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Abstract

This paper develops fast algorithms for construction of
circulant modulated rate process to match with two primary
traffic statistical functions: distribution f(z) and autocor-
relation R(7) of the rate process. Using existing modeling
techniques, f(z) has to be limited to certain forms such as
Gaussian or binomial; R(r) can only consist of one or two
exponential terms which are often real exponentials rather
than complex. In reality, these two functions are collective
from real traffic traces and generally expressed in much com-
plicated form. Our emphasis here is placed on the algorith-
mic design for matching complicated R(r) in traffic modeling.
The typical CPU time for the traffic modeling with R(r) con-
sisting of five or six complex exponential terms is found in the
range of a few minutes by the proposed algorithms. Our study
further shows an excellent agreement between original traf-
fic traces and sequences generated by the matched analytical
model.

1 Introduction

Many studies indicate the importance of high burstiness
and strong correlation nature of multimedia traffic to network
control and resource management design (e.g., [1, 2, 3]). Such
traffic dynamics in statistical measurement are mainly cap-
tured by the collective rate distribution function f(z) and au-
tocorrelation function R{r). Real traffic measurement shows
that both f(z) and R(r) are generally expressed in compli-
cated form. The central task of measurement-based traffic
modeling is to develop algorithms for construction of ran-
dom process models, whose statistics match with the collec-
tive f(z) and R(r). This is difficult especially if the models
should fit into feasible analytical queueing solutions for net-
work performance evaluation.

Most queueing analyses have used two-state Markov chain
modulated process as a basic element for construction of mul-
timedia traffic. Using this modeling technique, R(7) has to
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be in the form 3, re**” with real 9 and real Ag; f(z)
is limited to a convolved binomial function {4]. They are
certainly insufficient to capture the diversed traffic correla-
tion and burstiness behavior, especially the strong pseudo-
periodic nature as found in MPEG video traces and feedback-
controlled ABR traffic. In [5, 6], Li and Hwang proposed a
structure of circulant modulated Poisson process (CMPP),
whose R(7) has the form ), Pre*™ with real ¢y but com-
plex A and whose cumulative function F(z) = f: Flu)du is
expressed as a piece-wise step function. It is obvious that the
sum of complex exponentials represent a much wider class of
correlation functions than the sum of real exponentials.

One may question the validity of using circulant for traf-
fic modeling. A comprehensive, blind numerical study in [6]
compared queueing/loss-rate solutions between vastly differ-
ent circulant and Markov chain, both of which are designed
to match with identical R(r) and f(z). The two solutions
were found generally in excellent agreement. In other words,
the underlying structural difference between circulant and
Markov chain has no significant impact on queueing/loss-
rate performance, as long as the steady state statistics f(z)
and second-order statistics R(r) of a given range are properly
matched. Such study was recently extended in [7] to the com-
parison between circulant and nonMarkovian process. The
nonMarkovian process includes auto regressive moving av-
erage model (ARMA), nonlinearized ARMA model for non-
Gaussian distribution, and correlated batch arrival process
with nonexponential interarrival distribution. Similarly, all
the comparison results between circulant and nonMarkovian
process in [7] show excellent agreement, provided matching
with identical f(z) and R(7). That is, once the important
statistics of traffic are captured by its modeling, the actual
underlying structure of selected models, whether circulant,
Markovian or nonMarkovian, does not have significant im-
pact on queueing/loss-rate performance.

The measurement-based construction of CMPP consists
of three steps [6]. The first step is the identification of ;s
and A;’s to match a collective correlation sequence, which is
formulated as a standard nonlinear programming problem.
Due to the constraint of real 1’s, however, most existing
algorithms such as Prony, MUSIC and ESPRIT [8, 9, 10]
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fail to apply. In this paper we develop a heuristic algorithm
by taking the combination of the Prony algorithm with the
non-negative least squares (NNLS) method. The algorithm
is found fast and robust by comprehansive numerical stud-
ies. The second step is the formation of a circulant transition
rate matrix whose eigenvalues must contain all the Ag’s of
R(r), which is originally an inverse eigenvalue problem but
transformed to an index search problem in [6]. The ad hoc
approach used in [6] is based on random search of entire in-
dex space, which is rather slow and practically unusable when
R(7) contains more than three exponential terms (i.e., three
Ar’s). The major contribution of this paper is the develop-
ment of a fast index search algorithm for increased number
of A\y’s. For instance, the average CPU time on a Sun work-
station for construction of circulant by this algorithm takes
about 30 seconds for five A;’s and 3 minutes for eight Az’s in
R(7). In contrast, the random search algorithm could take
days or monthes for the construction. The third step of the
construction is the design of input rate vector for CMPP to
optimally match a collective rate distribution F(z), which is
formulated as a minimization problem and effectively solved
by the Nelder-Meade simplex search method in [6].

Finding fast and practically useful algorithms for
measurement-based construction of traffic model is of
paramount importance to network performance evaluation.
In most of our numerical examples, the total CPU time of
the three steps is typically in the range of a few minutes,
which makes this traffic modeling technique readily attrac-
tive to field traffic engineers. In practice, one can develop
a source library from collected representative traces of mul-
timedia sources, each of which is described by its own f(z)
and R(r). One can then build a matched CMPP for each
individual source. For the modeling of aggregate traffic at a
multiplexer, one can simply take the convolution of individ-
ual f(z)’s and R(r)’s to form the aggregate f(z) and R(r)
and then build a single CMPP. Such CMPP’s can be used
either for network performance analysis, or as traffic gener-
ator to load the real network for testing. Note that traflic
generator is a critical component for network testing. A few
traffic generator equipments available to date are practically
not useful without measurement-based traffic modeling.

Other than using the superposition of two-state Markov
chains, a few works are available for measurement-based traf-
fic modeling to match with collective R(7) and f(z). In [13],
a multi-state Markov chain is constructed to model a MPEG
video, but its correlation function still contains a single real
exponential as a two-state Markov chain. In [14], Jagerman
and Melamed proposed a measurement-based modeling tech-
nique called transform expand sample (TES), which is mainly
suitable for computer simulation. In most TES examples [15],
R(7) only consists of one or two exponentials. Recent traf-
fic measurement [1, 2] also identifies the significance of long
range dependencies, which are described by the correlation
behavior in large time scales (or, equivalently by the domi-
nant power spectrum in low-frequency band). The study in
[4, 17] indicates that a finite-buffer queueing system is non-
effective for transport of low-frequency traffic subject to neg-
ligible loss rate. That is, the link bandwidth should be at
least equal to the peak rate of low-frequency traffic whose

flow stays intact through the queueing system. In this pa-
per we focus on the traffic whose correlation function can be
approximated by the sum of complex exponentials.

The paper is organized as follows. Section 2 provides the
background knowledge of the algorithmic design for CMPP
construction. Section 3 describes a heuristic fast algorithm
for the identification of Ax’s and t4’s to match with a given
correlation sequence. Section 4, which is the major part of
this paper, develops a fast index search algorithm for the con-
struction of a circulant transition rate matrix whose eigenval-
ues contain all the Ag’s. Section 5 provides modeling exam-
ples based on real traffic traces to show the potential of the
algorithm.

2 Background

Our objective here is the construction of a CMPP to statis-
tically match with a stationary random arrival point process
a(t). Denote the rate autocorrelation function and steady-
state cumulative rate distribution of a(t) by R(r) and F(x)
and that of CMPP by R.(r) and F.(z), where the subscript
”¢” indicates the function of CMPP model. The algorithmic
design is to achieve

R.(7r) = R(r), Fe(z) = F(z).

In reality, R() is either expressed analytically or described
by a correlation sequence collective from real traffic trace.
For CMPP, R.(r) must be represented by

M

Re(r) = el (1)

=0

with real nonnegative ¢ and complex \; [6]. Define X =
[0, A1, Az, s Ay, ) and = [0, P11, %2, ..., 9b,,] Where M is the
order of R.(r). The first step of our design is the identifica-
tion of A and 4 to match the original R(7), i.e.,

20 Vvl

(2)
which will be addressed in Section 3.

The next step is the construction of a circulant transi-
tion rate matrix Q. Denote the first row of Q by vector
@ = [a0,a1,...,an-1] for N-state circulant. Each row of
Q = cire(d) is then formed by a forward shift permutation of
the previous row. Define the eigenvalues of Q in vector form
by Ac = [Aco, Act, oory Ae(v—1y]- One can write

min Am[R(T) — R.()]%dr s.t.

ALy

X = VNaF*. (3)

F is a Fourier matrix with its (i,7)-th element given by
ﬁe_z_yl‘/“_l. We have F~' = F* where F* is the conjugate
transpose of F. For CMPP, each eigenvalue contributes an
exponential term to its correlation function,

N-1
R (1) = zwck€ACk|T|. (4)
k=0

Since the power vector 9, = [¥co, Yoty ey Yo(n—1)] is assigned
independent of @ [6], the basic construction of & is to include
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Xin X,. For the wanted eigenvalues, namely A, € X, Vi, one
can assign v by their corresponding value in 1. For the
remaining unwanted eigenvalues, namely A ¢ X, Vi, one can
simply remove them by assigning v, = 0.

As a transition rate vector, @ must be constructed under
the nonnegative constramt @>0,ar >0fork=1,2,..,,N-1
with ap = — Zk 1 @k, which substantlally hmlts 1ts eigen-

value space. Nevertheless, only a subset of Xc needs to match
with X. One can significantly expand the eigenvalue space
of X by i increasing its dimension N, i.e., making N >> M,
such that a solution & for X C /\ is more likely to exist.

The construction of @ from X is therefore transformed into
an index search problem, which is to find an m-dimension
index of X within the N-dimension index space of /\c for so-
lution & in (3) to satisfy the nonnegative constraint @ > 0.
Note that the unwanted eigenvalues in X are arbitrarily as-
signed under the nonnegative constraint. Such index search
has the space complexity of N™. Brute force search method
will fail to apply, for large N and M. Developing a fast index
search algorithm therefore becomes crucial to the success of
the proposed modeling technique. This is achieved in Section
4.

Define the input rate at each circulant state by 7 =
[voy71y+yyn-1]. Once @ is fixed by X, the last step of our
design is to find an input rate vector ¥ for F.(z) ~ F(z). For
CMPP, one can write [6],

N-1
Y =T+ Z /Y1 cos(2mil [N —6),

=1

fori=0,1,..,N—1.

(5)
which is equivalent to 9 = ¥ |3F*|* and 6, = arg{7F*} with
phase vector 8, = [Beo, be1s -,
fixed by RC(T), one can only use 6 to change 5. Further,
because 1/)c contains M nonzero elements, only their corre-
sponding elements in §, are effective in the § v design.

The steady-state probability of each state in circulant is
equally likely, i.e., m = +,Vl. Thus, F.(zx) for CMPP is only
dependent on 4, which is a piecewise multi-step function and
jumps by % at each individual value of z € ¥ in ascending
order, expressed by

F.(x) = lim Pr(y(t) S2) = 3, (6)

f(n-1y)- Since 1/70 is already

where n, represents the number of input rates in 4 less
than or equal to x. For the distribution matching, we first
need to discretize the original F(z) by partitioning its range
of z into a set of N equal-probability rates. The rate at
the partitioning point is denoted by 7' = [y0,71,-» Yn-1]
in ascending order with Pr(z = +;) = &,Vk. Similarly
for F.(x), we sort out ¥ in ascending order as denoted by
Yo = [¥p05Vp1» -+ Yow—1], Subject to vy, > v, for i < k. The
distribution matching F.(x) ~ F(z) can then be formulated
into a minimization problem:

1
min ;0 17k = Yox > $.t. Y 20,Vk,  (7)

which was effectively solved in [6] using the Nelder-Meade
simplex search method. The total computation time in this

step is typically in the range of a few seconds on a worksta-
tion. This paper focuses on the algorithmic design of the first
two steps.

3 Matching Correlation Function

This section developes a heuristic fast algorithm for iden-
tification of X and ¢ in correlation function matching. The
traffic statistics in real measurement are often collective in
the discrete time domain using computer and digital signal
processing technologies. Without loss of generality, the origi-
nal correlation function R(1) can be expressed in the discrete
time domain by a correlation sequence

7= [R(0}, R(1), ..., R(L - 1)].
Similarly, one can replace Rc(r) in (1) by R.(n) =
Z;‘_”__O P1eM® for 0 < n < L. Define
G =[1,eM, e, . eFINT for 0 <1< M. (8)
For the matching in the discrete domain, one can rewrite (2)
as

mmE-—||r—Z1/)l¢l” , 6920  (9)

B =0

where ||.]| is the Euclidian norm.

This is a nonlinear least square (NLS) problem with con-
straints, i.e., a nonlinear programming problem, which is gen-
erally very difficult to solve since no efficient algorithms are
available to date. The generic nonlinear programming tech-
niques cannot be applied here due to its high time complex-
ity and inability to locate the globe optimal solution. In the
signal processing and detection field, a variety of techniques
were developed to solve the NLS problem of the sinusoidal
type without constraint. They are classified into direct and
indirect approaches (refer to [20] for details). The direct one
involves a multidimensional search of X, 1/.; and M for the
minimization of E. Although the constraint can be easily
incorporated, the direct approach suffers from its extremely
high time complexity. The indirect one extracts X, z/; and M
as accurately as possible without explicit attempt to mini-
mizing E. The standard methods such as Prony, MUSIC and
ESPRIT are examples of the indirect approach. In contrast
to the direct approach, the indirect approach is computation-
ally much more efficient but at the cost of suboptimal. Yet,
none of these indirect methods can be applied here because
of the constraint 1/').2 0.

Here we propose a heuristic algorithm which is composed
of three steps. In the first step, we simply use the stan-
dard Prony method [20] to identify an intermediate solution
(X,-nt,tﬁim) without the real nonnegative constraint on 1/.)‘,-,13.
In the second step, the intermediate solution vector Xin: is
much expanded to /_\‘w,, with Xine C ;\'”p. The extra eigenval-
ues in Xc@ are generated through interpolation of the eigen-
values in Ain;. It is based on the intuition that the eigenvalues
of the constraint solution X are likely in the neighborhood of
the eigenvalues of the nonconstraint solution /\znt In other
words, the correlation function captured by (XNint,int), is
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Figure 1: Two cases of power spectrum match

likely to resemble that by (X, ), since the former is formu-
lated with less constraint than the latter. The purpose of
the expansion is to approximately achieve Xc /\ezp Various
interpolation techniques can be used to expand Xint to /\ezp

The one used here is a simple linear interpolation in the com-
plex domain among all the eigenvalues in Ain¢, which is found
sufficient in most our applications. The last step is to find
1/7”,, of the given Xex,, with the real nonnegative constraint
of Jup > 0, which will minimize the difference between the
original correlation sequence 7 and the correlation function of
(pr, 1[78,,,,). This is achieved by the well known non-negative
least squares (NNLS) method [20]. Note that most power el-
ements in 31-);@,, will be zero since the order of the correlation
function (Aezp,YPexp) should not be significantly greater that
the order of the correlation function (Xint, Yin¢). Finally, the
power vector 1/J consists of the nonzero power elements of
wew,,, the eigenvalue vector X consists of those eigenvalues in
Xe zp, whose corresponding power element in wexp are nonzero.

Note that if the original solution (/\mt, 1/),n¢) by the Prony
method already satisifies the real nonnegative constraint,
both expansion and minimization processes in steps 2 and
3 will not change the solution.

Two examples are taken to demonstrate the effectiveness
of the heuristic algorithm. Note that the correlation func-
tion in the time domain is equivalently characterized by the
power spectrum in the frequency domain. Taking the Fourier
transform of R.(7) in (1), the power spectrum is expressed
by

M
—2 N
A+ w?

P (w)= (10)

=0

where each eigenvalue contributes a bell component. Each
bell is described by its central frequency Im{A;} and half
power bandwidth —2Re{\;} with average power ;. Every
pair of complex conjugate eigenvalues then contributes two
bells which are symmetric at the central frequency £Im{\;}
Since lower frequency power has much more impact on the
queueing performance than higher frequency power [5], it is
more convenient to use the power spectrum than the correla-
tion function for the second-order input statistical measure-
ment. This is true especially since we are interested in the
power spectral matching in the low-frequency region.

For simplicity, in the following two examples we assume
that the original correlation sequence is exactly described by
()\u,,t,’l/),ng) as the Prony method would get. In the first ex-
ample, we describe the original power spectrum at M = 12

by
Xint = {14 5i, —1+2i, -39, —1, =3k 4i, —4 63},

Bine = {24 1i, 8% 2i, 8+4i,1+0.5i, 12+ 3i, 3%2i}.

as shown in Fig. 1a. Here we have purposely chosen complex
¥ for the original function with six pairs of complex con-
jugate eigenvalues. After the linear interpolation, the given
)\,m at M = 12 is expanded to )\wp at M = 40. Using the
NNLS method for minimization, we then identify the follow-
ing matched two vectors,

X = {-157£5.13i, ~1.16 £ 2.18i, —2.99 % 9.0i,
~1.21 4 2,513, —16.9 F 8.0, —3.45 + 20.4i},

§ = {12.78, 9.0, 23.7, 7.63, 12.39, 1.49}.

Notice that with respect to each pair of complex conjugate
eigenvalues, the two real positive power elements are identical
and therefore only one of them is included in the definition
of 1/) It is obvious that X cannot exactly match with Xine
because of the constraints. Yet, as one can see, the first three
pairs of eigenvalues in X are very close to the first three pairs
of eigenvalues in Ajn;. This explains why the conctructed
power spectral curve closely matches with the original one as
shown in Fig. 1a.

In the second example shown in Fig. 1b, we choose the
following original power spectrum at M = 10,

Xint = {—2 26, —2+40i, —4 % 30i, —4 & 20, —6 % 104},

Pint = {30 & 54, 100 £ 204, 50 £ 204, 10 £ 204, 20 % 10¢}.

An expansion set /\w,, at M = 60 is first generated by linear
interpolation from the given set Xat M =10. The  minimiza-
tion process then identifies 19 nonzero 1 pairs in 1/)”,,, many
of which have very small values (representing negligible en-
ergy of the corresponding bell components in P(w)). Based
on pr, 5 pairs of complex conjugate eignevalues are then
selected from Aecp, each of which contributes more than 5%
of the total energy, given by

X = {—2.0+40.0i, 4.0 % 30.0{, —2.0 % 2.04,
-3.8 4 31.1i, —2.32 & 44.1},

= {199.52, 65.76,, 29.5, 26.05, 29.78}.

Again, the first three pairs of the eigenvalues in Xis basically
identical to the first three pairs in Xint. The two correlation
functions, (}\'im,apint) and (X, ﬁ) are compared in Fig. 1b.

The CPU time for the matching in both cases is about
3 seconds on a workstation. In Section 5, we shall use this
heuristic algorithm to match the power spectrum of various
real traflic traces.

4 Index Search Algorithm

This section develops a fast index search algorithm (ISA)
for construction of @ from X, based on X, = vN&F* in (3)
and X C X, subject to @ > 0. Subsection 4.1 formulates the
problem. Subsection 4.2 presents the ISA algorithm, which is
further optimized in Subsection 4.3 and 4.4. Subsection 4.5
discusses the complexity issues for the ISA.
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4.1 Index Search Problem

Since @ is real, a complex A;; must be the conjugate of
Aev—j) in Xe. In other words, the equation set by \; in
Xe = VNGF* is equivalent to the equation set by Acv_j);
only one complex eigenvalue in each conjugate pair needs to
be taken into account in Xc = \/IV aF*. Further since all the
unwanted eigenvalues, A¢; € X but ¢ A are arbitrarily as-
signed, they shall be completely removed from Xe = VNGF*
for the derivation of & In consequence, one can rewrite

Xe = VNGF* as
A(i)@ = b(im

an-1]7, im = [i1, 42, -y

) and @20 (11)

with @ = [—ao, a1, ..., im] and

S(?m) = [—Re(/\il)aIm(’\il)a ey _Re(’\im)’lm()‘im )]Ta
-1 1 1 e 1
1 —Ciy,1 —Cip,2 —Ci;,N—1
. 0 Si1,1 8iq,2 8iy,N-1
A(in) = .
1 —Cipa —Cip,2 —Cip,,N-1
0 Sipm,l Sim,2 8im,N—1

where ¢;,; def cos(2mij/N) and s;; ef sin(2wij/N). m rep-
resents the number of distinctive, nonzero eigenvalues in X
where each pair of complex conjugate eigenvalues is counted
as one distinctive eigenvalue. For XC X, the index vec-
tor im provides a specific index a551gnment of X in )\c, ie.,

X = [Aig, Aip, -y Ain]. A feasible solution @ is obtained by
identifying a specific i, to satisfy (11).

Denote the set of entire index assignment space by I, =
{im 241 € {1,2,..., N — 1}, VI for i # i; if I # j}. The index
space of I,, is then on the order of N™. Our objective is to
find an index vector i, € I, for a feasible solution @ in (11).
For convenience, we also denote the set of all feasible index
assignments by I, with I,, C Im,. Typically, I, is a small
fraction of In,.

Here we briefly discuss the ad-hoc scheme developed in
[6] for solving (11) and explain the crucial importance of the
proposed fast algorithm to the measurement-based modeling.
In [6], (11) was formulated as a linear programming problem
with an arbitrarily assigned objective function; the simplex
method was employed to search for a feasible solution & at
each selected iy € Im . Since im is randomly selected at
each time with incremental change of every index 4; € im, We
call the scheme as random selection algorithm (RSA). The
random search of this kind is found extremely ineffective for
large N and m. Note that N has to be large for the expansion
of solution space, which is typically in the range of several
hundreds in our application. For instance, taking N = 100 at
m = 3, a complete search of the index space I3 = 10° by RSA
requires several hours of CPU time on SUN workstation. The
exponential expansion of the index space with m renders any
brute force search algorithm to be virtually impractical for
m > 3. In the RSA implementation, the number of allowable
index searches at each given N was limited to a few hundreds,
which only covers about 0.01% of the index space for N = 100
at m = 3. Since I,, is only a small fraction of I, such as 10~°

or less i in most our experiments, the probability of finding a
feasible ip in I, by RSA diminishes rapidly as m increases.
Yet, confining m < 3 is certainly insufficient to capture the
complex correlation behavior of multimedia traffic.

4.2 Tree Search Algorithm

Consider the index search problem of order n for 0 < n <
m. At each given n we have the notation of i, I, and I,.
Further define in = {;n 1,1n], where in_1 represents the first
(n — 1) indices of 7,. We introduce a new set J,_; = {z" 1
in € I}, ie., Jno_1 is the set of the index vectors which are
composed of the first (n — 1) indices of i € I,. The ISA
algorithm is developed on the basis of the following relation:

JnCIy n, (12)

which is proved by contradiction. Consider an i, € In, whose
first (n—1) elements are denoted by the corresponding s in_1 €
J.—1. Suppose ne1 g T,_,. By definition, i, must be a
feasible solution of (11). Since 7,1 represents the first (n—1)
elements of i,, it must also be a feasible solution of (11)
with its last two equations removed. Yet , removing the two
last equations in (11) is equivalent to formulating the index
search problem of order n — 1, whose solutions are denoted
by in-1 € I',_;, which contradicts to the assumption in_; ¢
I/,_;. Hence, we must have J,_1 C I,,_4, Vn

The relation simply states that for any in € I,,, we must
have in—1 € I,,_; With in = [in_1,is]. Hence, starting at
n =1 we get I} with 7, = [i1]. The solution Ij can then be
obtained by the search of index i3 in ia = [51, 12] for i € )
In general the solution I/, is obtamed by the search of index
in in ip = [z,, 1,1n] for every i1 €T,y

Since we are interested in just getting one feasible solution
in I,,, the ISA is best implemented by tree search. Initially,
we have Ip = §) as the root of the tree. Every branch at level
1 is then formed by 71 € I}. From in = [in_1,4n), it is clear
that every branch at level n is formed by i, € I, which is
built on top of a branch at level n — 1. The branch 1
terminates at level n — 1 if in, = [;,,._1, in] € 1), Vin.

The search starts at the root to follow a certain path to
climb up the tree. Before reaching a final solution on level
m, if no i, is identified at level n on a given branch fn_l
of level n — 1, it will go back to select another branch Tn1
for continuation of identification of i, on level n. Once such
an i, is identified, which creates a branch fn on the next
level n, the next search process will start for identification
of in41 on level n + 1, until reaching the level m. If no i, is
identified for all i,—1’s in T, _,, the search process will go back
to level n — 2 to select another branch ;"_2 for continuation
of identification of ,_1. Such a search process continues and
terminates either when a feasible solution is reached at the
final level mn, or when the entire space is searched without
finding a feasible solution.

The ISA can be stated as the following:

Input {m, N, X},
count = [0,0,...,0};
n=0;

for i, = count(n)+1: N -1

2b.1.5
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'M—{zn Lin};
Solve (11) by modified simplex (See Section 4.3) for Tns
if feasible solution is found
if n = m, output:solution found! and exit
else count(n) = in; n=mn+1;
else count(n) =0;n=n—1;

print: No feasible solution found!
end

The implementation of fast ISA algorithm is based on two
principles: (a) to minimize the total number of searches and
(b) to minimize the computation time of each search, as de-
scribed in the next two subsections.

4.3 On Reduction of Number of Searches

In the tree search, In+l tends to be small if I, is small,
¥n. This is because iny1 = [zn,zn.H] for 1n+1 el a.nd
in € I,. That is, the construction of I}, ; is the search of
feasible indexes .41 at each given in € I, In consequence,
the ISA algorithm can be much accelerated if the original sets
I, for small n are to be kept small.

Each time as 7 increases, a new eigenvalue will be se-
lected from A. The size of I, is also directly associated with
the selection of the n-th eigenvalue in X. From [5] we know
that the eigenvalues of an N-state Markov chain must satisfy

_I:i{;‘ }} > |tan(w/N)| for Ai, € X. In fact, the construction
of an N-state Markov chain for given NV is more difficult when
the value of %ﬂ)—}— is closer to the bound |tan(w/N)|. I

one extreme, one can always construct a 2-state Markov cham
from any real eigenvalue (i.e., Im{\;, } = 0). In the other ex-

treme, no Markov chain contains Re{Xi,} = 0. Thus, all

the eigenvalues in X are presorted in the increasing order of
the ratio I—?‘i{k—)‘ﬂ}—}, among which the smaller one is always
first selected in the tree search as the level n increases. Our
study shows that,on averge, a reduction of several orders of
magnitude in the number of searches can be reached by the
tree search algorithm to find a feasible solution, using the
presorting as compared to random selection.

Another measure implemented to enhance the chance to
find a feasible solution is, as an option, to allow a certain
degree of tolerence of error for eigenvalues associated with
the bells of power spectrum in the high frequency region. As
the feasibility constraints for the N-state Markov chain imply,
it is the narrow-band,high frequency bells in power spectrum
which restrict the feasibility of the problem.

4.4 On Reduction of Computation Time Per
Search

The computation time of each search on level n is to solve
A(in)d@ = b(in) for & > 0 in (11), which grows rapidly with n.
QOur design is based on the simplex algorithm, which can be
divided into two phases. Phase Iis to find a feasible solution;
Phase I1 is to locate the optimal solution based on the feasible
one. Since we are only interested in getting a feasible solution,
Phase II and its associated objective function are eliminated.
Such modification also removes a whole row in the tableau
of the simplex algorithm, reducing the size of problem from
Nxnto(N—-1)x(n-1).

The structure of the ISA is well suited for the so called
senSltIVlty analysis [19]. Recall that the search of in in i, =
[z,wl,zn] on level n is performed at each given o1 €14,
For i, € {1,2,. —1}, each in— is applied at most (N —1)
times in the sea.rch of 4 in before the selection of the next in-1.
Further, A(7,)@ = b(in) is equivalent to A (in-1)@ = b(in—1)
except with the addition of the last two equations which are
associated with a newly selected eigenvalue. It implies that
the output tableau of the simplex obtained for in_1 on level
n — 1 can be directly used by the simplex for in on level
n, which reduces the time complexity of each search by a
factor proportional to n. The following provides the detail
formulation which is known as the sensitivity analysis in the
linear programming field.

Suppose we want to find a feasible solution for the follow-
ing constrained linear equations

AnF = §n s.t. > 0. (13)

where A, is an n X N matrix [a;;], £ = [z1, Z2, ...
= (91,92, ) gn]T with non-negative elements.
The standard simplex approach in phase I for a feasible so-
lution is to introduce n artificial variables Zn = [21, 22, ..., Zn]
and change (13) into a linear programming problem:

,&y]F, and

Maximize Z = - ;::1 2k

Subject to
Zn = gn - Anf, (14)
£2>0, 220

The objective function Z is the so-called auxiliary objective
function. The reason for introduction of n artificial variables
is that the search for an optimal solution by simplex must
start from a initial feasible solution. The above linear pro-
grammmg problem has an initial fea31ble solution simply by
setting £ = = 0 and 7, = §, where 0 is a zero vector. Ob-
viously, the auxiliary objective function will be maximized
for nonnegative Z, if all the zis are zero. To this end, the
simplex has to swap all the left-hand 2;’s to the right-hand
of the equations while keeping the equations feasible at each
swap. Once all the zis are swaped to the right hand side
of the equations, a feasible solution for # is found and the
maximum of Z is attained by letting all the right hand side
variables including all 2}s equal to zero. The number of swaps
required grows rapidly with the increase of n. An empirical
complexity for the simplex is O(N x n).

In the sensitivity analysis of (13), assume that we have
already found a feasible solution for the first (n—1) equations
in (13) and the output of the simplex takes the form:

fb = é‘n.—l + Gn—li'.c (15)
where £, is the basic variable vector with {(n — 1) elements,
and Z. is the complementary (nonbasic) variable vector with
N —n+1 elements. &,--1 is a constant column vector with all
(n — 1) elements non-negative and Gp-1 isa (n—1) X (N -
n+1) constant matrix. Without loss of generality, assume i
is a vector composed of the first (n — 1) elements in £. Then
the feasible solution can be immediately read off from the
above equation as & = [¢Z_,,0]. This feasible solution may
not satisfy the n-th equation which has not been included.
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Since i has been expressed in terms of Z; in (15), the n-
th equation can be cast in a form without having #; in it by
substituting the solution for Z,, which has the following form,

uZ. = f (16)

with some constant row vector @ and a constant f. Without
loss of generality we assume f > 0. The problem (13) is then
equivalent to solving (15) and (16) simultaneocusly with non-
negative constraints. To find a feasible solution by simplex,
we need to find an initial feasible solution by introducing some
artificial variables as well as an auxiliary objective function.
Since (15) is already in a feasible format, all we need to do
is to introduce a single artificial variable z for equation (16)
and take the auxiliary objective function as the negative of
z. Thus, finding a feasible solution for the original problem
(13) with n constraint equations is now equivalent to solve
for the following linear programming problem,

Maximize —z
Subject to
fb = é“n—l + Gn—lfc, (17)

The above approach is generally known as the sensitivity
analysis. Notice that only one artificial variable z has been
added to the problem, whereas the start-from-scratch simplex
(14) requires to add n artificial variables which is obviously
undesirable. Further, the initial solution in (17) is very likely
close to feasible & in the sense that there is only one arti-
ficial variable z to be swaped to the right hand side of the
equations in (17). The sensitivity analysis requires a much
smaller number of swaps than that of the start-from-scratch
approach.

Given a feasible solution 7,1_1 on level n— 1, one can read-
ily apply the above algorithm to (11) for feasible solution i,
on level n. Note that two rows will be added in (11) when
the nth eigenvalue is selected. The first row consists of cos
coeflicients; the second row consists of sin coefficients. The
first row is first added and solved by the simplex with sensi-
tivity analysis. If and only if its feasible solution exists, the
second row will then be added. When no feasible solution
is identified in either case, the search will go back to level
n—1. The simplex is modified to creat a new output tableau
each time when the simplex is called in such a way that it
does not take extra running time while keeping input tableau
intact, so that the input tableau can be reused. Our com-
prehensive case study further indicates that the number of
swaps required for n < 8 and IV ~ 100 is on average less than
30, which grows very slowly with n. The sensitivity analysis
therefore reduces the time complexity of ISA significantly.

4.5 Complexity Issues

The space complexity of the ISA is mainly measured by the
memory requirement for the tableaus of the simplex. Each
tableau takes (n+ 1) X (N +n — 1) unites of data with double
precision on level n. Approximately about 2n tableaus need
to be stored in the memory, which amounts to less than 1

m 3 4 5 6 7 8

cpu(m){min.) 0.027 | 0.084 | 0.59 | 1.57 | 3.26 | 5.10

cpu(m)/cpu{m-1) 3 7 3 2 1.5

Table 1: Average CPU times measured over 100 randomly
generated cases at N = 101

megabytes for n < 8 at N = 101. The space complexity is
therefore not a problem for the ISA design.

Time complexity is highly dependent on the given eigen-
values and it is difficult to identify the average or worst-case
scenarios. Instead of doing theoretical complexity analysis, a
comprehensive case study was carried out for complexity mea-
surement. To choose the range of eigenvalues large enough
to cover diverse situations, we randomly generated ~Re{\;, }
and Im{);, } in the range of [0, 100] with uniform distribu-
tion. In each case, m distinctive eigenvalues were randomly
generated to form X for 2 < m < 9. While keeping N in the
range of a few hundred, our study shows that ISA is a power-
ful and practically useful algorithm for the index search. For
instance, the average computation time of ISA at N = 101
and m = 7 is less than two miniutes on a SUN workstation
to find a feasible solution, providing the existence of feasi-
ble solutions. For cases without feasible solutions, the av-
erage computation time is found less than five minutes for
the complete search. Such averages were taken over 100 ran-
domly generated cases. Comparatively, the brute force ap-
proach would take years on average for complete searches for
the same cases. Similarly for 100 randomly generated cases
at state space N = 401 and m = 5, 90 of them found feasible
solutions among which 90% finished the search within 5 min-
utes and 70% within one minute. There are only two cases
which found feasible solution with CPU time greater than 20
minutes where the worst case is about 40 minutes. The cases
without feasible solution took about an hour on average for
complete search where the worst case is about 790 minutes.

To see the trend of CPU times as a function of m, we fixed
state space at N = 101 and took 100 randomly generated
cases for each m from 3 to 8 and measured the average CPU
time per case. For a feasible case we measured the CPU
time to find the first feasible solution; for an infeasible case
we measured the total CPU time for complete search. The
results are listed in Table 1. As m increases from 3 to 8,
which is in the range of our practical interest, the average
CPU time grows from 0.027 minute to 5.10 minutes. Note
that the possiblity to find a feasible solution for m > 8 at N =
101 becomes much reduced (less than 10%). For comparison
purposes, the ratio of the CPU time at adjacent m is also
provided in Table 1. After reaching the peak at m = 5, the
growth rate of the average CPU time declines significantly as
m further increases.

5 Real Traffic Application

The proposed algorithms are applied to match the statis-
tics of a wide spectrum of real traffic traces, ranging from
Ethernet data, JPEG video, MPEG video to internet TCP
data. We focus on the comparison of sequences generated
from the matched CMPP with the original traces. The valid-
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Figure 2: Comparison of Ethernet trace (dotted line) with
matched CMPP (solid line) (a) power spectrum (b) rate dis-
tribution (c) original filtered trace (d) CMPP sequence

ity of the CMPP matching for queueing analysis was carefully
examined in [25] by comparison of analytical queueing solu-
tions of CMPP’s to the simulated queuing solutions of orig-
inal traces. Notice that each matched CMPP can be used
as a traffic generator of certain type to load a network for
testing and performance evaluation. One can also match the
statistics of aggregate traces by a single CMPP which can be
used as a traffic generator of aggregate sources. In practice,
various traffic generators can be built from a libary, which
consists of collective statistics of different traces. They are
used not only for analytical modeling, but more importantly
for generation of massive traffic flows within a large high-
speed network for testing and simulation study. Each traffic
generator is simply represented by two vectors @ and 4. In
contrast, every real traffic trace can take a huge storage space
to generate.

Since low-frequency traffic behavior (or, large time varying
scales) has dominant impact on network performance as com-
pared to high-frequency behavior [5], our statistical match-
ing in this study are confined to the low-frequency range
w € [0, 10] radian, which corresponds to the range of time
scales longer than 0.6 second. In other words, all the traces
are pre-filted by moving average operation for getting impor-
tant low-frequency statistics.

We first take a 6-minute Ethernet data trace from the
ftp site: thumper.bellcore.com. The results are displayed
in Fig. 2. The dotted lines in Fig. 2a,b provide the collec-
tive power spectrum and rate cumulative distribution of the
trace. The power spectrum, found by the proposed heuris-
tic algorithm, consists of five distinctive complex eigenvalues
(m = 5). But we cannot find a feasible CMPP for N < 401
unless with a certain degree of error tolerance as discussed
in Section 4.3. Fig. 2 shows such a matched example by a
CMPP at N = 401 with 30% error tolerance. While the
matching error in power spectrum is relatively significant, its
distribution matching is excellent due to the selection of a
large N. The dynamics of the two traces in Fig. 2c,d are also
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Figure 3: Comparison of a JPEG trace (dotted line) with
matched CMPP (solid line) (a) power spectrum (b) rate dis-
tribution (c) original filtered trace (d) CMPP sequence

found in a good agreement.

In the second example we take a 2-hour JPEG segment
of the movie Star wars from the same ftp site at Bellcore.
As one can see, the power spectrum highly concentrates on
a low-frequency band, which is identified by four real eigen-
values plus one complex eigenvalue. A CMPP is matched at
N = 401 with 0% error tolerance. The corresponding results
are plotted in Fig. 3. Both power spectrum and distribution
are matched very well except for a small tail portion of the
distribution. This is why the peak rate of the CMPP se-
quence can only reach 9Mbps whereas the peak rate of the
real trace can reach more than 10Mbps. Nevertheless, the
CMPP sequence mainly captures the overall feature of the
real JPEG trace as found in Fig. 3c,d.

Since the internet traffic constitutes 80% of the existing
data traffic worldwide, it would be interesting to model the
internet traffic. The data stream we used was gathered at the
Lawrence Berkeley Laboratory’s wide-area Internet gateway.
For a comprehensive account of the TCP traffic traces and
its modeling, readers should refer to the paper by V. Paxson
and S. Floyd [3] and the references therein. The trace was
collected from 2pm to 4pm on Jan. 20, 1994 and there are
1.3M packets collected. A time stamp was recorded for each
packet arrived. The data file is Ibl-pkt-4.tcp. The first 50,000
packets of the trace are used for our matching, which corre-
sponds to 231.9 second aggregate TCP traffic going through
the gateway. We need to convert the time stamp sequence
into the packet rate sequence by counting the number of pack-
ets arrived in each fixed time slot (0.1 second). The results
are presented in Fig. 4, where the traces are recorded by num-
ber of packets per second . There are four distinctive com-
plex eigenvalues in the spectral matching. A feasible matched
CMPP is found at N = 301 with 0% error tolerance.

We finally consider the MPEG video traffic whose behavior
normally exihibits strong periodic nature due to its periodic
IPB frame coding scheme. Fig. 5 shows an example of the
power spectrum of an MPEG trace obtained from the ftp site:
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Figure 5: Power spectrum of a MPEG trace

tenet.berkeley.edu in the public domain. The sharp peaks are
generated at the harmonics of frequency w = /T where T is
the period of GOP. The trace is a 90-minute CNN news in-
cluding commercials with the frame size 320x240 at the frame
rate 30 fps. The GOP pattern is IBBPBBPBBPBBPBB and
there are 15 frames per GOP. A so-called Futuretel hard-
ware coder is used such that the picture quality is adap-
tively lowered during a high-action or colorful scene, in order
to maintain its target coding rate. Such an adaptive vari-
able encoding scheme is likely to be implemented for MPEG
video transmission to comply with the agreement preset in
the traffic descriptor during the connection setup in ATM
networks. With the variable encoding scheme, the energies
contributed by GOP harmonics become much more signifi-
cant than the energies in the low frequency band contributed
by scene changes.

The proposed ISA algrithm is unable to capture the GOP
peaks in the video power spectrum as shown in Fig. 5.
This is primarily due to the fundamental limit of Markov
chains, whose ecigenvalues cannot represent narrow-band
high-frequency bells in power spectrum unless with a suffi-
ciently large state space. The difficulty for circulant to cap-
ture a narrow-band high-frequency bell has been discussed in
Section 4.3 on the subject of eigenvalue presorting.

The periodic burstiness nature of MPEG video has made
its effective bandwidth allocation difficult in ATM networks.
One possible solution, which currently is under intense study,
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Figure 6: Comparison of a smoothed MPEG trace (dotted
line) with matched CMPP (solid line) (a) power spectrum
(b) rate distribution (c) original filtered trace (d) CMPP se-
quence

is to smooth each MPEG video stream before entering the
network with its end-to-end delay constraint [24]. Hence, it
would be interesting to match the smoothed MPEG traces
for network traffic analysis. For example, such a smoothed
trace can be generated from the original one by uniformly
redistributing the bits of each GOP over its 15 frames, which
yields a fixed smoothing delay of half second at the network
entry point. The optimal design of video smoothing scheme
is beyond the scope of the current paper. One may refer to
[23, 24] for further information. The matching results of the
smoothed video trace by CMPP with five complex eigenvalues
at N = 401 are displayed in Fig. 6. As one can see, all the
peaks of GOP harmonics in Fig. 5 have now been removed
upon smoothing; only the power spectrum of low-frequency
scene changes remain in Fig. 6. Note that the low-frequency
scene change behavior of video has more significant impact on
network delay performance than the relative high-frequency
behavior of periodic GOPs [26].

6 Conclusion

This paper have developed algorithms to solve two most
critical issues in measurement-based traffic modeling with the
circulant structure. One is the parametric identification of
the autocorrelation function R(r). Because of the real non-
negative constraint 1/; > 0, most existing techniques in the
related signal processing field fail to apply. We have success-
fully developed a heuristic algorithm which is found fast and
robust by numerical study based on real traces. The sec-
ond issue is the construction of traffic model to match with
complicated R(r), which is originally an inverse eigenvalue
problem but transformed to an index search problem for the
circulant. Due to the large index space, however, any brute
force search method fails to succeed especially if R(r} is in
complex form. The proposed fast index search algorithm has
reduced the time complexity of the search by many orders
of magnitude. For example, the typical CPU time for the
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traffic modeling with R(7) consisting of five or six complex
exponential terms is found in the range of a few minutes by
the proposed algorithms (which otherwise would take mon-
thes by a brute force method). In real traffic application, our
study shows that the sequences generated by the matched
analytical model capture the characteristics of the real traffic
traces very well.
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