
UNCORRECTED P
ROOF

A ¯ow caching mechanism for fast packet forwarding

Ye Tung*, Hao Che

Department of Electrical Engineering, State College, Pennsylvania State University, PA 16803, USA

Received 19 April 2001; accepted 12 November 2001

Abstract

Next generation access routers and edge devices need to provide functionalities, for layer-4 packet forwarding and ®rewall/security

checks. Consequently, a challenging issue concerns how to achieve fast packet ®ltering and forwarding at low cost. This paper studies the

¯ow caching mechanisms for fast layer-4 packet forwarding. We show by model analysis that ¯ow caching performance is not very sensitive

to the ¯ow cache table lookup speed but it is sensitive to the cache hit ratio. By making use of the available layer-4 information, we introduce

two ®ltering modules to enhance the cache hit ratio. We demonstrate, by real trace simulation, that by adding these two ®ltering modules, the

cache miss ratio can be reduced by up to 50% and the full header ®ltering speed reduced by up to ®ve-fold. The proposed ¯ow caching

mechanism is potentially useful for accessing routers and edge devices where costs are at a premium and where software based ®ltering

modules are dynamically generated. q 2002 Elsevier Science B.V. All rights reserved.

Keywords: Packet forwarding; Layer-4; Filtering modules

1. Introduction

The state-of-the-art access or edge routers need to be able

to provide functionalities, such as layer-4 or even layer-5

forwarding, as well as ®rewall/security checks at OC-12,

OC-48, or even higher rate. With these functionalities

being added for packet processing, a challenging issue

concerns how to achieve fast packet ®ltering at wire-speed

and low cost.

There are four basic approaches to enable fast packet

®ltering with high dimensional ®ltering rules. One approach

is to follow the traditional wisdom by using ¯ow caching

mechanism. In this approach, only the ®rst packet of a ¯ow

needs full header ®ltering and table lookup, and the rest of

the packets of the ¯ow are cut-through switched through

¯ow cache entry lookups.

The other three approaches allow packet-by-packet full

header ®ltering and table lookup using the state-of-the-art

software, hardware or ®rmware based fast packet ®ltering

algorithms. The software based approaches existing today

cannot live up to Gigabit wire-speed forwarding (requiring

about 8 Mpps (Mega packets per second) for 40-byte size

packets at OC-48 rate), e.g. Refs. [5±7].

An approach proposed by Lucent [1] describes a scheme

optimized for implementation in hardware. It employs bit-

level parallelism to match ®ve header ®elds concurrently.

The scheme is reported to support up to 512 ®ltering rules,

classifying 1 Mpps with an FPGA device and ®ve 1MB

SRAM, which still falls short of Gigabit rate. The other

proposal [7] can also be implemented in hardware. It

takes advantage of the redundancy existing in the current

Internet Service Provider's packet classi®ers and designs a

multistage algorithm, which allows fast packet classi®ca-

tions. The scheme is reported to classify 30 Mpps in pipe-

lined hardware. However, this approach works well only

when the rule changes are infrequent and it is optimized

for packet classi®cation in pure connectionless IP networks,

not for other networks, e.g. Multiprotocol label Switching

networks.

The most popular approach in industry today is the ®rm-

ware based approach. It relies on an embedded processor to

microcode a packet ®ltering engine, which is based on a

ternary CAM for key search and a SRAM for holding the

forwarding information. The search keys are stored in the

CAM array. Given a packet header to classify, the CAM

performs a comparison against all of its entries in parallel,

and a priority encoder selects the ®rst matching search key,

which further points to the content of an entry in SRAM.

This approach is straightforward and each search key match

is performed in one clock cycle. However, ternary CAM is

generally very expensive and it consumes a signi®cant

amount of power. Also, microcode budget is limited

which may not enable wire-speed forwarding in the

presence of a large number of ®ltering rules.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

Computer Communications 00 (2002) 000±000

COMCOM2107

0140-3664/02/$ - see front matter q 2002 Elsevier Science B.V. All rights reserved.

PII: S0140-3664(02)00011-7

www.elsevier.com/locate/comcom

* Corresponding author.

E-mail address: yxt7@psu.edu (Y. Tung).

ARTICLE IN PRESS

Computer Communications ± Model 5 ± Ref style 1 ± AUTOPAGINATION 2 16-01-2002 12:16 article GL Alden

UNCORRECTED P
ROOF

Due to relatively small number of concurrently active

¯ows at the access or edge nodes compared to core routers,

¯ow caching mechanism is a viable alternative to the earlier

approaches for fast packet ®ltering with relatively low cost

for access or edge routers. In a value-added software archi-

tecture for next generation access routers in Ref. [2], ¯ow

caching mechanism was successfully used to achieve a

three-fold packet forwarding speedup compared with the

forwarding speed of the best-effort kernal.

Flow caching is an attractive solution for fast packet

®ltering at access or edge routers also due to the following

reasons. First, per packet full header ®ltering consumes

more clock cycles as more ®ltering rules are added, whereas

per packet cache table lookup is independent of the number

of ®ltering rules in use. Second, small cache table lookup

and management algorithms can be ef®ciently implemented

due to relatively small number of active ¯ows to be handled

at the edge. Third, from economic point of view, it is advan-

tageous to exploit ¯ow caching mechanism for value-added

routers, simply because it provides a natural migration path

for upgrading the vastly installed base of ¯ow caching based

routers to enable value-added services.

A major concern of ¯ow caching is associated with cache

miss penalty. For ¯ow cache based packet forwarding, upon

a packet arrival, the ¯ow cache table is searched ®rst. When

a cache miss occurs, a full header ®ltering is performed for

packet forwarding. This results in a cache miss penalty due

to possibly large processing delay. Nevertheless, we note

that the cache miss penalty would have little effect on the

quality of service (QoS) of a connection for the following

reasons. A cache miss occurs only for the ®rst packet of a

packet burst. This packet can either be the ®rst packet of a

connection or the ®rst packet after the connection has been

idle for a duration longer than the ¯ow cache timeout value.

For the former case, a small delay of the ®rst packet of a

connection should not have much impact on the overall QoS

of the connection, especially when the ®rst packet is a

connection setup packet. For the latter case, a small delay

of the packet does not do much harm to the QoS either

because comparing with the large idle time, which is of

the order of at least several seconds; a small processing

delay is negligible. Hence, the cache miss penalty should

not be a primary concern for using ¯ow caching in terms of

QoS guarantee.

This paper aims at addressing the performance and design

issues pertaining to ¯ow caching for value-added access/

edge routers. First, based on a simple queuing model, we

quantitatively characterize the performance gain of the ¯ow

caching mechanism in terms of reduced number of clock

cycles per packet forwarding at a given cache hit ratio. We

show that ¯ow caching performance is not very sensitive to

the ¯ow cache table lookup speed but it is sensitive to the

cache hit ratio. Then, we show how the available layer-4

header information can be used to improve cache hit ratio.

In particular, by making use of the source and destination

port numbers from the transport layer header, we are able to

reduce cache miss ratio by up to 50%, resulting in at least a

®ve-fold performance gain.

The following sections are organized as follows. In

Section 2, the problem of packet ®ltering with ¯ow caching

is formally de®ned. In Section 3, the packet ®ltering process

is modeled as an M/H2/1 queuing system. The results are

presented and their implications on the effective router

design are discussed. In Section 4, two mechanisms to

enhance the performance for ¯ow caching are proposed.

In Section 5, the statistic analyses of the proposed mechan-

isms are given based on campus/backbone trace simula-

tions. Finally, Section 6 gives the conclusions.

2. Problem formulation

Fig. 1 shows a schematic diagram for the major compo-

nents of a value-added router with ¯ow caching. The system

is composed of ®ve parts, including input ports, output ports,

a packet full header ®ltering module, a ¯ow cache table, and

a switching fabric. The ¯ow cache table contains ¯ow

entries, typically indexed by ®ve header ®elds (source

address, destination address, source port number, destina-

tion port number and protocol type), and the packet

forwarding information such as the output port number,

the priority level, etc. When a packet arrives at an input

port, its header information is ®rst used to match with the

¯ow cache entries. If a match is found, a cache hit occurs

and the packet is switched to the output port queue accord-

ing to the forwarding information speci®ed in the matched

¯ow entry. This is fast path forwarding. If no match is

found, a cache miss occurs and the packet header

Y. Tung, H. Che / Computer Communications 00 (2002) 000±0002

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

Fig. 1. Schematic functional modules of a router.

ARTICLE IN PRESS

Computer Communications ± Model 5 ± Ref style 1 ± AUTOPAGINATION 2 16-01-2002 12:16 article GL Alden

UNCORRECTED P
ROOF

information is redirected to the packet full header ®ltering

module for ®ltering. The forwarding information obtained

from the ®ltering module is then used to switch the packet to

the output port, a slow forwarding path. Then the forwarding

information is cached in the ¯ow cache table, creating a fast

forwarding path for the subsequent packets of the ¯ow.

The two data paths can be summarized by means of a

®nite state machine as shown in Fig. 2. It is composed of

an idle state I, a ¯ow cache table matching state M, and a

full header ®ltering state F. Upon a packet arrival, the

system moves from state I to state M. If there is a cache

hit, the system moves back to state I after Th clock cycles. If

there is a cache miss, the system moves to state F after T 0h
clock cycles. Here Th and T 0h are ¯ow entry matching times

with and without a cache hit, respectively. We assume that

on an average, a cache hit occurs with probability a and a

cache miss occurs with probability �1 2 a�; called cache hit

ratio and cache miss ratio, respectively. For a packet with a

cache miss, the system will stay at state F for Tf clock cycles

before jumping back to state I. Here, Tf is the number of

clock cycles required for a full header ®ltering. Flow cach-

ing is normally implemented using hashing and hash colli-

sion is resolved by storing all the entries in the same hash

bucket using a single linked list. So in general, T 0h $ Th with

T 0h < Th: For ¯ow caching to be useful, we should have

Th p Tf 1 T 0h or Th p Tf and a close to 1.

3. Model analysis

First, we consider the case without ¯ow caching. We

model it as a simple M/M/1 queuing system with Poisson

packet arrival rate and exponential service rate for packet

®ltering. Denote the average packet arrival rate as l and the

average ®ltering rate as m 0. The performance is measured in

terms of the tail distribution of the response time, i.e.

PT�t . t� # 102d
; �1�

where t is the response time or the total time of a packet

traversing the router. PT�t . t� is the tail distribution of t

when t exceeds t . t and d are design parameters.

The response time of the tail distribution for M/M/1

queue can be written as [4]:

PT�t . t� � exp�2m0�1 2 m0
=l�t�: �2�

A reasonable assumption is to choose d so that when m0 �
1=t (i.e. a packet is processed with little queuing delay), the

equality in Eq. (1) holds. For instance, if we set l � 1 Mpps

and m0 � 3:3 Mpps; we ®nd that d � 1:0:

Now, let us model ¯ow caching based ®ltering by an M/

H2/1 queuing system. The packet arrival process is still

Poisson with average arrival rate l . The service process is

a phase-type with two phases as shown in Fig. 3. A packet

has a cache hit probability a to be serviced with exponential

service rate m 1 and it has a cache miss probability �1 2 a� to
be serviced with exponential service rate m 2. With reference

to the ®nite state machine in Fig. 2, we can write the mean

service rates in terms of Th, T 0h and Tf as follows:

m1 � 1=Th; m2 � 1=�T 0h 1 Tf� < 1=�Th 1 Tf�: �3�
For M/H2/1 queue, it can be shown that the tail distribution

can be expressed as

PT�t . t� � 1 2 r

B1 2 B2

"
B1g 2 b

B1

�1 2 e2B1t�

1
2B2g 1 b

B2

�1 2 e2B2t�
#
: �4�

where

g � am1 1 �1 2 a�m2; b � m1m2;

r � l am21
1 1 �1 2 a�m21

2

� �
;

B1 � �m1 1 m2 2 l 1 A�; B2 � �m1 1 m2 2 l 2 A�;

A2 � �m2
1 1 m2

2 1 l2 2 2m1m2 2 2l�2a 2 1�m1 2 2l�1
2 2a�m2�=4:

�5�

Using the same parameter setting, i.e. l � 1 Mpps; and d �
1; the triplet (m 1, m 2, a) can be calculated by substituting

Eq. (4) in Eq. (1) with equality. We plot, in Fig. 4, m 2

against a at different m 1 values, where m 1 takes values

larger than m 0. We ®rst observe that the curves converge

quickly to an asymptotic one as m 1 increases. The ¯ow

cache table lookup rate faster than m1 � 2m0 helps very

little in terms of reducing m 2 or full header ®ltering rate

for any a values.

For a � 0; m2 < m0 � 3:3 Mpps is expected. When a
increases, m 2 decreases pretty fast. At a � 0:9 and m1 �
2m0

; m2 � 0:8 £ 106
: Let T 0h � Th; we found that Tf �

1:27 ms; or the full header ®ltering rate, of 0.7 Mpps is about

®ve times smaller than the required rate, m0 � 3:3 Mpps for

Y. Tung, H. Che / Computer Communications 00 (2002) 000±000 3

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

Fig. 2. A ®nite state machine for ®ltering system with ¯ow caching.

Fig. 3. M/H2/1 queuing model for ®ltering with ¯ow caching.

ARTICLE IN PRESS

Computer Communications ± Model 5 ± Ref style 1 ± AUTOPAGINATION 2 16-01-2002 12:16 article GL Alden

UNCORRECTED P
ROOF

packet-by-packet full header ®ltering. Clearly, if a $ 0:9

and m1 $ 2m0 are achieved, the ¯ow caching mechanism

becomes very effective.

The above analysis shows that the ¯ow cache table

lookup rate does not have to be much faster than the full

header ®ltering rate and it is the cache hit probability that

matters. This has two important implications. First, the

speed of ¯ow cache search algorithm is not critical for

¯ow caching. Typically, a cache table entry search takes

several clock cycles to ®nish using standard ¯ow hashing

algorithm whereas a full header ®ltering takes about 20

clock cycles [2]. Second, the key is to minimize the cache

miss ratio. In Section 4, we shall design two schemes with

low processing costs to greatly reduce the cache miss ratio.

4. Flow caching mechanisms

In this section, we propose two mechanisms for the

improvement of cache hit ratio. The idea is to take advan-

tage of layer-4 header information, which is to be processed

for full header ®ltering. In particular, we make use of

{source port, destination port} information in the transport

layer header to improve cache hit ratio for value-added

packet forwarding.

Note that ¯ow caching works only for long-lived ¯ows

composed of many packets but not for short-lived ¯ows.

Hence, a key to improve cache hit ratio is to identify

short-lived ¯ows and put them through full header ®ltering

without caching them. Based on real trace analyses, we ®nd

that in general, a packet with identical source port number

and destination port number is a server-to-server application

packet and the corresponding application ¯ows are short-

lived with only a few packets. An example is DNS applica-

tion, which has identical source and destination port

numbers and is very short-lived. Hence, our ®rst mechanism

is to add a port-comparison module to identify server-to-

server applications.

Observe that most of the client-server application packets

have one of their port numbers, either source port number or

destination port number, taking values between 0 and 1023

(with some exceptions), known as the well-known port

numbers, and the other port number randomly assigned

between 1024 and 65,536, known as the unknown port

numbers. Since the unknown port numbers are randomly

assigned, the probability that two ¯ows have the same

unknown port number is small. Hence, our second mechan-

ism is to keep a record of the unknown port numbers exist-

ing in the cached ¯ows and do an unknown port number

match before ¯ow cache entry search.

Fig. 5 shows the two added modules based on the

proposed mechanisms. The ®rst module is called port-

comparison module, where the value of the source port

number of an arrived packet is compared with the destina-

tion port number of the packet. If the two port numbers are

found to be identical, the packet is immediately passed onto

the full header ®ltering module. Otherwise, the larger port

number of the two, which is the unknown port number,

together with a single bit identi®er is passed onto the second

module, called port-matching module. The one-bit identi®er

takes binary value 0 if the unknown port number is the

source port number; otherwise, it takes binary value 1. In

the port-matching module, there is a 65,537 £ 2 table as

shown in Fig. 5. The kth row contains the information for

the port number k. The kth entry of the second column

records the number of active ¯ows in the ¯ow cache table

with source (destination) port number k. The unknown port

number and the one-bit identi®er are used as table indices to

locate the entry with the same port number and identi®er. If

the number is zero, there must be no ¯ow entry in the ¯ow

cache table that matches with the arrived packet and the

packet header to be passed onto the ®ltering module for

full header ®ltering. Otherwise, the packet header is

forwarded to the ¯ow caching module for ¯ow cache

entry search as shown in Fig. 5 random assignment of

unknown port numbers.

In summary, with port-comparison module, the ¯ow

caching is avoided for server-to-server short-lived applica-

tions and thus save ¯ow cache memory for other application

¯ows. The port-matching module further reduces the prob-

ability of ¯ow cache miss. For layer-4 forwarding, both

source and destination port numbers are to be ®ltered for

Y. Tung, H. Che / Computer Communications 00 (2002) 000±0004

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

Fig. 4. m 2 vs. a for various m1 � m0m (m � 1:1; 1.25, 1.5, 2, 5, 50) at wire-

speed.

Fig. 5. A new ¯ow caching model.

ARTICLE IN PRESS

Computer Communications ± Model 5 ± Ref style 1 ± AUTOPAGINATION 2 16-01-2002 12:16 article GL Alden

UNCORRECTED P
ROOF

the identi®cation of end-to-end applications for both full

header ®ltering and ¯ow cache table lookup. The added

processing overhead is negligible.

The processing overhead for port-comparison and port-

matching involves at most one 16-bit comparison and one-

bit setting, and one table indexing and one 16-bit compar-

ison, respectively. Obviously, the added processing over-

head is small compared with ¯ow cache table entry

search. Note that, if ¯ow hashing combined with a link list

for collided ¯ow entries per hash key is used for ¯ow cache

management, a ¯ow cache entry search involves a hash key

calculation, a hash key indexing, and a link list search with

®ve ®elds matching for each searched entry. The added

overhead for the management of the port-matching module

is also small. Upon each ¯ow cache entry deletion (addi-

tion), the corresponding table entry value in the port-match-

ing module is decremented (incremented) by 1. Each of

these operations involves one comparison, one-bit setting,

one table indexing, and one decrement/increment. Since

¯ow cache entry updating interval is at a much longer

time scale compared with packet processing, this added

overhead for ¯ow cache management is negligibly small.

5. Simulation and performance analysis

Since cache search speed is not a major performance

constraint, our trace simulation focuses on ®nding a values

at different cache table sizes. Two campus traces and one

backbone trace are used for simulation. The traces are

referred to as cisco-trace, lbl-trace and ®xwest-trace,

respectively. The cisco-trace is a 20 min trace collected

from a 100-BT campus network at Cisco Systems Inc. on

4 March, 1997. The lbl-trace is a 16 min trace collected

from a 100-BT at Lawrence Berkeley Laboratory (LBL)

on 14 July, 1997. The ®xwest-trace is a 20 min trace

collected from the FDDI Internet backbone at FIXWEST

on 21 October, 1996. The utilizations at the time of data

collections are 5.5, 4.0, and 27.3%, respectively.

First, we need a ¯ow cache entry timeout mechanism. We

use a simple adaptive ¯ow entry timeout algorithm as

proposed in Ref. [3]. Namely, the timeout value Tn is peri-

odically re-assigned at time n ensuring that the ¯ow cache

utilization r is high. This mechanism is found to offer very

close performance to the least recently used (LRU) algo-

rithm with much lower computational complexity. Since the

¯ow cache utilization is positively correlated with Tn, Tn can

be updated simply based on the following control scheme,

Tn �
Tn21 1 DT ; if r̂�n 2 1� # rmin;

max{Tn21 2 DT ;Tmin if r̂�n 2 1� $ rmax;

(
; �6�

with 0 , rmin , rmax , 1: Here, Tmin serves as the lower

bound to avoid the thrashing effect. In order to avoid over-

reaction to small demand variations, we introduced a ®rst-

order low-pass ®lter operation to damp the variation in r(n),

r̂�n� � �1 2 v�r̂�n 2 1�1 vr�n�; �7�
where v is the weighting factor taking values between 0 and

1. One can strengthen the damping by choosing a small v .

In our simulation, v � 0:5; DT � 2 s; rmax � 0:98; and

rmin � 0:9:

The cache miss ratio �1 2 a� is calculated as a function of

¯ow cache table size for each trace. Three cases are studied,

i.e. the traditional ¯ow caching, the ¯ow caching with port-

comparison, and the ¯ow caching with both port-comparison

and port-matching. The results are shown in Fig. 6. With port-

comparison, nearly 20% of the total packets from the back-

bone trace are directly sent to the ®ltering module and the

cache miss ratio almost drops by half at ¯ow cache size of

3755. However, for the two campus traces, the port-compar-

ison does not help much. The total numbers of packets, which

are directly sent to the ®ltering module, are less than 0.5% for

both cases. The cache miss ratios stay almost the same. This is

due to the fact that there is a huge amount of server-to-server

traf®c in the backbone environment, but not in a campus envir-

onment. With the port-matching module being added, one can

see signi®cant improvements for all the traces. The cache miss

ratio drops from 35% for the backbone trace to over 50% for

cisco-trace. The 10% cache miss ratio requirement derived in

Section 4 can be easily met, at the ¯ow cache table sizes of 35

for cisco-trace, 22 for lbl-trace, and 1855 for ®xwest-trace,

respectively. For the two campus traces, a values are well

above 0.9 even at rather small ¯ow cache table sizes. In fact,

a reaches 96.4% at the ¯ow cache table size of 332 and 175 for

cisco-trace and lbl-trace, respectively. For internet backbone

trace ®xwest-trace,a reaches 93.7% at ¯ow cache table size of

3755.

Y. Tung, H. Che / Computer Communications 00 (2002) 000±000 5

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

Fig. 6. Cache miss ratio vs. cache table size (`- -' for traditional ¯ow caching, `¼' for ¯ow caching with port-comparison, solid line for ¯ow caching with port-

comparison and port-matching; (a) cisco-trace, (b) lbl-trace, and (c) ®xwest-trace.

ARTICLE IN PRESS

Computer Communications ± Model 5 ± Ref style 1 ± AUTOPAGINATION 2 16-01-2002 12:16 article GL Alden

UNCORRECTED P
ROOF

6. Conclusions

We have designed and simulated a new ¯ow caching

mechanism for next generation access routers and edge

devices. First, we use a simple queuing model to characterize

the performance of¯ow caching in terms of cache hit ratio, full

packet header ®ltering speed, and ¯ow cache table lookup

speed. We demonstrated that the ¯ow cache table lookup

speed is not a major performance constraint for ¯ow caching

and it is the cache miss ratio that matters. By making use of

layer-4 header information, we proposed to add two ®ltering

modules to greatly enhance the performance of ¯ow caching

for layer-4 packet forwarding. The empirical analysis based on

both campus and backbone trace simulations demonstrated

that the cache miss ratio can be reduced by up to 50% with

the proposed mechanisms.

References

[1] T.V. Lakshman, D. Stiliadis, High-speed policy-based packet forward-

ing using ef®cient multidimensional range matching, Proceedings of

ACM SIGCOMM'98, September, 1998.

[2] D. Decasper, Z. Dittia, G. Parulkar, B. Plattner, Router plugins: a soft-

ware architecture for next generation routers, Proceedings of ACM

SIGCOMM'98, September, 1998.

[3] H. Che, S.Q. Li, MPOA ¯ow classi®cation and design, Proceedings of

IEEE INFOCOM'99.

[4] L. Kleinrock, Queuing Systems, vol. I, Wiley, New York, 1975.

[5] M. Waldvogel, A. Brodnik, S. Carlsson, S. Pink, Small forwarding

tables for fast routing lookup, Proceedings of ACM SIGCOMM'97,

September, 1997.

[6] M. Waldvogel, G. Varghese, J. Turner, B. Plattner, Scalable high speed

IP routing lookup, Proceedings of ACM SIGCOMM'97, September,

1997.

[7] P. Gupta, N. McKeown, Packet classi®cation on multiple ®elds,

Proceedings of ACM SIGCOMM'99, August, 1999.

Y. Tung, H. Che / Computer Communications 00 (2002) 000±0006

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

ARTICLE IN PRESS

Computer Communications ± Model 5 ± Ref style 1 ± AUTOPAGINATION 2 16-01-2002 12:16 article GL Alden

