
plications are collected. For cisco-trace, the major applications
are represented by those whose flow ratio is greater than 1% or
packet ratio is greater than 8%. For the other two traces, they
are represented by those whose flow ratio is greater than 5% or
packet ratio is greater than 4%. For the two campus traces, let
us first focus on the unknown applications. Although these ap-
plications comprise only a small fraction of the total flows, they
actually represent the major portion of the total packets. In other
words, the flows of these applications consist of a large number
of packets, which are best suited for shortcut switching. They
are the major contributors to the large switching gain achieved
by MPOA for the campus traces. Another major contributor is
the well-known rcp X-window application.

Notice that both Attp and dns applications appeared in Ibl-
trace and fixwest-trace, but not in cisco-trace. It is because
the former two traces were collected from educational institutes
while the latter one is from a vendor. In contrast, http, dns and
ipip in fixwest-trace are the three applications which contribute
to the major portion of the total packets. While ipip is suited
for shortcut switching, most flows in k#p and dns consists of a
small number of packets. Yet, both kttp and dns contribute 74%
of the total flows. This is why only a marginal switching gain is
achievable by MPOA for fixwest-trace. Similarly, the reason for
Ibl-trace to achieve significantly less switching gain than that of
cisco-trace is the non-negligible impact of Atfp and dns applica-
tions.

In summary, both hztp and dns applications in the backbone
Internet environment are the major factor to the ineffectiveness
of the data-driven MPOA technology. In contrast, since data
file transfers are the major applications in the campus intranet
environment, a significant performance gain can be achieved by
the MPOA technology.

4 Conclusion

In this paper, we developed a framework for the performance
analysis and flow classification design of MPOA network. Our
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study indicates that MPOA can offer significant performance
gain over the traditional routed network in an inter ELAN com-
munication environment. A timeout mechanism was introduced
to flow cache table management for performance improvement
with reduced complexity. An effective adaptive flow classifi-
cation algorithm was proposed to achieve a stable and near-
optimal control for the maximum performance gain on the con-
strained MPOA resources. As we have seen, application com-
position in traffic has great impact on MPOA performance. As
more and more multimedia services, such as MBONE, be-
ing deployed and more features being added in http applica-
tion, such as JPEG pictures and M PEG videos, one can ex-
pect that the MPOA performance will be improved in an Internet
backbone environment.
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