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Abstract

Next generation access routers and edge devices need to provide functionalities, for layer-4 packet forwarding and firewall/security
checks. Consequently, a challenging issue concerns how to achieve fast packet filtering and forwarding at low cost. This paper studies the
flow caching mechanisms for fast layer-4 packet forwarding. We show by model analysis that flow caching performance is not very sensitive
to the flow cache table lookup speed but it is sensitive to the cache hit ratio. By making use of the available layer-4 information, we introduce
two filtering modules to enhance the cache hit ratio. We demonstrate, by real trace simulation, that by adding these two filtering modules, the
cache miss ratio can be reduced by up to 50% and the full header filtering speed reduced by up to five-fold. The proposed flow caching
mechanism is potentially useful for accessing routers and edge devices where costs are at a premium and where software based filtering

modules are dynamically generated. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The state-of-the-art access or edge routers need to be able
to provide functionalities, such as layer-4 or even layer-5
forwarding, as well as firewall/security checks at OC-12,
OC-48, or even higher rate. With these functionalities
being added for packet processing, a challenging issue
concerns how to achieve fast packet filtering at wire-speed
and low cost.

There are four basic approaches to enable fast packet
filtering with high dimensional filtering rules. One approach
is to follow the traditional wisdom by using flow caching
mechanism. In this approach, only the first packet of a flow
needs full header filtering and table lookup, and the rest of
the packets of the flow are cut-through switched through
flow cache entry lookups.

The other three approaches allow packet-by-packet full
header filtering and table lookup using the state-of-the-art
software, hardware or firmware based fast packet filtering
algorithms. The software based approaches existing today
cannot live up to Gigabit wire-speed forwarding (requiring
about 8 Mpps (Mega packets per second) for 40-byte size
packets at OC-48 rate), e.g. Refs. [5-7].

An approach proposed by Lucent [1] describes a scheme
optimized for implementation in hardware. It employs bit-
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level parallelism to match five header fields concurrently.
The scheme is reported to support up to 512 filtering rules,
classifying 1 Mpps with an FPGA device and five 1IMB
SRAM, which still falls short of Gigabit rate. The other
proposal [7] can also be implemented in hardware. It
takes advantage of the redundancy existing in the current
Internet Service Provider’s packet classifiers and designs a
multistage algorithm, which allows fast packet classifica-
tions. The scheme is reported to classify 30 Mpps in pipe-
lined hardware. However, this approach works well only
when the rule changes are infrequent and it is optimized
for packet classification in pure connectionless IP networks,
not for other networks, e.g. Multiprotocol label Switching
networks.

The most popular approach in industry today is the firm-
ware based approach. It relies on an embedded processor to
microcode a packet filtering engine, which is based on a
ternary CAM for key search and a SRAM for holding the
forwarding information. The search keys are stored in the
CAM array. Given a packet header to classify, the CAM
performs a comparison against all of its entries in parallel,
and a priority encoder selects the first matching search key,
which further points to the content of an entry in SRAM.
This approach is straightforward and each search key match
is performed in one clock cycle. However, ternary CAM is
generally very expensive and it consumes a significant
amount of power. Also, microcode budget is limited
which may not enable wire-speed forwarding in the
presence of a large number of filtering rules.
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Fig. 1. Schematic functional modules of a router.

Due to relatively small number of concurrently active
flows at the access or edge nodes compared to core routers,
flow caching mechanism is a viable alternative to the earlier
approaches for fast packet filtering with relatively low cost
for access or edge routers. In a value-added software archi-
tecture for next generation access routers in Ref. [2], flow
caching mechanism was successfully used to achieve a
three-fold packet forwarding speedup compared with the
forwarding speed of the best-effort kernal.

Flow caching is an attractive solution for fast packet
filtering at access or edge routers also due to the following
reasons. First, per packet full header filtering consumes
more clock cycles as more filtering rules are added, whereas
per packet cache table lookup is independent of the number
of filtering rules in use. Second, small cache table lookup
and management algorithms can be efficiently implemented
due to relatively small number of active flows to be handled
at the edge. Third, from economic point of view, it is advan-
tageous to exploit flow caching mechanism for value-added
routers, simply because it provides a natural migration path
for upgrading the vastly installed base of flow caching based
routers to enable value-added services.

A major concern of flow caching is associated with cache
miss penalty. For flow cache based packet forwarding, upon
a packet arrival, the flow cache table is searched first. When
a cache miss occurs, a full header filtering is performed for
packet forwarding. This results in a cache miss penalty due
to possibly large processing delay. Nevertheless, we note
that the cache miss penalty would have little effect on the
quality of service (QoS) of a connection for the following
reasons. A cache miss occurs only for the first packet of a
packet burst. This packet can either be the first packet of a
connection or the first packet after the connection has been
idle for a duration longer than the flow cache timeout value.
For the former case, a small delay of the first packet of a
connection should not have much impact on the overall QoS
of the connection, especially when the first packet is a
connection setup packet. For the latter case, a small delay
of the packet does not do much harm to the QoS either
because comparing with the large idle time, which is of
the order of at least several seconds; a small processing
delay is negligible. Hence, the cache miss penalty should
not be a primary concern for using flow caching in terms of
QoS guarantee.
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This paper aims at addressing the performance and design
issues pertaining to flow caching for value-added access/
edge routers. First, based on a simple queuing model, we
quantitatively characterize the performance gain of the flow
caching mechanism in terms of reduced number of clock
cycles per packet forwarding at a given cache hit ratio. We
show that flow caching performance is not very sensitive to
the flow cache table lookup speed but it is sensitive to the
cache hit ratio. Then, we show how the available layer-4
header information can be used to improve cache hit ratio.
In particular, by making use of the source and destination
port numbers from the transport layer header, we are able to
reduce cache miss ratio by up to 50%, resulting in at least a
five-fold performance gain.

The following sections are organized as follows. In
Section 2, the problem of packet filtering with flow caching
is formally defined. In Section 3, the packet filtering process
is modeled as an M/H2/1 queuing system. The results are
presented and their implications on the effective router
design are discussed. In Section 4, two mechanisms to
enhance the performance for flow caching are proposed.
In Section 5, the statistic analyses of the proposed mechan-
isms are given based on campus/backbone trace simula-
tions. Finally, Section 6 gives the conclusions.

2. Problem formulation

Fig. 1 shows a schematic diagram for the major compo-
nents of a value-added router with flow caching. The system
is composed of five parts, including input ports, output ports,
a packet full header filtering module, a flow cache table, and
a switching fabric. The flow cache table contains flow
entries, typically indexed by five header fields (source
address, destination address, source port number, destina-
tion port number and protocol type), and the packet
forwarding information such as the output port number,
the priority level, etc. When a packet arrives at an input
port, its header information is first used to match with the
flow cache entries. If a match is found, a cache hit occurs
and the packet is switched to the output port queue accord-
ing to the forwarding information specified in the matched
flow entry. This is fast path forwarding. If no match is
found, a cache miss occurs and the packet header
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Fig. 2. A finite state machine for filtering system with flow caching.

information is redirected to the packet full header filtering
module for filtering. The forwarding information obtained
from the filtering module is then used to switch the packet to
the output port, a slow forwarding path. Then the forwarding
information is cached in the flow cache table, creating a fast
forwarding path for the subsequent packets of the flow.

The two data paths can be summarized by means of a
finite state machine as shown in Fig. 2. It is composed of
an idle state I, a flow cache table matching state M, and a
full header filtering state F. Upon a packet arrival, the
system moves from state I to state M. If there is a cache
hit, the system moves back to state I after T}, clock cycles. If
there is a cache miss, the system moves to state F after 77,
clock cycles. Here T;, and T, are flow entry matching times
with and without a cache hit, respectively. We assume that
on an average, a cache hit occurs with probability « and a
cache miss occurs with probability (1 — «), called cache hit
ratio and cache miss ratio, respectively. For a packet with a
cache miss, the system will stay at state F for T; clock cycles
before jumping back to state I. Here, T; is the number of
clock cycles required for a full header filtering. Flow cach-
ing is normally implemented using hashing and hash colli-
sion is resolved by storing all the entries in the same hash
bucket using a single linked list. So in general, T}, = T}, with
T}, =~ T,. For flow caching to be useful, we should have
T, < T; + T} or T, < Ty and « close to 1.

3. Model analysis

First, we consider the case without flow caching. We
model it as a simple M/M/1 queuing system with Poisson
packet arrival rate and exponential service rate for packet
filtering. Denote the average packet arrival rate as A and the
average filtering rate as u°. The performance is measured in
terms of the tail distribution of the response time, i.e.

Pr(t>1=1075, (1)

- 1y

My

Fig. 3. M/H2/1 queuing model for filtering with flow caching.

Computer Communications - Model 5 - Ref style 1 - XTI ENENNEYV IFIEAPAR

where ¢ is the response time or the total time of a packet
traversing the router. Pr(# > 7) is the tail distribution of ¢
when 7 exceeds 7. 7 and & are design parameters.

The response time of the tail distribution for M/M/1
queue can be written as [4]:

Pr(t > 7) = exp(— (1 — p’/N)7). )

A reasonable assumption is to choose & so that when u’ =
1/7 (i.e. a packet is processed with little queuing delay), the
equality in Eq. (1) holds. For instance, if we set A = 1 Mpps
and u’ = 3.3 Mpps, we find that & = 1.0.

Now, let us model flow caching based filtering by an M/
H2/1 queuing system. The packet arrival process is still
Poisson with average arrival rate A. The service process is
a phase-type with two phases as shown in Fig. 3. A packet
has a cache hit probability « to be serviced with exponential
service rate | and it has a cache miss probability (1 — «) to
be serviced with exponential service rate w,. With reference
to the finite state machine in Fig. 2, we can write the mean

service rates in terms of 7, Ti, and T; as follows:
= VT, Mo = (T} + Tp) = 1U(Ty, + Tp). 3

For M/H2/1 queue, it can be shown that the tail distribution
can be expressed as

l=p | Biy—B ~B7
Pr(t > 1) = 1 - !
2t > 7) BI_BQ[ 51—
—B,y +
+ L‘B(l — eBzf)il. 4)
B,
where

y=ap + (1 - aou,, B = i,

p=Aan + 1~ ww'),
Bi=(u +up—A+A), By=(u +u—A—4), O
A =[]+ + A = 20 — 2020 — Dy — 2)(1

— 2a)u, /4.

Using the same parameter setting, i.e. A = 1 Mpps, and 6 =
1, the triplet (w, w,, @) can be calculated by substituting
Eq. (4) in Eq. (1) with equality. We plot, in Fig. 4, u,
against « at different w; values, where w; takes values
larger than u°. We first observe that the curves converge
quickly to an asymptotic one as u,; increases. The flow
cache table lookup rate faster than u; = 2u’ helps very
little in terms of reducing w, or full header filtering rate
for any o values.

For a =0, u, = ,uo = 3.3 Mpps is expected. When «
increases, w, decreases pretty fast. At @« = 0.9 and u,;
2u’, w, = 0.8x%10°% Let T} =T,, we found that T; =
1.27 s, or the full header filtering rate, of 0.7 Mpps is about
five times smaller than the required rate, ,LLO = 3.3 Mpps for
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Fig. 4. w, vs. « for various u; = ,uom (m=1.1,125,1.5, 2,5, 50) at wire-
speed.

packet-by-packet full header filtering. Clearly, if & = 0.9
and u; = 2,u0 are achieved, the flow caching mechanism
becomes very effective.

The above analysis shows that the flow cache table
lookup rate does not have to be much faster than the full
header filtering rate and it is the cache hit probability that
matters. This has two important implications. First, the
speed of flow cache search algorithm is not critical for
flow caching. Typically, a cache table entry search takes
several clock cycles to finish using standard flow hashing
algorithm whereas a full header filtering takes about 20
clock cycles [2]. Second, the key is to minimize the cache
miss ratio. In Section 4, we shall design two schemes with
low processing costs to greatly reduce the cache miss ratio.

4. Flow caching mechanisms

In this section, we propose two mechanisms for the
improvement of cache hit ratio. The idea is to take advan-
tage of layer-4 header information, which is to be processed
for full header filtering. In particular, we make use of
{source port, destination port} information in the transport
layer header to improve cache hit ratio for value-added
packet forwarding.

Note that flow caching works only for long-lived flows

}_

Filter

[ 0 1
0 1 2 L
Packets ! :, i To Switching
fi )
IL(;)Tt Port- 1 I ? Flow Cache Fabric
Ports Comparison @ - | - | - Table
65536 0 1

Port-Matching

Flow Processor

Fig. 5. A new flow caching model.
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composed of many packets but not for short-lived flows.
Hence, a key to improve cache hit ratio is to identify
short-lived flows and put them through full header filtering
without caching them. Based on real trace analyses, we find
that in general, a packet with identical source port number
and destination port number is a server-to-server application
packet and the corresponding application flows are short-
lived with only a few packets. An example is DNS applica-
tion, which has identical source and destination port
numbers and is very short-lived. Hence, our first mechanism
is to add a port-comparison module to identify server-to-
server applications.

Observe that most of the client-server application packets
have one of their port numbers, either source port number or
destination port number, taking values between 0 and 1023
(with some exceptions), known as the well-known port
numbers, and the other port number randomly assigned
between 1024 and 65,536, known as the unknown port
numbers. Since the unknown port numbers are randomly
assigned, the probability that two flows have the same
unknown port number is small. Hence, our second mechan-
ism is to keep a record of the unknown port numbers exist-
ing in the cached flows and do an unknown port number
match before flow cache entry search.

Fig. 5 shows the two added modules based on the
proposed mechanisms. The first module is called port-
comparison module, where the value of the source port
number of an arrived packet is compared with the destina-
tion port number of the packet. If the two port numbers are
found to be identical, the packet is immediately passed onto
the full header filtering module. Otherwise, the larger port
number of the two, which is the unknown port number,
together with a single bit identifier is passed onto the second
module, called port-matching module. The one-bit identifier
takes binary value O if the unknown port number is the
source port number; otherwise, it takes binary value 1. In
the port-matching module, there is a 65,537 X 2 table as
shown in Fig. 5. The kth row contains the information for
the port number k. The kth entry of the second column
records the number of active flows in the flow cache table
with source (destination) port number k. The unknown port
number and the one-bit identifier are used as table indices to
locate the entry with the same port number and identifier. If
the number is zero, there must be no flow entry in the flow
cache table that matches with the arrived packet and the
packet header to be passed onto the filtering module for
full header filtering. Otherwise, the packet header is
forwarded to the flow caching module for flow cache
entry search as shown in Fig. 5 random assignment of
unknown port numbers.

In summary, with port-comparison module, the flow
caching is avoided for server-to-server short-lived applica-
tions and thus save flow cache memory for other application
flows. The port-matching module further reduces the prob-
ability of flow cache miss. For layer-4 forwarding, both
source and destination port numbers are to be filtered for
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Fig. 6. Cache miss ratio vs. cache table size (‘- -” for traditional flow caching, ‘..." for flow caching with port-comparison, solid line for flow caching with port-
comparison and port-matching; (a) cisco-trace, (b) lbl-trace, and (c) fixwest-trace.

the identification of end-to-end applications for both full
header filtering and flow cache table lookup. The added
processing overhead is negligible.

The processing overhead for port-comparison and port-
matching involves at most one 16-bit comparison and one-
bit setting, and one table indexing and one 16-bit compar-
ison, respectively. Obviously, the added processing over-
head is small compared with flow cache table entry
search. Note that, if flow hashing combined with a link list
for collided flow entries per hash key is used for flow cache
management, a flow cache entry search involves a hash key
calculation, a hash key indexing, and a link list search with
five fields matching for each searched entry. The added
overhead for the management of the port-matching module
is also small. Upon each flow cache entry deletion (addi-
tion), the corresponding table entry value in the port-match-
ing module is decremented (incremented) by 1. Each of
these operations involves one comparison, one-bit setting,
one table indexing, and one decrement/increment. Since
flow cache entry updating interval is at a much longer
time scale compared with packet processing, this added
overhead for flow cache management is negligibly small.

5. Simulation and performance analysis

Since cache search speed is not a major performance
constraint, our trace simulation focuses on finding & values
at different cache table sizes. Two campus traces and one
backbone trace are used for simulation. The traces are
referred to as cisco-trace, Ibl-trace and fixwest-trace,
respectively. The cisco-trace is a 20 min trace collected
from a 100-BT campus network at Cisco Systems Inc. on
4 March, 1997. The 1bl-trace is a 16 min trace collected
from a 100-BT at Lawrence Berkeley Laboratory (LBL)
on 14 July, 1997. The fixwest-trace is a 20 min trace
collected from the FDDI Internet backbone at FIXWEST
on 21 October, 1996. The utilizations at the time of data
collections are 5.5, 4.0, and 27.3%, respectively.

First, we need a flow cache entry timeout mechanism. We
use a simple adaptive flow entry timeout algorithm as
proposed in Ref. [3]. Namely, the timeout value T, is peri-
odically re-assigned at time n ensuring that the flow cache
utilization p is high. This mechanism is found to offer very
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close performance to the least recently used (LRU) algo-
rithm with much lower computational complexity. Since the
flow cache utilization is positively correlated with T, T, can
be updated simply based on the following control scheme,

T, + AT,
T, = o ,
maX{Tn—l - AT’ Tin if P(n -hH= Prmax>

if p(n — 1) = pyin;
(6)

with 0 < ppin < Pmax < 1. Here, Ty, serves as the lower
bound to avoid the thrashing effect. In order to avoid over-
reaction to small demand variations, we introduced a first-
order low-pass filter operation to damp the variation in p(n),

pn) = (1 — w)p(n = 1) + wp(n), (7

where w is the weighting factor taking values between 0 and
1. One can strengthen the damping by choosing a small .
In our simulation, w = 0.5, AT =258, pnax = 0.98, and
Pmin = 0.9.

The cache miss ratio (1 — «) is calculated as a function of
flow cache table size for each trace. Three cases are studied,
i.e. the traditional flow caching, the flow caching with port-
comparison, and the flow caching with both port-comparison
and port-matching. The results are shown in Fig. 6. With port-
comparison, nearly 20% of the total packets from the back-
bone trace are directly sent to the filtering module and the
cache miss ratio almost drops by half at flow cache size of
3755. However, for the two campus traces, the port-compar-
ison does not help much. The total numbers of packets, which
are directly sent to the filtering module, are less than 0.5% for
both cases. The cache miss ratios stay almost the same. This is
due to the fact that there is a huge amount of server-to-server
traffic in the backbone environment, but not in a campus envir-
onment. With the port-matching module being added, one can
see significant improvements for all the traces. The cache miss
ratio drops from 35% for the backbone trace to over 50% for
cisco-trace. The 10% cache miss ratio requirement derived in
Section 4 can be easily met, at the flow cache table sizes of 35
for cisco-trace, 22 for lbl-trace, and 1855 for fixwest-trace,
respectively. For the two campus traces, a values are well
above 0.9 even at rather small flow cache table sizes. In fact,
a reaches 96.4% at the flow cache table size of 332 and 175 for
cisco-trace and Ibl-trace, respectively. For internet backbone
trace fixwest-trace, « reaches 93.7% at flow cache table size of
3755.
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6. Conclusions

We have designed and simulated a new flow caching
mechanism for next generation access routers and edge
devices. First, we use a simple queuing model to characterize
the performance of flow caching in terms of cache hit ratio, full
packet header filtering speed, and flow cache table lookup
speed. We demonstrated that the flow cache table lookup
speed is not a major performance constraint for flow caching
and it is the cache miss ratio that matters. By making use of
layer-4 header information, we proposed to add two filtering
modules to greatly enhance the performance of flow caching
for layer-4 packet forwarding. The empirical analysis based on
both campus and backbone trace simulations demonstrated
that the cache miss ratio can be reduced by up to 50% with
the proposed mechanisms.
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