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Abstract—In the literature, there exit two types of cache consistency maintenance algorithms for mobile computing environments:

stateless and stateful. In a stateless approach, the server is unaware of the cache contents at a mobile user (MU). Even though

stateless approaches employ simple database management schemes, they lack scalability and ability to support user

disconnectedness and mobility. On the other hand, a stateful approach is scalable for large database systems at the cost of nontrivial

overhead due to server database management. In this paper, we propose a novel algorithm, called Scalable Asynchronous Cache

Consistency Scheme (SACCS), which inherits the positive features of both stateless and stateful approaches. SACCS provides a

weak cache consistency for unreliable communication (e.g., wireless mobile) environments with small stale cache hit probability. It is

also a highly scalable algorithm with minimum database management overhead. The properties are accomplished through the use of

flag bits at the server cache (SC) and MU cache (MUC), an identifier (ID) in MUC for each entry after its invalidation, and estimated

time-to-live (TTL) for each cached entry, as well as rendering of all valid entries of MUC to uncertain state when an MU wakes up. The

stale cache hit probability is analyzed and also simulated under the Rayleigh fading model of error-prone wireless channels.

Comprehensive simulation results show that the performance of SACCS is superior to those of other existing stateful and stateless

algorithms in both single and multicell mobile environments.

Index Terms—Mobile environments, cache consistency, disconnection, bandwidth utilization, stale cache hit.
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1 INTRODUCTION

WIRELESS mobile communication has increasingly be-
come an important means to access various kinds of

dynamically changing data objects such as news, stock
prices, and traffic information. However, wireless networks
have very limited bandwidth and battery power [8] and
also have to deal with user mobility and disconnectedness.
Thus, data communication in such networks is much more
challenging than in wired networks.

Caching frequently accessed data objects at the local
buffer of a mobile user (MU) is an efficient way to reduce
query delay, save bandwidth, and improve overall system
performance. But, frequent disconnections and roaming of
an MU make cache consistency a difficult task in mobile
computing environments. A successful strategy must
efficiently handle both disconnectedness and mobility.
Broadcast has the advantage of being able to serve an
arbitrary number of MUs with minimum bandwidth
consumption. Thus, an efficient mobile data transmission
architecture must carefully design its broadcast and cache
management schemes to maximize bandwidth utilization and
also to minimize average query delay. Additionally, such an
architecture should be scalable to support large database
systems as well as a large number of MUs.

Two types of cache consistency maintenance algorithms
have been proposed for wireless mobile environments:
stateless and stateful. In the stateless approach [1], [4], [9],
[10], [13], [15], [17], [19], the server is unaware of the client’s
cache content. The server periodically broadcasts the data

object’s invalidation report (IR) to all the MUs. Even though
stateless approaches employ simple database management
schemes, their scalability and ability to support disconnect-
edness are poor. On the other hand, stateful approaches [11]
are scalable, but incur significant overhead due to server
database management. Existing caching schemes assume
reliable communication between the mobile support station
(MSS) and MUs for IR broadcast. However, any reliable
communication mechanism requires acknowledgment from
the MUs. After an IR is broadcast (or multicast for stateful
schemes), the increased competition for uplink channel
between the MSS and MUs will have an impact on the
uplink queries and, hence, on the average access delay and
MU’s battery consumption. If an MU is disconnected
during the IR broadcast, the server cannot get its acknowl-
edgment back and must retransmit the IR because it does
not know if the IR is lost or the MU is disconnected.
Moreover, the existing schemes proposed in the literature
do not study the possible inconsistency and performance
loss due to wireless channel errors. Thus, there is a need for
scalable and efficient algorithms for maintaining cache
consistency in the error-prone wireless channels.

In this paper, we propose a novel algorithm, called the
Scalable Asynchronous Cache Consistency Scheme (SACCS),
which maintains cache consistency between the MSS cache,
called the server cache (SC), and the MU caches (MUCs).
SACCS is a highly scalable, efficient, and low complexity
algorithm, and provides only weak cache consistency1 with a
small probability of stale cache hit under unreliable IR
broadcast environments. The properties are accomplished
through the use of flag bits at SC and MUC, an identifier
(ID) in MUC for each entry after its invalidation, and
estimated time-to-live (TTL) for each cached entry, as well
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1. As is well-known, IR-based schemes cannot provide strong cache
consistency in the sense that an MU must confirm with the server on the
cached data object upon each cache access.
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as rendering of all valid entries of MUC to uncertain state
when an MU wakes up. A preliminary version of this paper
appeared in [16].

Each data object in an SC is associated with a flag bit,
which is set when an MU retrieves the object from the MSS.
The MSS broadcasts a data object’s IR only if the
corresponding flag bit is set. When an object is updated,
its corresponding flag bit is reset. Hence, unlike synchro-
nous periodic IR broadcast schemes (e.g., [1]), most of the
unnecessary IRs can be avoided and, consequently, sub-
stantial bandwidth is saved. The SACCS algorithm main-
tains only one extra flag bit for each data object in the SC. In
contrast, the Asynchronous Stateful (AS) algorithm [11]
requires OðMNÞ buffer space in the MSS to maintain states
of MUCs, where M is the number of the MUs and N is the
number of data objects in SC. Once a data object is
invalidated, its entry in an MUC is set to ID-only state, i.e.,
the object is deleted but its ID is kept. All the valid MUC
data entries are set to uncertain state (i.e., the validity of a
cache entry is not clear) after an MU wakes up. This
mechanism makes the handling of disconnection and
mobility very simple. The MSS sets an estimated TTL for
each data object based on its update history. This TTL is
also cached together with the data object in MUC when
acquired from the MSS. The cached data entry in the MUC
is automatically set to an uncertain state when its TTL
expires. This will protect a stale data object from being used
for an arbitrarily long time due to IR loss, which means that
a connected MU cannot correctly receive a broadcast IR. All
entries in the uncertain or ID-only state can be used to
identify useful broadcast messages for validation and
triggering of data object downloading. Hence, all the MUs
strongly cooperate in sharing the broadcast resource.

An analytical model is proposed to estimate the upper
bound on the stale cache hit probability. A two-state
Markov chain model is introduced to characterize the
Rayleigh fading error-prone wireless channel. Simulation
experiments are conducted to measure of SACCS in terms
of stale cache hit probability and average access delay with
various MU speeds.

Our comprehensive simulation results demonstrate that
SACCS offers superior performance over the existing stateful
and stateless algorithms in both single andmulticell environ-
ments. For example, in a single-cell systemwith five types of
MU access and sleep-wakeup patterns and 10 types of data
object update frequencies, the average query delay for
SACCS is less than 50 percent of AS and less than 88 percent
of the Timestamp (TS) [1] scheme. In a seven-cell system,
SACCS achieves more than 30 percent gain in terms of
average access delay than AS in awide range ofMU roaming
frequencies.

The restof thepaper isorganizedas follows: Section2gives
a brief overviewof the relatedwork.Adetailed description of
theSACCSalgorithmispresented inSection3. InSection4, the
stale cache hit probability is analyzed under unreliable IR
broadcast environments and simulated for Rayleigh fading
channels. Section 5 presents simulation results and compares
our algorithm with existing approaches. Section 6 concludes
the paper.

2 RELATED WORK

There exist two types of cache consistency maintenance
approaches for wireless mobile environments: stateless [1],
[4], [9], [10], [13], [15], [17], [19] and stateful [11]. In the

following, we summarize existing algorithms for both
approaches.

2.1 Stateless Approaches

In [1], three stateless algorithms have been proposed. They
are Timestamps (TS), Amnesic Terminals (AT ), and
Signature (SIG), in which the MSS broadcasts IR messages
every L seconds. An IR message includes all data object IDs
updated during the past kL seconds, where k is a positive
integer. The advantage of these algorithms is that an MSS
does not maintain any state information about its MUCs,
thus allowing simple management of the SC. However, they
suffer from the following drawbacks:

1. They do not scale well to large databases and/or fast
updating data systems due to the increased number
of IR messages.

2. The average access latency is always longer than half
of the broadcast period simply because all requests
can be answered only after the next IR.

3. When the sleep time (during which an MU is
disconnected from its MSS) is longer than kL, all
cache entries are deleted, thus leading to unneces-
sary bandwidth consumption, particularly if the
data object is still valid.

In order to handle the long sleep-wakeup patterns,
several algorithms have been proposed. For example, in the
bit-sequence (BS) algorithm [10], all cache entries are
deleted only when half or more of the data entries in the
cache have been invalidated. However, the model requires
the broadcast of a larger number of IR messages than TS
and AT schemes. Although the uplink validation check
scheme [17] can deal with long sleep-wakeup patterns, it
requires more uplink bandwidth and cannot handle very
long sleep-wakeup patterns. In order to reduce the IR
messages, adaptive methods are developed in [9] to
broadcast different IRs based on update frequency, MU
access, and sleep-wakeup patterns. In [19], an absolute
validity interval (AVI) is employed for each data object;
however, it fails to reduce the access delay introduced by
periodic broadcast cycles.

In the preceding approaches, all MUs can benefit from
the broadcast only when they retrieve the same data objects
from the MSS in the same broadcast cycle. If the MUs
retrieve the same data objects in separate broadcast cycles,
they cannot share the broadcast data objects. This makes the
broadcast inefficient and sensitive to the number of MUs in
the cell. The TS strategy is modified in [4] by keeping the
invalidated data objects in an MUC such that the MU can
update a data object if it is received from the broadcast
channel. This approach increases the broadcast channel
utilization. However, keeping invalid data objects in an
MUC wastes precious cache memory. A comprehensive
performance evaluation of the existing stateless algorithms
is studied in [15].

2.2 Stateful Approaches

Very few stateful cache consistency maintenance algorithms
have been proposed for wireless mobile environments. In
[11], an asynchronous stateful (AS) algorithm is proposed to
maintain cache consistency in which an MSS records all
retrieved data objects for each MU. When an MU first
retrieves a data object after it wakes up, based on the MUC
content record and sleep-wakeup time, the MSS sends an IR
to that particular MU. Whenever an MSS receives an update
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from the original server for each recorded data object, it
immediately broadcasts that object’s IR to MUs. The
advantage of the AS scheme is that the MSS avoids
unnecessary IR broadcast to MUs. Moreover, MUs can deal
with any sleep-wakeup pattern without losing valid data
objects. However, in order to maintain each MUC, the MSS
must record all cached data objects for each MU. Hence, an
MU can only download data objects which it requested
through the uplink. This makes the broadcast channel
utility inefficient and sensitive to the number of MUs. More
recently, a counter-based scheme is used in [5] to identify
the hot data and save unnecessary IR traffic. Whenever an
MUC content is changed, the MU must piggyback the
change to the server, thus consuming battery power and
uplink bandwidth.

The above schemes assume reliable communication, but
the associated costs are not evaluated. The cost of reliable
communication for broadcast (or multicast) is significant
since the uplink data transmission requires much more
battery power than downlink data transmission, especially
for the acknowledgment of IR broadcast (or multicast) due
to increased channel competition. On the other hand, the
MSS cannot distinguish a disconnected MU from a
connected one which did not receive an IR. Therefore, it is
necessary to allow a maximum number of retransmissions.

3 PROPOSED SCHEME SACCS

In this section, we propose a novel Scalable Asynchronous
Cache Consistency Scheme (SACCS) for read-only MUCs.

3.1 System Architecture

The wireless mobile data communication system architec-
ture is as illustrated in Fig. 1. We consider a system with a
wired network, multiple original servers, mobile support
stations (MSSs), and MUs. Each (hexagonal) cell has a base
station or an MSS which is connected to the original servers
through the wired network. Each MSS serves multiple MUs
through wireless channels and has a server cache (SC) to
store data objects. Each MU has a local cache (MUC) which
stores some retrieved data objects. An MSS is also
responsible for cache consistency between the original
servers and MUCs. In this paper, we mainly focus on cache
consistency between the SC and MUCs, and assume that the
consistency between the SC and original servers is main-
tained in the wired network [6], [12] [18].

SACCS provides aweak cache consistency forMUCwith a
small stale cache hit probability (the MUs requiring strong
cache consistency can check the cached data entry through
MSS for each cache access). In the proposed scheme, an MU
does not need to send an acknowledgment for each IR
broadcast.Hence, anMUgets a stale cache hit for data entry x
when the following two events occur: 1) theMUmisses the IR
ofxand2) theupdate time forx is smaller thanTTLexpiration
time. The details of stale cache hit probability analysis are
presented in Section 4.

SACCS provides cache consistency for dynamic public
data objects such as news, traffic information, live sport
scores, etc. All such objects are shared by MUs without
security considerations. The IRs of these objects are broad-
cast to all MUs without acknowledgment. If reliable
communication is used between the MSS and an MU
retrieving the data object, the MU needs to send acknowl-
edgment to the MSS. All other awake MUs can download
the data object without acknowledgment if they can
correctly receive it.

3.2 Data Structures and Message Formats

For each data object dx with x as the unique identifier (ID),
the data structures for SC and MUC are defined as follows:

In SC:

. ðdx; tx; lx; fxÞ: where tx is the last update time for the
data object, lx is the estimated TTL, and fx is the flag
bit such that fx ¼ 1 indicates that the next IR will be
broadcast.

In MUC:

. ðdx; tsx; llx; sxÞ: where tsx is the time stamp denoting
the last updated time for the cached data object dx,
llx is an associated TTL, and sx is a two-bit flag
identifying four data entry states: 0, 1, 2, and 3,
indicating valid dx, uncertain dx, uncertain dx with a
waiting query, and ID-only, respectively.

The communication messages are as defined in Table 1.
Each cache entry has three states: valid, uncertain, and ID-
only. Fig. 2 shows how the entry x changes from one state to
another.

3.3 MUC Management

Since we mainly focus on cache consistency maintenance in
this paper, we use the Least Recently Used (LRU) based
replacement algorithm for the management of MUC. The
impact of the cache replacement algorithms on SACCS is a
subject of future study. In the adopted LRU-based replace-
ment scheme, a newly cached data object or one that
receives a hit is moved to the head of the cache list. When
an object needs to be cached while the cache is full, data
entries with sx 6¼ 2 from the tail are deleted to make enough
space for accommodating this new data object (the object
with sx ¼ 2 must be kept because some requests are waiting
for its confirmation). Any refreshed data objects from the
uncertain or ID-only state are placed in their original
location and again, if necessary, enough data entries from
the tail are removed.

We limit the number of ID-only entries that can be used
at any given instant to a certain value. This is to minimize
frequent refreshment of old ID-only entries, which are likely
to be replaced before they are requested. One may set this
number close to the average number of data objects that can
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be cached. For example, if a cache can hold C objects, then
the number of ID-only entries is limited to C. Because the
MU has limited cache size, during a broadcast, it caches
only those objects whose ID-entries are already in the cache.
The memory overhead of ID-only entries is insignificant
since the size of a data object’s ID is usually much smaller
than the object itself.

3.4 Algorithm Description

We present two procedures for SACCS, namely, MSSMain()
and MUMain(), as shown in Figs. 3 and 4, respectively. The
MSS continuously executes the MSSMain() procedure to
handle MUs’ query and data object update. Each MU
continuously executes the MUMain() procedure to handle
its query and broadcast messages.

MSSMain(): When an MSS receives a Query message, it
broadcasts the queried data object to all MUs. When it
receives an Uncertain message, it checks if the uncertain
data entry is valid or not by comparing the cached entry
time stamps. If the uncertain data entry is valid, a
confirmation message is broadcast; otherwise, a valid data

entry is broadcast. Whenever an MSS receives an Update
message from the original server, it updates its cache entry
in the database and also estimates a new TTL for the entry
based on the last TTL and this update interval. If the
corresponding flag bit is set for the entry, an IR is
immediately broadcast and the flag bit is reset.

MUMain(): When an MU has a request for a data object,
it first searches its local cache. If the requested object is
valid, the MU immediately answers the request using the
cached object. If the cached data entry is in uncertain state,
an Uncertain message is sent to the MSS. If the data entry is
in an ID-only state or not in the local cache, a Querymessage
is sent to MSS to retrieve the data object. When the MU
receives a V data message, if it has a query waiting for the
data object, the MU answers the query and caches the data
entry. If the MU has an uncertain entry in cache, the entry is
refreshed. If the MU has an ID-only entry, the data entry is
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downloaded. Upon receiving an IR message, the MU sets
the entry into ID-only state. When a Confirmation message is
received, if the MU has a corresponding uncertain entry in
the cache, it refreshes the entry by comparing the
corresponding time stamps. When a TTL is expired for an
entry, it is set to uncertain state.

3.5 Illustration of MUC Management

Let us illustrate the MUC management with the help of a
simple example as shown in Fig. 5.Assume there aren entries
(1; 2; . . . ; n) in the cache list andm queries (w1; w2; . . . ; wm) in
the query waiting list. In particular, we illustrate various
actions of cachemanagement at anMUsuch as the ones upon
receipt of a request, a valid data object, a confirmation
message, and an invalidation message.

1. Request for dx:

a. If sx ¼ 0, such as for x ¼ n, the MU answers
the request immediately using dx and moves
the entry x to the head of cache list; in other
words, (dx; tsx; llx; sx) is inserted to the head of
the cache list.

b. If sx ¼ 1, such as for x ¼ n� 2, the MU sends an
Uncertainðx; tsxÞ message to the MSS, sets
sx ¼ 2, moves the entry x to the cache list head,
and adds x to the query waiting list.

c. If sx ¼ 3, such as for x ¼ n� 1, the MU deletes
the entry x from the cache list, sends QueryðxÞ
message to the MSS, and adds x to the query
waiting list.

d. If x is not in the cache list, the MU sends
QueryðxÞ message to the MSS and adds x to the
waiting list.

2. Vdataðx; dx; lx; txÞ:

a. If x is on the waiting list, the MU answers the
request by downloading the data object dx and
adds the entry x at the head of the cache list. If
the MUC has an uncertain entry x (e.g.,
x ¼ n� 3), the entry is deleted.

b. If x is not in the query waiting list but in the
cache list, for example, x ¼ n� 1, the MU
downloads dx at the location of entry n� 1
and sets tsn�1 ¼ tx, lln�1 ¼ lx, and sn�1 ¼ 0.
Assuming x ¼ n� 2, the MU sets sn�2 ¼ 0 when
tsn�2 ¼ tx or downloads dx instead of dn�2 and
sets sn�2 ¼ 0, tsn�2 ¼ tx, and lln�2 ¼ lx when
tsn�2 < tx.

c. If x is not in the query waiting list and cache list,
the MU does nothing on x.

Each time before the MU adds or downloads a data
object, if the free buffer space in the cache is not
enough, the entries n, n� 1, n� 2 from the tail such
that sx 6¼ 2 are deleted.

3. IRðxÞ:

a. If sx < 3, the MU deletes dx and sets sx ¼ 3. If
the total number of ID-only entries is over a
maximum limit, the last ID-only entry is deleted
from the cache.

b. If x is the ID-only entry or not in the cache list,
the MU does nothing on it.
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4. Confirmationðx; lx; txÞ:

a. If x ¼ n� 3 and tsn�3 ¼ tx, answer the request
with the cached data object dn�3, set sx ¼ 0, and
move the entry n� 3 to the head of cache list.
Else if tsn�3 < tx, the request is still in query
waiting list; so, delete dn�3 from the cache.

b. If x ¼ n� 2, the MU checks the timestamp tsn�2;
if tsn�2 ¼ tx, set sn�2 ¼ 0 and lln�2 ¼ lx, else
delete dn�2 from the entry and set sn�2 ¼ 3.

c. Otherwise, the MU does nothing on it.

3.6 MUC Consistency Maintenance

Let us explain how the SACCS maintains consistency
between an SC and MUCs. We first assume an error-free
channel in which no IR is lost by an awake MU (i.e., the MU
is connected to the MSS). Then, we discuss how to deal with
the IR loss situation.

For each cached data object, SACCS uses a single flag bit,
fx, in SC in order to maintain the consistency between the SC
andMUC.When dx is retrieved by anMU, fx is set indicating
that a valid copy of dx may be available in an MUC. If and
when theMSS receives an updated dx, it broadcasts an IRðxÞ
and resets fx. This action implies there are no valid copies of
dx in any MUC. Furthermore, while fx ¼ 0, subsequent
updates do not entail broadcast of IRðxÞ. The flag fx is set
again when the MSS services a retrieval (including request
and confirmation) for dx by an MU.

In mobile environments, an MUC belongs to one of two
states: awake or sleep. If an MU is awake at the time of IRðxÞ
broadcast, the copy of dx is invalidated and an ID-only
entry is maintained by the MU. The data objects of an MU
in the sleep state are unaffected until it wakes up. When an
MUwakes up, it sets all cached valid data objects (including
dx) into the uncertain state. Consequently, MUs and their
cached objects are unaffected if IRðxÞ broadcast occurs
during their sleep times.

A TTL is associated with each cache entry. When the TTL
of a cache entry expires, an MU automatically sets it into
uncertain state. There are some probabilities for an MU to
get a stale cache hit in the case of IR loss. We give a detailed
analysis on this in Section 4.

3.7 Efficiency and Cooperation

As mentioned earlier, a good cache consistency mainte-
nance algorithm must be scalable and efficient in terms of
the database size and the number of MUs. We claim that the
proposed scheme SACCS can handle large and fast
updating data systems because the MSS has some knowl-
edge of MUC. Only data entries which have flag bits set
result in the broadcast of IRs when data objects are updated.
Consequently, the IR broadcast frequency is the minimum of
the uplink query/confirmation frequency and the data
object update frequency. In this way, the broadcast channel
bandwidth consumption for IRs is minimized. Besides IR
traffic, all other traffic in SACCS is also minimized due to
the strong cooperation among the MUCs. This is specifically
due to the introduction of the uncertain state and the ID-
only state for the MUCs. The retrieval of a data object, dx,
from the MSS issued by any given MU brings the entries of
x in the uncertain or ID-only state in all the awake MUCs to
a valid state. Moreover, a single uplink confirmation for
entry x causes all entries of x in the uncertain state for all
the awake MUCs to be in either valid or ID-only state. The
addition of the uncertain state also allows an MUC to keep
all the valid data objects when it wakes up after an arbitrary

sleep time. In contrast, for the AS and TS algorithms, all the
invalidated data objects are completely deleted from the
MUC. This allows little cooperation among the MUs,
resulting in a dramatic increase of traffic volume between
the MSS and the MUs as the number of MUs increases (see
Section 5). Although the scalability of the TS scheme can be
improved by retaining the invalid data objects [4], the cache
efficiency is reduced by having to keep in the MUC the
invalid data objects, rather than IDs as is the case in our
SACCS approach.

In contrast to the AS scheme which requires OðMNÞ
buffer space in the MSS to keep all the MUCs, the SACCS
requires only one bit per data object in the SC, thus
indicating if the IR broadcast is required when the data
object is updated. Moreover, the database management
overhead is minimal requiring only a single bit check and
set/reset.

The TTL expiration of a valid cache entry is checked only
when its data object is accessed or available on the channel;
otherwise, we do not care about the entry status. When the
data object of a valid entry is accessed or available on the
channel, its TTL is first checked. If the TTL has not expired,
the entry is treated as valid. Otherwise, it is handled as an
uncertain entry. The cost of each TTL expiration check is the
execution of an addition (namely, tsx þ llx) and a compar-
ison (e.g., comparing tsx þ llx with the current time). The
cost of these two operations is not much as compared with
the cost of a data object query and/or data object download.
Thus, the cost of execution on the TTL expiration is not
significant.

3.8 Mobility

One advantage of the AS scheme is the efficient treatment of
mobility. SACCS can also handle MUs’ mobility effectively.
When an MU roams, it is either in awake or in sleep state. If
it is in the sleep state, there is no extra action in SACCS as
well as AS. In SACCS, an MU sets all its valid cache entries
to uncertain state after it wakes up. Hence, for caching
purposes, upon wake up, the mobility and location of an
MU is irrelevant. In AS, when a roamed MU wakes up, its
first query will be sent to the new MSS, which can retrieve
its cache state from the previous MSS, which maintains the
cache consistency.

If a roaming MU is awake, SACCS treats it as if it just
woke up from the sleep state, i.e., all valid data entries are
set to an uncertain state. The consistency is guaranteed with
this approach and all valid data objects are retained. Also,
SACCS is a simple scheme in the sense that it is transparent
to the MSSs involved. But, for AS, there exist two situations:

1. An MU is sending a message to the MSS when it
roams. In this situation, the MSS can handle its
handoff and transfer its cache state to the new MSS.
So, there is no extra action for cache consistency
maintenance.

2. An MU is not sending a message to the MSS when it
roams. A wakeup event is forced in this case. When
its next query comes, it sends a message to the MSS,
which includes the queried data object and cache
state request. The cache state request contains the
previous MSS and roaming time. After the MSS gets
the cache state request, the MSS retrieves its state
from the previous MSS and sends the data object IRs
(which are updated after the MU roamed) to that
particular MU. Thus, the cache consistency is
maintained.
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3.9 Failure Handling

Handling of MU failures is the same as handling MU
disconnections. If an MU recovers from a failure, it sets all
cached valid data entries into an uncertain state. SACCS
treats this situation as a wakeup from the sleep state. The
handling of server failures is also simple. When an MSS
server is back after a failure, it simply broadcasts a server-
down message to all MUs which, in turn, set all valid data
entries into the uncertain state. The MUs in sleep state miss
the server-down message, but after they wake up, all valid
entries are automatically set to uncertain state. Thus, the
cache consistency is maintained even if some cached data
objects are updated during the MSS server failure. This is
because the validation of any cached data object must be
refreshed or checked before its usage. Finally, all valid data
objects are retained after a server failure due to the fact that
they are set to the uncertain state, thus avoiding extra data
object download.

4 STALE CACHE HIT PROBABILITY

In this section, the stale cache hit probability as a function of
IR loss probability is analyzed and simulated in Rayleigh
fading wireless channels.

4.1 Analytical Modeling

Our analytical model derives an upper bound of the stale
cache hit probability in SACCS under different channel
conditions. The following assumptions are made in our
model:

1. The update process for a data object dx follows a
Poisson distribution with average update rate �x.

2. A data object dx is associated with a TTL, lx. The TTL
equals the average update interval time Tux . That is,
lx ¼ Tux ¼ 1=�x.

3. An awake MU has a probability, PmIR, to miss an IR
broadcast.

Let Psx be the stale cache hit probability for data object
dx. Fig. 6 shows an object update process. After the nth
update of dx, the ðnþ 1Þth update may occur either before
or after the TTL expiration. When an MU misses the ðnþ
1Þth IR, there is no stale hit if the update is after the
expiration of the TTL because the data entry is automati-
cally set to an uncertain state. If the update is before the TTL
expiration and the MU accesses the cached data object dx
between the ðnþ 1Þth update time and the TTL expiration
time, it gets stale cache hits. Let Pshortx be the probability of
the next update interval which is before the TTL expiration,
lvx be the average of all update intervals which are earlier
than the TTL expiration, and lsx be the interval between the
ðnþ 1Þth update and estimated TTL expiration. These terms
can be calculated as:

Pshortx ¼
Z lx

0

�xe
��xtdt ¼ 1� 1

e
ð1Þ

lvx ¼
R lx
0 �xte

��xtdt

Pshortx

¼ e� 2

e� 1

� �
lx ð2Þ

lsx ¼ lx�lvx ¼ 1

e� 1

� �
lx: ð3Þ

Assume an MU is always awake and misses all IRs.
Then, the stale cache hit for data object dx is given by:

Psx ¼
lsx
lx

¼ 1

e� 1
: ð4Þ

If an MU has IR broadcast miss probability PmIR, then
the stale cache hit probability is:

Psx ¼
lsxPmIR

lxPmIR þ lvxð1� PmIRÞ
¼ PmIR

PmIR þ e� 2
: ð5Þ

Equation (5) implies that the stale cache hit probability is
only dependent on PmIR. Thus, we conclude that the stale
cache hit probability for any data object dx of an MU is the
same, i.e.,Ps ¼ Psx. Fig. 7 shows the stale cachehit probability
for various IR miss probabilities. The results show that the
stale cache hit probability is about 10 percent (21 percent) for
an MU with 10 percent (20 percent) IR miss probability,
independent of the data object update frequency.

The above analytical model assumes that anMU is always
awake. If we consider the sleep-wakeup event for an MU,
then the stale hit probability is reduced because, when the
MU wakes up from the sleep state, all valid entries will be
checkedprior to theirusage.The stale cachehitprobability for
a frequentlydisconnectedMUismuchsmaller than theupper
bound in (5). A system with 100 MUs is simulated. In the
simulation, each MU has a sleep-wakeup period randomly
picked from the set of values (600, 1,200, 1,800, 2,400, 3,000)
sec, the sleep ratiopicked from(0.2, 0.35, 0.5, 0.65, 0.8), and the
request arrival rate from (1/20, 1/40, 1/60, 1/80, 1/100). The
detailed simulation setup is described in the Section 5. Fig. 8
shows the simulation results for the stale cachehit probability
of the system, which is reduced significantly as compared to
that of MUswhich are always awake. For example, when the
IR miss probability is 10 percent, the stale hit probability is
only about 4percent; and for IRmissprobability of 20percent,
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Fig. 6. Data object update process.

Fig. 7. Upper bound on stale cache hit probability versus IR miss
probability.



the stale hit probability is about 7 percent. In order to reduce
the stale hit probability, we can broadcast the IR multiple
times when an object is updated earlier than its TTL
expiration. Fig. 8 shows the stale cache hit probability for
broadcasting each IR twice if its update is earlier than the TTL
expiration. The results indicate that, if the IRmiss probability
is less than 40 percent, the stale cache hit probability is less
than 5 percent. These results demonstrate that SACCS can
provide very small stale cachehit probability bybroadcasting
IR multiple times when the update is earlier than TTL
expiration.

4.2 Stale Cache Hit Probability for Rayleigh Fading
Channels

The stale cache hit probability of SACCS with Rayleigh-
fadingmodel forwireless channel is simulated in this section.
We consider a Rayleigh-fading channel between theMSS and
an MU be modeled by a two-state (good and bad) Markov
chain, as shown in Fig. 9. An MU can successfully receive
packets from the MSS if the channel between them is in good
state and losepackets if the channel is in bad state. The channel
states between the MSS and different MUs are independent.
According to [14], a channel can be assumed to be effectively
constant during a period of Tc � 9c=ð16�fcV Þ, where c is the
speedof light,V is theMUspeed (along thewavepath), andfc
is the carrier frequency. The channel in the next Tc period has
a probability of transiting to the other state. The state
transition probabilities such as Pgb (from good to bad state)
and Pbg (from bad to good state) are determined by V and the
fading margin F , that is, the maximum fading noise of
received signal without system performance falling below a
specified value [7]. The probability of a channel in bad state

(PB) is dependent on F [7]. Table 2 shows Pgb, Pbg, and PB

values for a carrier frequency fc ¼ 900 MHz with various
values of V and F . Note that Pgg ¼ 1� Pgb is the transition
probability from good to good state and Pbb ¼ 1� Pbg is the
transition probability from bad to bad state. The packet
duration is set to 4 ms (millisecond) because Tc � 4 ms for
fc ¼ 900MHz and V � 50 kmph (kilometer per hour).

From Table 2, we note that the slower the MU speed, the
smaller the state transition probability. This means that the
channel condition is more stable for a slow moving MU
than a fast moving one.

We study the performance by simulation of SACCS
under Rayleigh fading channel model. In this simulation, an
MU requesting a data object uses reliable communication
and all other awake MUs can passively download the data
objects if they can successfully receive all the packets of a
data object. Each packet duration is set to 4 ms. In this
period of time, 100 bytes (i.e., packet size) can be transmitted
for a 200 Kbps (kilobits per second) channel. A Go-Back-N
ARQ (Automatically Repeat reQuest) scheme is used
between the MSS and the MU for retrieving data objects.
The number of MUs is set to 50. Each MU’s query access
and sleep-wakeup pattern are set the same as in the
previous section.

Table 3 shows the performance of SACCS with the MU
speed. We conclude that the stale cache hit probability
depends only on the fadingmargin. A smaller fadingmargin
leads to a larger probability of a channel in bad state, resulting
ina larger IR lossprobability. ForF ¼ 10 dB,PB ¼ 0:095 (note
that PmIR ¼ PB), the stale cache hit probability is about
4 percent; while for F ¼ 15 dB (i.e., PB ¼ 0:065), the stale
cache hit probability is about 2 percent. These results, similar
to that of Fig. 8, demonstrate that the proposed SACCS
scheme can provide small stale cache hit probability in the
error-pronewireless environments. The average access delay
and the data download ratio (defined as the number of
broadcast data objects divided by the number of queries)
increase as the MU speed increases. This is because a slow-
moving MU has a more stable channel and stands a better
chance of sharing the broadcast data objects. A larger F
results in a smaller PB, thus a smaller number of retransmis-
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Fig. 8. Simulation of stale cache hit probability versus IR miss
probability.

Fig. 9. Two-state Markov chain describing the good-bad channel model.

TABLE 2
State Transition Probabilities and Bad State Probability versus Different V and F



sions and, ultimately, a smaller average access delay.

5 PERFORMANCE EVALUATION BY SIMULATION

The performance of SACCS is evaluated and compared
with the timestamp (TS) and asynchronous stateful (AS)
schemes. Recall that TS is a popular stateless scheme and
has been widely compared with other algorithms. For
meaningful comparison, we extend TS with some advanced
features of SACCS, such as: 1) introduction of uncertain
state for an MU keeping its valid data entry after long
disconnection, 2) use of ID-only state in MUC to trigger data
object download, and 3) use of flag bits in SC to reduce the
IR broadcast traffic. We call a TS with these additional
features an extended TS (ETS). The AS scheme is also used
for performance comparison because it is one of the few
stateful schemes that handles the MU disconnection and
mobility better. For SACCS, an IR of a data object is
broadcast twice if its update time is earlier than the TTL
expiration to reduce the stale hit probability. The other error
recovery costs, such as data retransmission, are ignored in
all three algorithms. The TTL, lx, of a data object is
dynamically calculated as: lx ¼ lx � 0:5þ linterval � 0:5, where
linterval is the current update interval for the data object.

We present the simulation results with single cell as well
as multicell environments.

5.1 Single Cell Environment

We consider a single cell system with one SC and multiple
MUs with identical cache size. The parameters are defined
as in Table 4.

Each MU’s request process and the data object update
process are assumed to follow Poisson distributions. The
sleep-wakeup process is modeled as a two-state Markov
chain (i.e., sleep and awake). The state transition probability
from awake to sleep state is � ¼ 1=ð1� sÞTp and that from
sleep to awake state is � ¼ 1=sTp.

In the simulations, we use two channels with bandwidth
Wd and Wu for downlink and uplink data transmission,
respectively. In the uplink channel, all messages are
buffered as FIFO (first in first out) queue. In the downlink,
there are two FIFO queues, one having higher priority than
the other. The IR messages are buffered in the higher
priority queue. All other messages are buffered in the lower
priority queue; this queue can be scheduled only if the
higher priority queue is empty. All requests are ignored
when an MU is in the sleep state. When a requested data
object is available at an MUC, the average query delay (D) is

counted as 0. We consider Zipf-like distribution for MU
access pattern [3], [20] such that the access probability (px)
for data object dx is proportional to its popularity rank,
rankðxÞ. More specifically, px ¼ const=rankðxÞz, where
const is the normalization constant and z is the Zipf
coefficient.

In the following, we present the performance compar-
ison of the proposed SACCS with AS, TS, and ETS in terms
of such metrics as D and UPQ for three different cases. The
average waiting time (i.e., half of the IR broadcast period,
L=2) is removed from D for ETS to make a better
comparison with SACCS and AS in all figures. As shown
in Section 4, for the same sleep-wakeup pattern, the stale
cache hit probability is less than 5 percent if the IR miss rate
is smaller than 40 percent, hence the stale hit probability is
not presented as a metric in the result. In each case, bu ¼
bd ¼ 20 bytes for both SACCS and AS; and bu ¼ bd ¼ 10 bytes
for TS and ETS. The bandwidth is set as Wd ¼ 200 Kbps and
Wu ¼ 1 Kbps. The other parameters may be changed in
some cases. Some default values are set as: N ¼ 10; 000,
M ¼ 100, C ¼ 5 MBytes, z ¼ 0:9, L ¼ 20 sec, and wsz ¼ 5.

In all cases, we consider a system with 10 types of data
objects. The data object update rate (Tu), size, and
percentage of each type of objects over the total objects
are shown in Table 5. The chosen parameter values are
based on the understanding that a faster updated object
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TABLE 3
Performance of SACCS versus Different MU Speed

TABLE 4
Parameter Definition



usually has smaller size. The average data object size is
about 25 Kbytes, which is based on the Internet measure-
ments [2].

The MUs may be different from one another in terms of
�, s, Tp, and Tr. These parameters for each MU can take
values from the corresponding given sets. Each value has
equal probability of being chosen for each MU. The set of
values for arrival rate � is (1/20, 1/40, 1/60, 1/80, 1/100),
for sleep ratio s is (0.2, 0.35, 0.5, 0.65, 0.8), and for sleep-
wakeup period time Tp is (600, 1,200, 1,800, 2,400, 3,000) sec.

The query patterns for each MU are assumed to follow
Zipf-like distribution. The access popularity ranking for
each MU is shifted by a random number between 0 and 99.
For example, an MU picks up a shift number 50, which
means the MU has the highest access popularity for data
object number 51. The popularity decreases from 51 to N ,
then from 1 to 50. The data object 50 has the lowest access
popularity.

Case 1: Effect of the number of MUs. In this case, we
study the impact of three features of SACCS on the system
performance as compared with TS, ETS, and AS. Let
SACCS-nfg stand for SACCS without flag bit set in SC; let
SACCS-nid be SACCS without ID in MUC; and let SACCS-
nuc be SACCS without uncertain state in MUC. Recall that
ETS is an extension of TS with all SACCS features. We use
tables to present the results due to their wide range of
values or small changes (as in Table 7).

Tables 6 and 7 present the D and UPQ values for a
varying number (M) of MUs. For all algorithms, the average
delay (D) increases as the number of MUs increases. The
SACCS-based algorithms have much shorter D compared
with AS, TS, and ETS, especially when M > 100. Moreover,
the turning off flag bit in SC has the least impact on D. This
is due to the fact that the IR message is very small compared
to the data object size. SACCS has about 10 percent less

delay than SACCS-nfg whenM ¼ 120. Turning off the ID or
uncertain state makes SACCS less scalable and leads to a
larger D as M increases. This is because the ID-only and
uncertain states allow MUs to share the broadcast data
objects, thus saving the downlink bandwidth and, conse-
quently, reducing the access delay. AS has smaller D than
TS, but it does not scale as much as ETS, which allows
strong cooperation among MUs because ETS incorporates
all three features of SACCS.

For SACCS-based algorithms and ETS, the UPQ metric
decreases as M increases. But, for AS and TS, it is almost
constant. This is due to the cooperation among MUs in
SACCS-based algorithms and ETS. Note that SACCS has
the least UPQ, while turning off ID has the largest increase
on the UPQ.

The simulation studies validate our initial claims,
namely, ID-only entry and uncertain state in MUC are
critical features of SACCS; and use of flag bit in SC reduces
IR traffic. Thus, ETS performs better than TS and, hence, we
will use ETS instead of TS in the following cases.

Case 2: Effect of Database Size. Figs. 10 and 11 present
the simulation results showing the effects of database size.
For ETS, the average query waiting time (L=2 ¼ 10 sec) is
not counted. In other words, only the queue delay and
transmission time are counted for ETS in all the following
cases. SACCS outperforms AS and ETS in both D and UPQ
because SACCS avoids all the unnecessary IR traffic while
retaining all the valid data objects in MUCs. As expected,
with an increased number of data objects, the performance
metrics also increase for all three algorithms, but SACCS
has much smaller D than AS and ETS. Additionally, the
average gain (in terms of D) of SACCS over AS and ETS is
more than 50 percent throughout the range of database
sizes. The UPQ of SACCS is a little bit lower than that of
ETS and about 6 percent less than that of AS.

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 11, NOVEMBER 2004

TABLE 5
Ten Types of Data Objects in Database

TABLE 6
Average Access Delay D (Sec) versus the Number of MUs

TABLE 7
The Uplink per Query (UPQ) versus the Number of MUs



Case 3: Effect of Zipf Coefficient. In this case, we study
the effect of the Zipf coefficient, z, on the system
performance. Here, we choose a small database with N ¼
1; 000 objects. This is because, for small Zipf coefficient, the
access frequencies for different data objects are very close to
each other. Hence, using a large database size results in
very few cache hits, which makes the comparison mean-
ingless.

From Figs. 12 and 13, we conclude that SACCS has much
smaller D than both AS and ETS. The average gain is more
than 50 percent over the other two algorithms. AS has the
largestUPQ, while SACCS has the lowestUPQwhen z > 0:6
and a little bitmore than ETSwhen z < 0:6. All three schemes
perform better as z increases because the data accesses are
more concentrated for larger z, thus increasing the cache hit
ratio and then reducing access delay.

5.2 Multicell Environment

In this section, we consider a hexagonal cell and its six
neighboring cells, as shown in Fig. 14. Initially, we assume
each cell has an equal number of MUs (i.e., M=7). An MU
roaming process is assumed to be Poisson with an average
sojourn time Tr (sec) in a cell. An MU from cell 1 has equal
probability (1/6) of roaming into any of its six neighbors.

Similarly, an MU from any other cell has 1/6 probability of
roaming into cell 1 and 5/12 probability roaming to another
neighboring cell. This balances the number of MUs in each
cell which has one uplink channel with bandwidth Wu (bps)
and one downlink channel with bandwidth Wd (bps).

The simulation results in the previous section showed
that the performance of TS (or ETS) is much worse than that
of SACCS and AS. In addition, there is no good mobility
handling scheme for TS. So, we only study here the impact
of mobility on SACCS and AS. As stated in Section 3, a
roaming is treated as a forced wakeup event in both SACCS
and AS. In SACCS, all valid cache entries are set to
uncertain state after the roaming. In AS, the MU’s first
query and roaming time are sent to the MSS after the
roaming.

We focus on the cache consistency scheme in multicell
environments in our simulations, rather than the in-session
data transaction. Hence, when an MU roams from one cell
to another, all requests that are sent to the former MSS are
dropped. We study the effect of the MU’s mobility in this
section.

Case 4: Effect of Average Sojourn Time. The values of
parameters for this case are the same as shown in Table 5.
Fig. 15 demonstrates that SACSS has much better perfor-
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Fig. 10. Average access delay versus number of data objects.

Fig. 11. Uplink per query versus number of data objects.

Fig. 12. Average access delay versus Zipf coefficient.

Fig. 13. Uplink per query versus Zipf coefficient.



mance in terms of D (average query delay) for all ranges of
average sojourn time. Moreover, SACCS has lower UPQ for
long average sojourn time ( � 800 sec), but higher UPQ for
very short average sojourn time than that of AS. In SACCS,
all cache entries are set to uncertain state after each
roaming. In AS, the first query after each roaming needs
to be forwarded to the MSS to retrieve the cache state. For
very short average sojourn time, the uncertain entries in
SACCS have very few chances to be refreshed before its
usage, thus resulting in a larger UPQ of SACCS than AS.
For both SACCS and AS, the performance gets better as the
average sojourn time increases (roaming frequency de-
creases). The average delay (D) of SACCS decreases from
1.7 sec to 1.55 sec. In AS, it decreases from 2.5 sec to 2.1 sec.
This is due to fewer forced wakeup events and, hence,
fewer extra uplinks. These results show that the impact of
mobility is not significant enough in both schemes due to
the fact that all valid data objects are retained after roaming.
In other words, the uncertain state is a powerful method for
SACCS to treat MU’s disconnectedness and mobility.

6 CONCLUSIONS

In this paper, we proposed the Scalable Asynchronous
Cache Consistency Scheme (SACCS) for mobile environ-
ments and evaluated its performance analytically as well as
experimentally. Unlike the previous methods, SACCS
provides a weak cache consistency under realistic environ-
ments for an MU with IR broadcast miss. It is a highly
scalable and efficient scheme. The basic idea involves the
use of flag bits at server cache (SC) and mobile user cache

(MUC), an identifier (ID) in MUC for each entry after its
invalidation, and estimated time-to-live (TTL) for each
cached entry, as well as rendering of all valid entries of
MUC to uncertain state when an MU wakes up. Strictly
speaking, SACCS is a hybrid of stateful and stateless
algorithms. However, unlike stateful algorithms, SACCS
maintains only one flag bit for each data object in mobile
support station (MSS) to determine when to broadcast the
IRs. On the other hand, unlike the existing synchronous
stateless approaches, SACCS does not require periodic
broadcast of IRs, thus significantly reducing IR messages
that need to be sent through the downlink broadcast
channel. SACCS inherits the positive features of both
stateful and stateless algorithms. Our comprehensive
simulation results show that the proposed algorithm offers
significantly better performance than the TS and AS
schemes in both single and multicell environments.

AnLRU-based cache replacement algorithm is used in this
paper. Future work will investigate the impact of other
replacement algorithms on the performance of SACCS.
Further study is also needed for the MSS cache management
algorithmand effective transfer of cacheddata objects among
MSSs in response to MUs’ roaming among different MSSs.
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