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Abstract 
 
In this paper, fundamental conditions which bound the network processing unit (NPU) worst-case performance are 
established. In particular, these conditions formalize and integrate, with mathematical rigor, two existing approaches 
for finding the NPU performance bounds, i.e., the work conserving condition and instruction/latency budget based 
approaches. These fundamental conditions are then employed to derive tight memory access latency bounds for a data 
path flow with one memory access. Finally, one of these memory access latency bounds is successfully used to interpret 
a peculiar phenomenon found in Intel IXP1200, demonstrating the importance of analytical modeling for NPU 
performance analysis.  
 
1. Introduction 
 
As the Internet applications proliferate, network processing units (NPUs) or network processors have been constantly 
pushed to their capacity limits, handling an ever growing list of data path functions in a router. It is challenging to 
program an NPU to enable rich router functions without compromising wire-speed forwarding performance. Even more 
so is during the router design phase when a router designer or NPU programmer is faced with a vast number of design 
choices in terms of data path function partitioning among multiple NPUs and data path function mapping to a desired 
NPU configuration. A misjudgment can lead to either re-designs at various design stages or poor packet forwarding 
performance. Hence, new methodologies and techniques which can help make such a decision quickly is much needed.      
   
There have been quite a few simulation tools developed for NPU performance analysis/testing, e.g., [1-7]. These tools 
are aimed at faithfully emulating the NPU microscopic processes, and are useful for fine-tuning the NPU configuration 
for performance optimization. They are not designed to allow fast NPU performance testing.  For example, even for the 
most lightweight NPU simulator described by Xu and Peterson [5], it is reported that it takes 1 hour to simulate 1 
second of hardware execution on a Pentium III 733 PC with 128 Mbytes memory, assuming the microcode is available 
as input to the simulator.  Apparently, it would be impractical to use these simulation tools to reach a quick decision on 
various design choices, especially in a router design phase when the microcode is yet to be developed.      
  
A practical approach to allow fast NPU performance analysis is to exploit the NPU performance bounds instead of 
attempting to faithfully capturing the instruction level details.   One such an approach is based on the CPU work 
conserving condition. The idea is to identify, for a given code path,  how many threads need to be configured in order 
for the CPU to work under work conserving condition, i.e., fully exploiting the available CPU resource to maximize the 
processing performance.  This technique was widely used for the performance analysis of general multithreaded 
processor systems, e.g., the papers by Saavedra-Barrera, et. al. [8] and Agarwal [9].  Recently, a few interesting research 
papers, e.g., the papers by Peyravian and Calvignac [10], and Ramakrishna and Jamadagni [11], successfully applied 
this technique to identify the optimal number of threads needed to maximize the NPU throughput performance.   
 
Another powerful approach, (call it the instruction/latency budget based approach), proposed by Lakshmanamurthy, et. 
al. [12]. is to use two measures, i.e., the instruction budget and latency budget, obtained in the worst-case (e.g., when 
minimum sized packets arrive back-to-back at wire-speed) as performance bounds, to test whether the wire-speed can 
be sustained when a given code path is mapped to a micro-engine (ME)1 pipeline stage.  Meeting these two budgets for 
all the ME pipeline stages ensures wire-speed forwarding performance. On the other hand, failing to meet any of these 
budgets at any ME pipeline stage guarantees that the wire-speed forwarding performance cannot be achieved. 
 
In this paper, we exploit the NPU performance bounds, similar to the approaches taken in [8-12], but in a more rigorous 
and systematic fashion. There are three major contributions made in this paper.  First, fundamental conditions which 
bound the NPU worst-case performance are established.  In particular, the work conserving condition based approach is 

                                                 
1 Also known as processing element (PE) or nP core.  
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generalized and integrated with the instruction/latency budget based approach with mathematical rigor. More 
specifically, by introducing the notion of wide-sense work conserving condition, which generalizes the conventional 
work conserving condition (called in this paper the strict-sense work conserving condition), we are able to show that the 
instruction/latency budget based approach is simply a special case of the work conserving condition based approach. 
Moreover, the introduction of the wide-sense work conserving condition also allows NPU performance to be 
characterized when the strict-sense work conserving condition cannot be satisified, thus making our approach a more 
general one than the existing work conserving condition based approach. Second, on the basis of these conditions, tight 
memory access latency bounds for a data path flow with one memory access are derived. Third, one of these memory 
access latency bounds is successfully used to interpret a peculiar phenomenon found in Intel IXP1200, i.e., for a sample 
code known as Packet Count, available in IXP1200 Developer Workbench, adding more than 2 threads reduces the 
throughput performance.  
 
The rest of the paper is organized as follows. Section 2 presents the fundamental conditions which bounds the NPU 
throughput performance. Section 3 derives tight memory access latency bounds for any given wire-speed.  Section 4 
applies one of the memory access latency bounds to interpret a peculiar phenomenon found in IXP1200. Finally, 
Section 5 concludes the paper and proposes future work.    
 
2. Fundamental Conditions 
In this section, fundamental conditions that bound the NPU throughput performance are derived.  
 
A. NPU Organization 
Although all the conditions introduced in this section are concerned with a single ME only, for the ease of discussion in 
the next section, we describe them in the context of an NPU organization depicted in Fig. 1, which involves multiple 
MEs. There are MPL MEs working in parallel, handling packets from different interfaces/ports, respectively, with a 
maximum line rate of R bps each. Different MEs share a set of on-chip or off-chip resources, e.g., an external DRAM or 
an external look-aside coprocessor, such as a ternary content addressable memory (TCAM) coprocessor [13], 
collectively denoted as MEM. Each ME has MT threads. Each thread can be configured to handle a packet throughout 
the lifetime of the packet in the NPU. Each ME has a set of embedded resources shared by all MT threads, collectively 
represented by Mem. Each thread also has its own set of resources, collectively denoted as mem.  
 
B. Terminologies and Notations 
The following terminologies are used throughout the rest of the paper:   
Data Path Flow:  a unique set of data path functions performed by the NPU on a packet.   
Code Path:  a complete sequence of instructions to be executed by  the NPU on a data path flow   
Unloaded latency:  Memory access latency with no memory resource contention 
Loaded latency:  Memory access latency with heavy contention or queuing delay  
Instruction Budget:  the maximum number of cycles or instructions (assuming one instruction per cycle) an ME’s 
arithmetic logic unit (ALU) can spend on each packet without compromising the throughput performance under a 
targeted worst-case traffic load   
Latency Budget:  the maximum time duration a packet can stay in a NPU without compromising the throughput 
performance under a targeted worst-case traffic load 
Strict-Sense Work Conserving:  an ME’s ALU is busy as long as the workload is nonzero, or equivalently, there is one 
or more instructions to be executed. 
Wide-Sense Work Conserving:  the percentage of an ME’s ALU active time in any latency budget worth of time interval 
equals the percentage of ALU time needed to process all the packets arrived during this time interval.  
 
The following parameters are used throughout the paper:  
R:  line rate in the units of bits per second 
K:  number of distinct data path flows or code paths 
TP: targeted minimum (i.e. worst-case) packet arrival interval in the units of ME clock cycles 
P:  effective packet size in the units of bits used to measure the line rate at the targeted minimum packet arrival 
interval TP 
FME : ME clock rate in the units of Hz 
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MT :  Number of threads per ME 
IIB :  Instruction budget in the units of ME clock cycles (assuming one instruction per cycle) 
LLB :  latency budget in the units of ME clock cycles 
MPL :   Number of MEs working in parallel 
The following parameters are also defined: 
Cl,k: The k-th code path mapped to ME l 
|Cl,k|: The length of the k-th code path mapped to ME l, i.e., the total number of ME cycles the ALU has to spend on 
the code path Cl,k. 
Ll,k : The total latency for the k-th code path in ME l, i.e., the time duration a packet with the k-th code path stays in 
ME l. 
sk,l :  The number of threads which are currently handling the code path k in ME l. 
 
 
The following relationships among different parameters hold for the NPU organization in Fig. 1:  

 
  TP = FME P/R,    IIB = TP,  LLB=MT TP.       (1) 
 
TP is a user-defined parameter. If the targeted worst-case packet arrival process is defined as the minimum sized packet 
arriving back-to-back, TP represents the minimum packet time and P stands for the minimum packet size.  Roughly 
speaking, the relationships for the two budgets state that to ensure wire-speed forwarding, the ALU in each ME can 
spend no more than IIB = TP cycles on processing each packet and a packet cannot stay in the ME for a time duration 
longer than LLB=MT TP.  A more rigorous description on when and how to use these two budgets to bound the NPU 
performance will be explained shortly.   
      
Finally, the required percentage of ALU active time ηl in the worst-case for ME l to work under the wide-sense work 
conserving condition is defined as follows:   
 
            ηl = max{Sk,l}{ ηl({sk,l})}                                 (2)
   
         and  ηl({sk,l}) = ∑k=1:K sk, l |Cl,k| /LLB,  ∑k sk, l ≤ MT,  for l = 1, 2, …, MPL, 
 
∑k=1:K sk, l |Cl,k|  is the total workload (i.e., the total instruction load) on the ALU that has to be processed in the time 
duration LLB to keep up with the line rate.  ηl({sk,l}) is a function of  the mixture of the code paths {sk,l} and ηl is the 
largest ηl({sk,l}), or the required percentage of ALU active time in the worst-case, in order to keep up with the line rate.  
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Hence, if ηl >1, the ALU will be overloaded in the worst-case and the wire-speed cannot be sustained.  The mixture of 
the code paths is said to be nonrestrictive if the values sk,l may take are nonrestrictive except ∑k sk, l ≤ MT, otherwise, it is 
said to be restrictive.  A possible scenario where a restrictive mixture of the code paths may occur is when an NPU 
supports two ports with each having a different set of code paths. In this case, a code path k that exists for one port but 
not for the other may never take over all the threads, i.e.,  sk,l < MT. 
 
C. Wire-Speed Forwarding Conditions 
Satisfying the strict-sense work conserving condition allows memory access latencies to be completely hidden from the 
ALU, thus fully exploiting the ALU power to maximize the throughput performance. The following theorem states that 
under what conditions ME l can achieve the highest processing performance:     
 
Theorem 1:   The maximum sustainable throughput performance for a given set of code paths mapped to ME l is 
achieved if ME l works under the strict-sense work conserving condition and ηl = 1. 
 

Proof:   Note that ηl = 1 means that the ME ALU has just enough processing power to process the offered workload.  
The strict-sense work conserving condition means that the ME ALU processing power can be entirely devoted to 
process the offered workload.  Hence, the wire-speed can be achieved.  Moreover, since the ALU processing power 
has been exhausted at ηl = 1, this wire-speed is the maximum throughput the ME l can sustain.  □ 

 
Note that the existing work conserving condition based approaches, e.g., [8-11], are based on the above strict-sense 
work conserving condition. However, the strict-sense work conserving condition above is not sufficient for NPU 
performance analysis for two reasons. First, the strict-sense work conserving condition may not always be attainable. 
This is because (1) the number of configurable threads MT is always finite for any NPUs and there is no guarantee that 
the memory access latencies can be completely hidden even with all MT threads in use; (2) for certain types of code 
paths, e.g., a code path with serialization effect, memory access latencies cannot be completely hidden, no matter how 
many threads are configured (see Section 4 for such an example).  Second, in many cases, one is not interested in 
knowing the maximum sustainable throughput performance, but rather whether or not the wire-speed can be sustained 
provided that a given number of threads are in use.    
 
Now, the following theorem states that under what conditions a given wire-speed can be sustained, which exactly 
addresses the above drawback the traditional work conserving condition based approach suffers from: 
   
Theorem 2:   For a given set of code paths mapped to ME l, the wire-speed processing is achieved if ME l works under 
the wide-sense work conserving condition and ηl ≤ 1.  
 

Proof:   Note that ηl ≤ 1 means that the ME ALU has enough processing power to process the offered workload.  The 
wide-sense work conserving condition means that the ME ALU can finish processing all the offered workload that 
may arrive in the LLB worth of time interval. This ensures that the ME always has a free thread to receive the 
incoming packet in the worst-case when packets arrive at the TP time interval.  Hence, the wire-speed forwarding 
performance can be achieved.  □ 

 
Both Theorem 1 and 2 apply to both restrictive and nonrestrictive mixture of code paths. Now we show that the 
instruction/latency budget based approach proposed in [12] is, in fact, a special case of Theorem 2 under the condition 
that the mixture of code paths is nonrestrictive.  The following corollary states the approach:   
 
Corollary 1:  For a given set of nonrestrictive code paths mapped to ME l, wire-speed processing in ME l is achieved if 
both instruction and latency budgets for all the code paths are met, i.e.,  
 
 |Cl,k|  ≤ IIB   and   Ll,k ≤ LLB ,     for k = 1, 2, …, K,           (3) 
 

Proof:  This corollary is a special case of Theorem 2. First, we show that the condition ηl ≤ 1 in Theorem 2 
degenerates to the first inequality in Eq. (3) if the mixture of the code paths is nonrestrictive.  Without loss of 
generality, assume |Cl,k| ≥ |Cl,k+1| for all k = 1,…, K – 1. Due to the nonrestrictive assumption, let s1, l = MT and sk, l = 
0, for all k =2,…,K, and l = 1, 2, …, MPL.  Then from (1), we have |Cl,1| ≤ IIB, implying that |Cl,k| ≤ IIB, for k = 1, 2, …, 
K.   
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Second, we note that the second inequality in Eq. (3) ensures that the ME ALU works under the wide-sense work 
conserving condition.  This is true simply because if the second inequality in Eq. (3) holds, it implies that the ME 
ALU would be able to finish processing all the workload arrived in the LLB worth of time interval, i.e., the ME works 
under the wide-sense work conserving condition. Hence, according to Theorem 2, the wire-speed forwarding 
performance is achieved. □     

 
Note the conditions in Corollary 1 are necessary and sufficient conditions for wire-speed forwarding if the mixture of 
code paths is nonrestrictive. For the restrictive case, they are sufficient conditions but not necessary ones, meaning that 
Corollary 1 may lead to overly conservative performance estimation when the mixture of code paths is restrictive.  
Although it is less general than Theorem 2, Corollary 1 is particularly useful for finding analytical bounds. For example, 
by mapping the worst-case data path flow to a specific NPU configuration, a pseudo code can be constructed and used 
to estimate |Cl,k| and Ll,k. Then whether the wire-speed forwarding could be achieved can be tested based on Corollary 1. 
In an extended version of this paper [14], an analytical bound for Ll,k is derived. This bound is found to be within 17% 
of the cycle-accurate simulation results for a large number of code samples available in IXP1200 and 2400 Developer 
Workbenches. However, due to the page limitation, those results are not presented in this paper.    
 
3. Tight Memory Latency Bounds 
 
The latencies for memory access have been Achilles Heel for NPU to meet the tight time window TP for packet 
processing. For example, at the OC48 full line rate, the time window to process a packet can be as small as 40 ns when 
49 bytes minimum sized packets arrive back-to-back.  This puts a tight constraint on the memory access latency to 
achieve wire-speed forwarding performance.  For this reason, finding tight memory access latency bounds is of 
paramount importance for NPU performance testing.  A back-of-envelope calculation of the memory access latency 
bound sometimes can be proven very helpful in making a quick decision on a particular design choice. In this 
subsection, we use a simple example to demonstrate how the fundamental conditions proposed in Section 2 can be used 
to exploit the tight memory access latency bounds.   
 
Consider the non-restrictive mixture of code paths. In this case, we have a unique worst-case code path Cl,k in the sense 
that ηl({sk,l}) in Eq. (2) will be maximized when sk,l = MT.  Further assume that this worst-case code path involves only 
one memory access with loaded latency τl,k, which results in a context switching.  A code path with a single memory 
access may happen for an NPU based on a cut-through switching architecture, such as AMCC nP7120. Different from a 
store-and-forward  NPU such as IXP1200, a cut-through switching NPU processes a packet on the fly without moving 
the packet from the receive buffer to the main memory.  An example scenario is when the worst-case code path is for IP 
forwarding which involves only one memory access to do IP forwarding table lookup, e.g., through a look-aside TCAM 
coprocessor. It may also occur for a store-and-forward NPU such as IXP1200 at ME pipeline stages other than the 
receive stage.  Based on Theorems 1, 2, and Corollary 1, the following corollary gives the maximum tolerable τ1,k while 
maintaining the maximum sustainable NPU throughput performance: 
 
Corollary 2:  Assuming the mixture of code paths is nonrestrictive, and the worst-case code path Cl,k involves one 
context switching due to a single memory access with loaded latency τl,k, the maximum sustainable NPU throughput 
performance is achieved if and only if TP = |Cl,k| and 
 
               τl,k   ≤ (MT-1) TP ,         for  ml,k ∈ mem, Mem, or MEM.        (4) 
 

Proof:  First, note that according to Theorem 1, to achieve the maximum sustainable throughput performance, an ME 
must work under the strict-sense work conserving condition, i.e., ηl = 1 or TP = |Cl,k|.  Further, note that at ηl = 1, the 
wide-sense work conserving condition is equivalent to the strict-sense work conserving condition because the ALU in 
ME l (for l = 1, 2, …, MPL) must always be active processing the workload at ηl = 1.  This means that Theorem 2 
degenerates to Theorem 1 at ηl = 1. Second, due to the nonrestrictive mixture of code paths assumption, Corollary 1 is 
equivalent to Theorem 2 and hence it also degenerates to Theorem 1 at ηl = 1. This leads to the conclusion that the 
maximum sustainable NPU throughput performance is achieved if and only if the second inequality in Eq. (3) holds 
(note that the first inequality is automatically satisfied due to the condition: TP = |Cl,k| ≡ IIB).  Furthermore, since Ll,k = 
|Cl,k| + τl,k +τw

l,k, where τw
l,k is the thread waiting time for execution after the memory access, the second inequality 

in Eq. (3) can be written as,  
                         τl,k + τw

l,k   ≤ LLB - |Cl,k| =  MT TP - TP = (MT-1) TP. 
Since the waiting time τw

l,k ≥ 0, one can always maximize τl,k by lettingτw
l,k = 0, which leads to (4). □ 
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In general, the loaded memory latency τl,k is a function of the unloaded latency τu

l,k, and the maximum possible number 
of threads m contending for the memory resource m1,k, i.e., τl,k=τl,k(τu

l,k,m). The exact format of this function depends on 
the detailed memory resource access technology in use.  In what follows, we consider a simple memory access model 
and a thread scheduling discipline for which the tight bounds on τu

l,k can be explicitly derived.  
 
We assume that the queuing delay for the memory access is additive, meaning that if two threads simultaneously 
attempt to access the memory resource, one thread will have to wait τu

l,k time units in a queue before accessing this 
memory resource.  We also assume that a coarse-grained thread scheduling discipline is in use, which is the case for 
Intel IXP series. This discipline allows a thread to be executed continuously until there is a memory event or a 
programmer-defined voluntary yielding event. When such an event occurs, the thread stalls and the control is passed to 
the next thread in a round-robin fashion. Then we have the following results, 
 
Corollary 3:   With a coarse-grained thread scheduling discipline, and assuming that the mixture of code paths is 
nonrestrictive and there is a worst-case code path Cl,k involving one context switching due to a memory access m1,k  with 
unloaded latency τu

l,k , and assuming that the queuing delay for memory access is additive, the maximum sustainable 
throughput performance is achieved if and only if  TP = |Cl,k| (i.e., ηl =1) and 
 
  τu

l,k ≤ (MT  - 1)TP     if  ml,k ∈ mem            (5) 
  τu

l,k ≤ TP  and MT ≥ 2     if  ml,k ∈ Mem           (6) 
  τu

l,k ≤ TP/MPL  and MT ≥ 2        if  ml,k ∈ MEM          (7) 
 

Proof: Since, to achieve the maximum sustainable NPU throughput performance, the ALU in ME l has to be active all 
the time, i.e., ηl = 1 (for l = 1, 2, …, MPL), the following condition must be met: No more than (MT – 1) threads 
from any given ME can be stalled simultaneously.  For the time being, we assume that this condition is met. Then, 
based on the additive queuing assumption, we have τl,k   = mτu

l,k, where m = 1,  MT – 1, and (MT – 1)MPL, for ml,k ∈ 
mem, Mem, and MEM, respectively. Note that for ml,k ∈ mem, τl,k   = τu

l,k, regardless whether the condition is met or 
not.  Substituting these τ1,k  functions into Eq. (4), we arrived at Eqs. (5) – (7).  

 
Now the question is whether the above condition can be met or not. The answer is that for the coarse grained 
scheduling discipline, the above condition is met when the inequalities in Eqs. (5) – (7) hold.  The key is to realize 
that by using the coarse-grained thread scheduling algorithm, the time interval between two successive stalls for two 
different threads is equal to TP, independent of when the memory access occurs  during the execution of Cl,k. This is 
simply because, for any two successive packet arrivals having the identical code path of size TP and for the coarse-
grained thread scheduling discipline, the time interval between the two memory events from the two identical code 
paths is TP, independent of when the memory access takes place in the code path. Hence, for ml,k ∈ mem,  this 
implies that even for τu

l,k  = (MT  - 1)TP, there can be at most  MT  - 1 threads waiting for memory events, and the ALU 
always has one thread to be executed, i.e., the memory latency is completely hidden from the ALU. Hence, the 
condition is met when Eq. (5) holds.  

 
To show that the condition is met when Eq. (6) holds, let MT = 2 and follow the arguments for Eq. (5), it is not 
difficult to realize that even for τu

l,k = TP, there can be only one thread stalled at any time, and the other thread is 
being processed by the ALU.  

 
Again, to show that the condition is met when Eq. (7) holds, letting MT = 2 and following the idea in the proof of Eq. 
(6), we realize that  from each ME, there is exactly one memory access in any TP time interval in the worst-case and 
the other thread is being processed by the ALU.   □ 

 
From Corollary 3, two interesting observations can be made. First, for shared memory resources like Mem and MEM, 
the access latency must be “hard” upper bounded to achieve the maximum throughput performance and adding more 
than 2 threads do not help in hiding longer memory latency. In contrast, for a dedicated memory resource as mem, 
longer access latency can be hidden if more threads are added.  Although the assumptions made in Corollary 3 may not 
be entirely realistic in practice, it does provide significant insights on under what conditions adding threads can help 
hide more memory latencies and under what conditions it cannot.  In the following section, Corollary 3 is successfully 
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used to explain a phenomenon found in the IXP1200, which demonstrates the importance of analytical modeling for 
NPU performance analysis.  
 
4.   Why Adding More Than 2 Threads Harmful?  
Unlike all the other code samples from IXP1200 Developer Workbench we studied in [14] where adding more threads 
improves the throughput performance at the receive stage, Packet Count code sample results in the highest throughput 
performance at 2 threads beyond which the throughput performance drops.  This peculiar phenomenon is also observed 
in [15] but not well explained.  On page 121 in [15], it says: “A little more analysis shows that the issue is with the 
application, not the multithreading”.  Then it goes on by saying: “So are two threads always better than four? Sure if, all 
you want to do is count packets on the IXP12xx. Otherwise, you need to use your understanding of thread contention 
within a micro-engine to determine what is best for your application."  As a matter of fact, this phenomenon is a natural 
consequence of the existence of a critical section at the receive stage and can be well explained by means of Eq. (6) in 
Corollary 3.  In what follows, we first explain what the critical section is. Then we discuss how we may use Eq. (6) to 
explain this phenomenon.  
 
A critical section2 is a region in a code path which can be executed by only one thread at a time. A critical section can 
be a BUS, a buffer, an external port or a control register access (as is the case at the receive stage). Even if there is a 
context switching from one thread executing the critical section to another thread waiting to execute the critical section, 
the second thread cannot execute the critical section until the first thread has completed its execution of the critical 
section. More specifically, for a thread currently executing a critical section, when switches context for a memory event, 
it still has the control over the critical section and any other thread waiting to execute critical section has to wait till that 
thread gives up its control over the critical section. This not only introduces serialization effect but also adds extra 
instructions because the waiting threads for the critical section access have to poll a control register in an attempt to gain 
control of the critical section. However, if there is a thread waiting to execute any code segment other than the critical 
section, it will be able to execute its code segment when it gets its share of processor cycles.  
 
Now we consider an extreme case. Namely, the entire code path does nothing but just receives a frame from the input 
port. In this case, almost the entire code path belongs to the critical section, which does several memory accesses to load 
the entire frame into the NPU with unsuccessful context switching between memory accesses. Since the thread 
executions have to be serialized in the critical section, one may view the entire critical section roughly as a single 
memory access with additive queuing delay.  This is very much like the code path studied in Section 3 with m1,k ∈ Mem 
and with additive queuing delay. Hence, Eq. (6) in Corollary 3 holds, meaning that adding more than 2 threads cannot 
improve the throughput performance. Moreover, the throughput must reduce as the number of threads increases from 2 
to 3 and then to 4. This is simply because the added instructions used for polling the control register increases as the 
number of threads increases and they do not do any useful work but simply waste the ALU resource.  
 
One can imagine that as the percentage of the code path belonging to the critical section reduces, the serialization effect 
becomes less a problem and the performance impact due to the critical section reduces. That explains why we only see 
this phenomenon for the Packet Count code path in which the critical section constitutes 40% of the total code path.   
 
5. Conclusions and Future Work 
In this paper, fundamental conditions were derived, which generalize and integrate the traditional work conserving 
condition and instruction/latency budget based approaches. These conditions set the foundation upon which fast NPU 
performance analysis algorithms and tools can be developed. In particular, we demonstrated, based on a simple code 
path, how these conditions may be used to derive useful memory access latency bounds for wire-speed forwarding. We 
also demonstrated how useful the analytical bounds are in terms of understanding the NPU behaviors. 
 
With the fundamental conditions developed in this paper, various NPU performance bounds can be exploited and used 
for both fast NPU performance analysis as well as NPU design space exploitation. Currently, a fast NPU performance 
simulation tool is being developed based these conditions. The aim is to allow NPU performance bounds to be 
identified by fast simulation without detailed instruction level information.  Another direction of research is to exploit 
memory latency bounds under various thread scheduling disciplines.   
 
 
 
                                                 
2 Critical section is a term used by Intel for their IXP series of NP microcode. 
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