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Abstract— Next generation access routers and
edge devices need to provide functionalities for
layer-4 packet forwarding and firewall/security
checks. Consequently, a challenging issue concerns
how to achieve fast packet filtering and forwarding
at low cost. This paper studies flow caching mech-
anisms for fast layer-4 packet forwarding. We show
by model analysis that flow caching performance is
not very sensitive to cache table lookup speed but
it is sensitive to cache hit ratio. By making use
of the available layer-4 information, we introduce
two filtering modules to reduce the cache miss ra-
tio. We demonstrate, by real trace simulation, that
by adding these two filtering modules, the cache
miss can be decreased by up to 50% and the re-
quirement for full header filtering speed also been
greatly reduced. The proposed flow caching mech-
anism is potentially useful for routers and switches
where software based filtering modules are dynam-
ically generated. It is also provide a cost-effective
migration path for upgrading of the existing vastly
installed base of routers with flow caching to value-
added high speed routers with flow caching, which
offer integrated/differentiated services.

Keywords— Flow caching, Layer-4 switching,
Cache-hit/miss, Port information, Full header fil-
tering

I. Introduction

Next generation high speed routers and switches
need to be able to provide functionalities, such
as layer-4/layer-5 forwarding and firewall/security
checks [2]. With these functionalities being added for
packet processing, a challenging issue concerns how to
achieve fast packet filtering.

There are two basic approaches to enable fast
packet filtering with high dimensional filtering rules.
One approach is to follow the traditional wisdom by
using flow caching mechanism. In this approach, only
the first packet of a flow needs full header filtering
and table lookup. The rest of the packets of the flow
are cut-through switched through flow cache entry
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lookups. The other approach is to allow packet by
packet full header filtering and table lookup using the
state-of-the-art software/hardware based fast packet
filtering algorithms, e.g., 1], [3], [11]. This approach
is desirable when the set of filtering rules are updated
infrequently and a single multi-dimensional filtering
table can be used for filtering. On the other hand, in
lots of cases, due to relatively frequent administrative
policy changes, the filtering rules need to be dynam-
ically generated using, e.g., software plugins [4]. It
is infeasible to build a large single static filtering ta-
ble for fast packet filtering [4]. Multiple filtering table
lookups need to be performed , which changes dynam-
ically. Since relatively small numbers of concurrently
active flows In a value-added software architecture for
next-generation routers in [4], flow caching mechanism
was successfully used to achieve much higher packet
forwarding speed compared with the forwarding speed
of the best-effort kernal.

Flow ¢aching is an attractive solution for fast packet
filtering on routers and switches also due to the fol-
lowing reasons. First, per packet full header filter-
ing consumes more clock cycles as more filtering rules
are added, whereas per packet cache table lookup is
independent of the number of filtering rules in use.
Second, from economic point of view, it is advanta-
geous to exploit flow caching mechanism for value-
added routers, simply because it provides a natural
migration path for upgrading the vastly installed base
of flow caching based routers to enable value-added
services.

A major concern with flow caching is associated
with cache miss penalty. For flow cache based packet
forwarding, upon a packet arrival, the flow cache ta-
ble is searched first. When a cache miss occurs, a
full header filtering is performed for packet forward-
ing. This results in a cache miss penalty due to pos-
sibly large processing delay. Nevertheless, we note
that the cache miss penalty would have little effect
on the Quality of Service (QoS) of a connection for

135



the following reasons. A cache miss occurs only for
the first packet of a packet burst. This packet can
either be the first packet of a connection or the first
packet after the connection has been idle for a dura-
tion longer than the flow cache timeout value. For
the former case, a small delay of the first packet of a
connection should not have much impact on the over-
all QoS of the connection, especially when the first
packet is a connection setup packet. For the latter
case, a small delay of the packet does not do much
harm to the QoS either because comparing with the
large idle time which is on the order of at least several
seconds, a small processing delay is negligible. Hence,
the cache miss penalty should not be a primary con-
cern for using flow caching in terms of QoS guarantee.

This paper aims at addressing the performance and
design issues pertaining to flow caching for value-
added routers. First, based on a simple queue-
ing model, we quantitatively characterize the perfor-
mance gain of the flow caching mechanism in terms of
reduced number of clock cycles per packet forwarding
at a given cache hit ratio. We show that flow caching
performance is not very sensitive to the flow cache
table lookup speed but it is sensitive to the cache hit
ratio. Then, we show how the available layer-4 header
information can be used to improve cache hit ratio. In
particular, by making use of the source and destina-
tion port numbers from the transport layer header, we
are able to further reduce cache hit miss by up to 50
%, resulting in at least a three-fold performance gain.

The remaining sections are organized as follows. In
Section 2, the problem of packet filtering with flow
caching is formally defined. In Section 3, the packet
filtering process is modeled as an M/H2/1 queueing
system. The results are presented and their implica-
tions on the effective router design are discussed. In
Section 4, two mechanisms for the enhancement of the
performance for flow caching are proposed. In Section
5, the statistic analyses of the proposed mechanisms
are given based on campus/backbone trace simula-
tions. Finally, Section 6 gives the conclusions and
future work.

I1I. Problem Formulation

Fig. 1 gives a schematic diagram for the major com-
ponents of a value-added router with flow caching.
The system is composed of four parts, including in-
put ports, output ports, a packet full header filtering
module, a flow cache table, and a switching fabric.
The flow cache table contains flow entries, typically
indexed by five header fields (source address, desti-
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Fig. 1. Schematic functional modules of a router

Fig. 2. A finite state machine for filtering system with flow
caching

nation address, source port number, destination port
number, protocol type), and the packet forwarding in-
formation such as the output port number, the prior-
ity level, etc. When a packet arrives at an input port,
its header information is first used to match with the
flow cache entries. If a match is found, a cache hit
occurs and the packet is switched to the output port
queue according to the forwarding information spec-
ified in the matched flow entry. This is a fast path
forwarding. If no match is found, a cache miss oc-
curs and the packet header information is redirected
to the packet full header filtering module for filter-
ing. The forwarding information obtained from the
filtering module is then used to switch the packet to
the output port, a slow forwarding path. Then the
forwarding information is cached in the flow cache ta-
ble, creating a fast forwarding path for the subsequent
packets of the flow.

The two data paths can be summarized by means
of a finite state machine as shown in Fig. 2. It is com-
posed of an idle state I, a flow cache table matching
state M, and a full header filtering state F. Upon a
packet arrival, the system moves from state I to state
M. If there is a cache hit, the system moves back to
state I after T}, clock cycles. If there is a cache miss,
the system moves to state F after T} clock cycles.
Here Ty and T} are flow entry matching times with
and without a cache hit, respuctively. We assume that
on average, a cache hit occurs with probability o and
a cache miss occurs with probability (1 — «), called

136



u,

o
A
1-o
U,
Fig. 3. M/H2/1 queueing model for filtering with flow
caching

cache hit ratio and cache hit ratio, respectively. For
a packet with a cache miss, the system stays in state
F for T} clock cycles before jumping back to state I.
Here, Ty is the number of clock cycles required for a
full header filtering. Flow caching is normally imple-
mented using hashing and hash collision is resolved
by storing all the entries in the same hash bucket us-
ing a single linked list. So in general, T} > T}, with
T; ~ Tj. For flow caching to be useful, we should
have T, << Ty + T}, or T, << T and « close to 1.

III. Model Analysis

First, we consider the case without flow caching.
We model it as a simple M/M/1 queueing system
with Poisson packet arrival rate and exponential ser-
vice rate for packet full header filtering. Denote the
average packet arrival rate as A and the average filter-
ing rate as u°. The performance is measured in terms
of the tail distribution of the response time, i.e.,

Pr(t>7) <107

(1)

where t is the response time or the total time of a
packet traversing the router. Pp(t > 7) is the tail
distribution of ¢ when ¢ exceeds 7. 7 and 6 are design
parameters.

The response time of the tail distribution for
M/M/1 queue can be written as [7],

Pp(t > 1) = e W A=Mu0r (2)
A reasonable assumption is to choose § so that when
T = # (the average full header filtering time),
the equality in (1) holds. For instance, if we set
A = 1 Mpps (Mega packets per second) and p° =
3.3 Mpps, we find that 7 = 0.3 us and § = 1.0, i.e,,
the probability for the response time longer than the
average full header filtering time is 10%.

Now let’s model flow-caching based filtering as an
M/H2/1 queueing system. The packet arrival process
is still Poisson with average arrival rate A. The service
process is a phase-type with two phases as shown in
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Fig. 3. A packet has a cache hit probability & to be
serviced with exponential service rate gy and it has
a cache miss probability (1 — a) to be serviced with
exponential service rate us. With reference to the
finite state machine in Fig. 2, we can write the mean
service rates in terms of T}, T}, and Ty as follows,

p1 = 1/Th, p2 =1/(Ty + Ty) = 1/(Tn + Ty)

(3)

For M/H2/1 queue, it can be shown that the tail dis-
tribution can be expressed as

1-p Biv-p0 -B —Byy+ 0
Pr(t > = 1- 1T _
(6> 1) = g DL 1 - oy 4 22
(1—e B7)] (4)
where
Y = o + (1 —a)u’2a
B = pape,
po= Mapi'+ (1 —a)u),
By = (w1 +p2— A+ A),
By = (u1+p2—Ar—A),
A% = [uf+pd N = 2up2 - 2020 — D

=2X(1 — 20) p2) /4.
(5)

By setting A = 1 Mpps, u° = 3.3 Mpps, 7 = 0.3 us,
and § = 1, the triplet (11, ug, @) can be calculated by
substituting (4) into (1) with equality. we plot, in
Fig. 4, p2 against o at different p) values, where p;
takes values larger than p° We first observe that
the curves converge quickly to an asymptotic one as
i1 increases. The flow cache table lookup rate faster
than g1 = 2u° helps very little in terms of reducing
po or full header filtering rate for any a values.

For a =0, pg =~ u° = 3.3 Mpps as expected. When
« increases, pg decreases pretty fast. At o = 0.9 and
w1 = 2u°, up = 0.8 Mpps. Let T} = T, we found
that Ty = 1.27 ps, or the full header filtering rate of
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Fig. 5. A New Flow Caching Model

0.7 Mpps, which is about 5 times smaller than the
required rate p° = 3.3 Mpps for packet-by-packet full
header filtering. Clearly, if « > 0.9 and p; > 2u°
can be achieved, the flow caching mechanism is very
effective.

The above analysis shows that the flow cache table
lookup speed does not have to be much faster than
the full header filtering speed and it is the cache miss
ratio that matters. In fact, flow cache search speed
is in general much faster than full header processing
speed (about 20:1 according to [4]). In the following
section, we shall focus on the study of cache miss ratio
and design two schemes with low processing cost to
greatly reduce cache miss ratio.

IV. Flow Caching Mechanisms

In this section, we propose two mechanisms for the
improvement of cache hit ratio. The idea is to take
advantage of layer-4 header information which is to
be processed for full header filtering. In particular,
we make use of {source port, destination port} infor-
mation in the transport layer header to improve cache
hit ratio for value-added packet forwarding.

Note that flow caching works only for long-lived
flows composed of many packets but not for short-
lived flows. Hence, a key to improve cache hit ratio
is to identify short-lived flows and put them through
full header filtering without caching them. Based on
real trace analyses, we find that in general, a packet
with identical source port number and destination
port number is a server-to-server application packet
and the corresponding application flows are short-
lived with only a few packets. An example is DNS
application, which has identical source and destina-
tion port numbers and is very short-lived. Hence, our
first mechanism is to add a port comparison module
to identify server-to-server applications.

Observe that most of the client-server applica-
tion packets have one of their port numbers, either
source port number or destination port number, tak-

ing values between 0-1023 (with some exceptions),
known as the well-known port numbers, and the other
port number randomly assigned between 1024-65536,
known as the unknown port numbers. Since the un-
known port numbers are randomly assigned, the prob-
ability that two flows have the same unknown port
number is small. Hence, our second mechanism is to
keep a record of the unknown port numbers for all
the flows in the cache table and do an unknown port
number match before flow cache entry search.

Fig. 5 shows the two added modules based on the
proposed mechanisms. The first module is called port-
comparison module, where the value of the source port
number of an arrived packet is compared with the des-
tination port number of the packet. If the two port
numbers are found to be identical, the packet is im-
mediately passed to the full header filtering module.
Otherwise, the larger port number of the two, which is
the unknown port number, together with a single bit
identifier is passed to the second module, called port-
matching module. The one-bit identifier takes binary
value 0 if the unknown port number is the source port
number, otherwise it takes binary value 1. In the port-
matching module, there is a 65537x2 table as shown in
Fig. 5. The kth row contains the information for port
number k. The first column corresponds to source
port and the second column corresponds to destina-
tion port. Each table entry records the number of
active flows in the flow cache table with source (des-
tination) port number k. The unknown port number
and the one-bit identifier are used as table indices to
locate the entry with the same port number and iden-
tifier. If the entry value is zero, there must be no flow
entry in the flow cache table that matches with the
arrived packet and the packet header is passed to the
filtering module for full header filtering. Otherwise,
the packet header is forwarded to the flow cache table
for flow cache entry search as shown in Fig. 5.

In summary, with port-comparison module, the flow
caching is avoided for server-to-server short-lived ap-
plications and thus save flow cache memory for other
application flows. The port-matching module further
reduces the probability of flow cache miss. For layer-
4 forwarding, both source and destination port num-
bers are to be filtered for the identification of end-to-
end applications and the added processing overhead
is negligible.

The processing overhead for port-comparison and
port-matching involves at most one 16-bit comparison
and one bit setting, and one table indexing and one
16-bit comparison, respectively. Obviously, the added
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processing overhead is small compared with flow cache
table entry search. Note that if flow hashing com-
bined with a link list for collided flow entries per hash
key is used for flow cache management, a flow cache
entry search involves a hash key calculation, a hash
key indexing, and a link list search with five fields
matching for each searched entry. The added over-
head for the management of the port-matching mod-
ule is also small. Upon each flow cache entry deletion
(addition), the corresponding table entry value in the
port-matching module is decremented (incremented)
by 1. Each of these operations involves one compari-
son, one bit setting, one table indexing, and one decre-
ment/increment. Since flow cache entry updating in-
terval is at a much longer time scale compared with
packet processing, this added overhead for flow cache
management is negligibly small.

V. Simulation and Performance Analysis

Since cache search speed is not a major performance
constraint, our trace simulation focuses on finding «
values at different cache table sizes. Two campus
traces and one backbone trace are used for simulation.
The traces are referred to as cisco — trace, lbl — trace
and fizwest — trace, respectively. The cisco — trace
is a 20-minute trace collected from a 100-BT cam-
pus network at Cisco Systems Inc. on March 4, 1997.
The Ibl — trace is a 16-minute trace collected from a
100-BT at Lawrence Berkeley Laboratory (LBL) on
July 14, 1997. The fizwest — trace is a 20-minute
trace collected from the FDDI Internet backbone at
FIXWEST on Oct. 21, 1996. The utilizations at the
time of data collections are 5.5%, 4.0%, and 27.3%,
respectively.

First, we need a flow cache entry timeout mecha-
nism. We use a simple adaptive flow entry timeout
algorithm as proposed in [5]. Namely, the timeout
value T, is periodically re-assigned at time n ensur-
ing that the flow cache utilization p is high. This

mechanism is found to offer very close performance to
the least recently used (LRU) algorithm with much
lower computational complexity. Since the flow cache
utilization is positively correlated with T,,, T,, can be
updated simply based on the following control scheme,

if 6('”' - 1) 2 Prmaz;

7. - {
©)

with 0 < pmin < Pmaz < 1. Here, Ty, serves as the
lower bound to avoid the thrashing effect. In order
to avoid over-reaction to small demand variations, we
introduced a first-order low-pass filter operation to
damp the variation in p(n),

Tho1+ AT,
malx{Tn—l - AT, Tmin}

if ﬁ(n - 1) < Pmin;

(")

where w is the weighting factor taken values between
0 and 1. One can strengthen the damping by choosing
a small w. In our simulation, w = 0.5, AT = 2 sec,
Pmaz = 0.98, and ppin = 0.9.

The cache miss ratio is calculated as a function
of flow cache table size for each trace. Three cases
are studied, i.e., the traditional flow caching, the flow
caching with port-comparison, and the flow caching
with both port-comparison and port-matching. The
results are shown in Fig. 6. With port-comparison,
nearly 20% of the total packets from the backbone
trace are directly sent to the filtering module and the
cache miss ratio almost drops by half at flow cache
size of 3755. But for the two campus traces, the port-
comparison does not help much. The total numbers of
packets which are directly sent to the filtering module
are less than 0.5% for both cases. The cache miss ra-
tios stay almost the same. This is due to the fact that
there is huge amount of server-to-server traffic in the
backbone environment, but not in a campus environ-
ment. With the port-matching module being added,
one can see significant improvements for all the traces.
For the cisco — trace, at the flow cache table size of
332, cache miss ratio drops from 8.2% (vs}ithout pro-
posed modules) to 3.6%(with both port-comparison
and port-matching). Considering total system packet
flow, the total cache miss ratio is reduced by 50%.
For the Ibl — trace, at the flow cache table size of 175,
cache miss ratio drops from 6.8% to 3.6%. And the
total cache miss ratio is reduced by 40%. For internet
backbone trace fizwest — trace, at the flow cache ta-
ble size of 3755, cache miss ratio is down from 17.9%
to 7.3%. Because of the huge amount of one time
packets, total cache miss ratio doesn’t change much.

p(n) = (1 —w)p(n — 1) + wp(n)
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In today’s communication networks as has also been
observed in [10], most of the congestions which we
have seen today are taken place at the servers or some
.bottleneck links rather than high speed links. This
" phenomenon suggests that in the future high speed
networks, high packet rate will be mainly contributed
by long-lived flows composed of a large number of
packets, rather than large volume of flows which are
short-lived. These long-lived flows are mostly gener-
ated by a few applications which call for high volume
data transfer. Internet-2 [9] currently under devel-
opment is a good example. With OC-48 link speed
deployed across the nation, it becomes one of the
Internet-2’s primary goal to encourage research Insti-
tutions and Universities to develop high volume data
applications to fill up the big pipes.

In summary, in future high speed networks, o values
can be expected to be larger than its current values.
Hence, high performance can be expected when flow
caching mechanism is used in future networks.

V1. Conclusions and Future Work

We have designed and simulated a new flow caching
mechanism for next generation access routers and
edge devices. First, we use a simple queueing model to
characterize the performance of flow caching in terms
of cache hit ratio, full packet header filtering speed,
and flow cache table lookup speed. We demonstrated
that the flow cache table lookup speed is not a major
performance constraint for flow caching and it is the
cache miss ratio that matters. By making use of layer-
4 header information, we proposed to add two filtering
modules to greatly enhance the performance of flow
caching for layer-4 packet forwarding. The empirical
analysis based on both campus and backbone trace
simulation demonstrated that the cache miss ratio can
be reduced up to 50% with the proposed mechanisms.

Our future research will attempt to achieve the fol-
lowing goals,

1. Design fast algorithms for flow cache table
entry search

For example, there are many algorithms for the hash
key design [8] and the effectiveness of these algorithms
are highly dependent on the index pattern. An in-
teresting problem to be explored is to minimize the
collision by designing an optimal key algorithm. To
further reduce the flow cache table size, port num-
ber information can be further explored. For exam-
ple, for client-server applications such as HT'TP, flows
from the client to the server are generally short-lived,
whereas the server-to-client flows tend to be long-

lived. A simple scheme is to send client-to-server
packets directly to the filtering module without flow
caching.

2. Design effective flow cache table manage-
ment algorithms

There are a variety of ways to optimize the flow cache
management. In our previous work on IP switch and
MPOA flow cache management design [6], [5], we pro-
posed flow timeout based algorithms. In fact, there
are many other means to further optimize the flow
cache management such as multi-stage caching and
application-based caching.

3. Explore the performance bounds

With a well designed set of algorithms, we shall ex-
plore the worst-case performance bounds and give
algorithm design guidelines to achieve these perfor-
mance bounds.
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