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Abstract

This paper studies general properties for a class of queuingnetwork models that at the thread level,

characterize a class of single-core multithreaded processors with various kind of thread scheduling disci-

plines and parallel resources. In particular, we find, with mathematical rigor, the general conditions under

which the bottleneck resources appear. Our simulation testing demonstrates that these general conditions

remain to be accurate when some key simplistic assumptions made in the queuing network models are

removed. The test of these conditions for a specific workloadand processor in this class only involves

some statistic parameter estimation of the workload, making it possible to quickly identify bottleneck

resources without actually running the program in the processor. We also demonstrate how these general

conditions, combined with any given caching model, can leadto useful guidelines and algorithms for

thread and cache resource provisioning that maximizes the throughput performance. Finally, we provide

insights on how these conditions may be generalized to the case of many-core processors.

Keywords: Multi-threading, Queuing network

1 Introduction

As the gap between processor speed and resource (e.g., memory and I/O) access speeds ever widens, the

role of multithreading and caching as the two major resource access latency hiding and reduction techniques
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has become increasingly important. However, it is a challenge as to how to provision thread and cache

resources to achieve high throughput performance, which is determinedby multiple intertwined factors,

including workload characteristics, thread scheduling discipline, resource access latencies, and resource

access mechanisms. The thread and cache resource provisioning must take all these factors into account to

be effective. In fact, adding more threads and caching more data with respect to a given resource do not

always help hide more resource access latency from the CPU, if the resource access itself does not contribute

to longer CPU idle time. To be effective, the thread and cache resource provisioning must aim at removing

resource bottlenecks that lead to longer CPU idle time and hence, reduced overall throughput performance.

Hence, for thread and cache provisioning, a key issue to be addressed is how to identify bottleneck

resources that constrain the overall throughput performance. Benchmark testing is the widely adopted ap-

proach to address this issue. However, this approach has limited predictive power for future workloads and

is time consuming. The existing design space exploration techniques aiming at finding general properties

of the design space requires intelligent interpolation of sampled benchmarksand hence can still be too time

consuming and heavy-duty from a programmer’s point of view. A more practical approach is to be able

to identify bottleneck resources by simply performing a test of certain conditions involving all the above

mentioned intertwined factors. In this paper, the aim is to find such general conditions for a large class of

single-core processors. The generalization of the results in this paper tothe case of many-core processors

will be reported elsewhere. In Section 8, however, the insights on how wemay extend the current results to

the many-core case will be briefly discussed.

Given the intricate interactions among many factors, it would be very difficult,if ever possible, to derive

general conditions from benchmark or simulation based approaches. Ideally, these general conditions need

to be presented in a mathematical expression involving all the interacting factors. To this end, an analytical

modeling technique that can capture all the major interacting factors and be solved analytically should to

be sought. In this paper, we show that such general conditions can be derived for a class of closed queuing
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networks that models a class of single-core multithreaded processors at the thread level, overlooking micro-

architectural details. As a first order approximation, this class of processor models allows simultaneous

multithreaded (SMT), fine-grained, and coarse-grained CPU and sequential, pipelined, and parallel resource

access mechanisms. We also demonstrate that these general conditions remain to be accurate, when some

key simplistic assumptions made in this class of models are removed. Moreover, our testing of a thread-level

processor simulation tool against cycle-accurate simulation indicated that overlooking micro-architectural

details, such as instruction-level-pipeline (ILP) aborts, introduces5−15% inaccuracy to the thread-level tool

[24]. Hence, we believe that these general conditions can be used in practice to aid the initial configuration

of the thread and cache resources.

The rest of the paper is organized as follows. Section 2 reviews the related work. Section 3 describes

the modeling technique used in this paper. Section 4 presents the main results, i.e., the general conditions,

and highlights the main ideas by means of an example. Section 5 gives the theoretical proof of the general

conditions. Based on these general conditions, Section 6 develops a generic algorithm that serves as a useful

guideline for the development of algorithms for effective thread and cache resource provisioning. Section 7

tests the accuracy of the general conditions with some key assumptions in the modeling technique removed.

Finally, Section 8 concludes the paper and presents a brief discussion onhow we may generalize the general

conditions to the case of many-core processors.

2 related work

For a given processor and workload, the bottleneck resources can be identified through simulation and/or

benchmark testing (e.g., [5, 7, 8, 12, 14]). Clearly, general conditionscannot be drawn from such ap-

proaches. In contrast, the existing design space exploration techniques(e.g., [6, 10, 11, 18]) can identify

bottleneck resources over a large design space. However, since theyare all based on intelligent search al-

gorithms guided by the benchmark samples, it is computationally too expensive,if ever possible, for the
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existing techniques to construct the general conditions for bottleneck resources to appear, expressible in

terms of the functional relationships among various system and workload parameters covering the entire

design space. More importantly, it is overkill for a programmer to employ suchtechniques to aid the pro-

gramming.

Compared with the above approaches, analytical modeling techniques are more viable in dealing with the

problem in question. We can roughly classify the existing analytical processor models into two categories,

i.e., processor specific and generic. The processor specific models attempt to model in substantial detail

of specific processor architectures and to accurately characterize theperformance of the processors, e.g.,

[4, 19]. It is obvious that by design, processor specific models are not suitable for the study of the general

properties pertaining to a large design space.

On the other hand, the generic models attempt to capture the general properties shared by many pro-

cessors of the same kind, overlooking micro-architectural details. The most notable models of this kind is

Amdahl’s [20] and its variations (e.g., [21]) that capture the scaling properties for multiprocessors without

taking into account of the memory resource access mechanisms, multithreadingdisciplines, and so on. In

[9], a mean value analysis of a generic multithreaded multicore processor model of similar nature is per-

formed. The performance results reveal that there is a performance valley to be avoided as the number of

threads increases, a phenomenon similar to the one found in [15, 1] in the context of single multithreaded

processors. Again, this model does not take into account of the processor specific features into account,

such as memory access mechanisms and thread scheduling disciplines. Although the generic queuing mod-

els presented in [15, 1, 13] do capture somewhat more processor specific features, which, however, are

restricted to a single processor model, i.e., an M/M/1 queuing model, modeling bothcoarse-grained CPUs

and memory resources with a FCFS access mechanism. Moreover, none ofthe existing models attempts to

model the workload in a large workload space. If we draw a three dimensional design space in a cone shape,

in terms of resource access mechanisms, thread scheduling disciplines, and workloads as shown in Fig. 1,
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the existing analytical models only cover a small cone on the left.

Figure 1: Design Space

The approach taken in this paper differs from the above existing ones in the sense that it directly studies

a class of processor models, which inherently accounts for all possible component models defined in the

design space in Fig. 1, including SMT, coarse and fine grained thread scheduling disciplines for a multi-

threaded CPU and both sequential and parallel/pipelined access mechanismsfor other resources, and the

entire workload dimension. As a result, the general properties obtained for this class of processor models

apply to the entire design space. Even though the work presented in this paper is restricted to a class of

single-core processors, the approach taken can be generalized to thecase of many-core processors.

3 Model

The approach taken in this paper finds a middle ground between generic modeling and processor-specific

modeling approaches. To scale to a large design space, the approach focuses on modeling thread-level

activities, overlooking microarchitectural details. In the meantime, it takes into account processor specific

features that have strong effects on the thread level performance. Note that based on our testing results in

[24], overlooking micro-architectural details, such as instruction-level-pipeline (ILP) aborts, only introduces

5− 15% inaccuracy to the thread-level models/simulators. So we can expect that theresults obtained in this
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paper could be used in practice for quantitative resource allocations, aswell as providing significant insights

on understanding the processor behaviors.

In this section, we describe our model, including processor model organization, processor component

models, and the workload model.

Processor Model Organization: Like the existing queuing network models for multithreaded processors

(e.g., [15, 1, 13]), our model works at the thread level, in the sense thatit only captures the events that have

major impacts on the thread level performance. In other words, the instruction level and microarchitectural

details are overlooked, unless they trigger events at the thread level, such as an instruction for memory access

that causes the thread to stall or an instruction to access a critical region that causes serialization effect at the

thread level. Correspondingly all the components including CPU, cache/memory, and interconnect network

are modeled at a highly abstract level, overlooking microarchitectual details, just enough to capture the

thread level activities. More specifically, each component is modeled as a queuing server with a set of

possible queuing disciplines, modeling the thread scheduling disciplines or resource access mechanisms,

as given in Fig. 1. These queuing servers are interconnected to form aqueuing network. In this queuing

network, a number of jobs or threads move from one server to another withgiven routing probabilities (note

that this view is purely conceptual and in a real processor, it is not the threads that move from one component

to another but the tasks that the threads handle).

In this paper, we consider a class of closed queuing network models given in Fig. 2. This class of

models characterizes a class of processors with a single CPU, a cache, and an arbitrary number of parallel

resources, denoted asmq, (e.g., a main memory, a coprocessor, an I/O device, or even a critical region). In

this model, we assume that the interconnection network has sufficient bandwidth to transfer data between

CPU and the parallel resources without creating a bottleneck and hence itis not explicitly modeled. Upon

exiting the CPU server, a thread has probabilityp0i to visit parallel resourcei, wherei = 1, 2, · · · , mq. In

the case of memory resource access, the thread will first check if the requested data is available in the cache.
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Figure 2: queuing network model

In our model, no details of cache access mechanisms are modeled, except acache hit probabilityPih(Si)

that causes the thread to immediately loop back to the CPU and a cache miss probability (1 − Pih(Si))

that causes the thread to access theith resource. HereSi is the size of the cache memory block allocated

to the cached data from memory resourcei. All the other components are modeled as queuing servers.

The CPU queuing server mimics the thread scheduling disciplines listed in the thread scheduling discipline

dimension in Fig. 1 and all other parallel queuing servers mimic the resource access mechanisms in the

resource dimension in Fig. 1. An arbitrary number of threads,Mt, circulates in the closed queuing network,

with routing probabilitypij to visit serverj upon exiting serveri, mimicking the stochastic behaviors of a

long-running parallelizable program or multiple programs handled by threads in parallel (such as parallel

packet processing in a network processor or parallel queries at a server processor).

Component Models: Without resorting to any approximation techniques, the existing queuing network mod-

eling techniques will allow both resource and thread scheduling discipline dimensions in the design space

(see Fig. 1) to be exploited analytically. As a first order approximation, anyinstance in these two dimensions

can be modeled using a queuing model that has local balance equations (i.e.,it leads to solutions of product

form or closed form). More specifically, Table 1 shows how these two dimensions can be approximately

modeled by only three queuing models with local balance equations, includingM/G/∞; M/M/m FCFS
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P
P

P
P

P
P

P
P

P
P

P
P

P
PP

Component

Queue Model
M/G/∞ M/M/m FCFS M/G/1 PS M/M/1

SMT ✓ ✓

Fine-Grained Thread

scheduling
✓

Coarse-Grained Thread scheduling

scheduling
✓

FCFS shared Memory,

Cache, Interconnection ✓

Network,or Critical Region

FCFS Memory with

with Popelined Access
✓

Table 1: Component modeling using queuing models with local balance equations

(including M/M/1); and M/G/1 PS (processor sharing).

Note that for all the multithread scheduling disciplines, the service time distributionin a queuing model

models the time distribution for a thread to be serviced at the corresponding queuing server. With this in

mind, the following explains the rationales behind the mappings in Table 1:

• SMT: It allows multiple issues in one clock cycle from independent threads,creating multiple virtual

CPUs. If the number of threads in use is no greater than the number of issues in one clock cycle,

the CPU can be approximately modeled as anM/G/∞ queue, mimicking multiple CPUs handling

all the threads in parallel, otherwise, it can be approximately modeled as an M/M/m queue, i.e., not

enough virtual CPUs to handle all the threads and some may have to be queued.
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• Fine-grained thread scheduling discipline: All the threads access the CPUresource will share the

CPU resource at the finest granularity, i.e., one instruction per thread in around-robin fashion. This

discipline can be approximately modeled as an M/G/1 PS queue, i.e., all the threads share equal

amount of the total CPU resource in parallel.

• Coarse-Grained thread scheduling discipline: All the threads access theCPU resource will be serviced

in a round-robin fashion and the context is switched only when the thread isstalled, waiting for the

return of other resource accesses. This can be approximately modeled as a FCFS queue, e.g., an

M/M/1 queue.

• FCFS Shared Memory, Cache, Interconnect Network, or Critical Region: This kind of resources can

be modeled as an M/M/1 queue.

• FCFS Memory with Pipelined Access: The pipeline depth determines how many threads can be ser-

viced simultaneous in the M/M/m FCFS queue.

Note that in the case of memory structure with multiple memory banks, each memory bank needs to be

modeled as a separate queuing server.

Workload Model: A workload is generally defined as the collection of data processing requirements pre-

sented to the system during a specific period of time [17]. In the context of our model,a workload is a

mapping of a program to the model organization and a model configuration.

Figure 3: code path

To be more specific, consider an example code path at the thread level, depicted in Fig. 3. This code

path is a mapping of a program or a program task to a thread in the model organization in Fig. 2. It is
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composed of different colored segments, each corresponding to the number of CPU cycles the thread is

processed at the CPU or a resource. Obviously, the length of each segment is determined by both program

or program task characteristics and the processing speed at the corresponding CPU or resource. It represents

the actual service time the thread is being serviced at a queuing server (not including the queue waiting

time). Therefore ideally, the service time distribution for a queuing server must be equal to the segment

length distribution for all the segments from all the threads processed at that server. This can be done

for M/G/∞ andM/G/1 PS queuing models in Table 1. However, for the M/M/1 and M/M/m queuing

models in Table 1, the service time distributions are a given, i.e., exponentially distributed. This service time

distribution is uniquely determined by the average service rateµi for queuing serveri. In this case,µi should

be calculated as the inverse of the average segment length for all the segments from all the threads processed

at serveri. This is obviously an inaccurate characterization of the workload. In spiteof this, in Section 7,

we shall demonstrate that the general conditions derived from this simple model turns out to be accurate. In

what follows, we useµi to collectively represent the service time distributions or configuration parameters

that need to be configured for serveri. Obviously, the routing probabilitypij , in the model in Fig. 2, should

be determined by thei-to-j segment transition statistics collectable from the code paths handled by all the

threads.

In summary, a workload for the model in Fig. 2 is uniquely defined by a givenmodel configuration in

terms of{µi} that determine the service time distributions for all the queuing servers and routing probabil-

ities {pij}, hereafter denoted as ({µi}, {pij}). As a result, ({µi}, {pij}) defines the entire workload space.

Our work focuses on the study of the entire workload space, i.e., the space spanned by the parameters ({µi},

{pij}).
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4 Main Results

To limit the exposure, for the time being, we assume that there is no cache in the model in Fig. 2,

i.e., Pih(Si) = 0. The results with caching will be given at the end of this section. DefineP (m) as the

probability that there arem threads at the CPU server. We focus on the performance measurePI = P (0),

i.e., the probability that the CPU server is in the idle state. In particular, we are interested in its asymptotic

behavior, i.e., whetherlimMt→∞ PI = 0. It tells us whether or not multithreading can completely hide the

resource access latencies from the CPU, provided that the thread resource is abundant, and hence, whether

the multithreading can help achieve the maximum throughput performance. Thisperformance measure will

lead to the identification of the general conditions under which the bottleneck resources are bound to appear,

regardless how many threads are used.

Define fi(ki) as the steady state probability that there areki threads at queuing serveri, for i =

0, 1, · · · , mq, where
∑mq

i=0 ki = Mt. Let qi represent queuing serveri (see Fig. 2), fori = 0, 1, · · · , mq.

Following the convolution algorithm [2], we have,

PI =
f0(0)q1∗2∗···∗mq(Mt)

q0∗1∗2∗···∗mq(Mt)
(1)

where

q0∗1∗2∗···∗mq(Mt) =
∑

m+n=Mt

f0(m)q1∗2∗···∗mq(n) (2)

and

q1∗2∗···∗mq(n) =
∑

k1+···+kmq=n

mq
∏

i=1

fi(ki) (3)

Eq. (1) holds true for any queuing servers listed in Table 1 and any modelparameters ({µi}, {pij}) . In

other words,PI is a performance measure for a class of processor models defined in the entire design space
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in Fig. 1.

According to Table 1, bothM/G/∞ andM/M/m queuing models can be used to model SMT-based

CPU server and theM/G/1 PS queuing model is used to model fine-grained CPU server in Fig. 2. All

the resource-related servers can be modeled usingM/M/1 andM/M/m queuing models. To simplify the

design, in this paper, we adoptM/M/m for SMT and only consider a special case ofM/G/1 PS, i.e.,

M/M/1 PS for the fine-grained CPU server. So the queuing model for CPU server in Fig. 2 isM/M/m0,

and queuing model for the resource-related servers areM/M/mi i = 1, · · · , mq. With these simplifica-

tions, the service time distributions for all the queuing servers are then exponentially distributed and uniquely

determined by their average service ratesµi for i = 0, 1, · · · , mq andfi(ki) can be generally express as

follows:

fi(ki) =
αki

i

β(ki)
(4)

whereαi is the relative utilization ofqi. αi = p0iei

µi
for i = 1, 2, · · ·mq andα0 = e0

µ0
andei is the relative

thread arrival rate atqi. In this system,e0 =
∑

i=1:mq ei. β(x) is define as follows:

β(x) =















































1 M/M/1 & M/M/1 PS

x! M/M/∞

x! M/M/m FCFS x ≤ m

m!m(x−m) M/M/m FCFS x > m

(5)

Substituting Eq.(4) into Eq. (1), we have,

PI =

∑

k1+···+kmq=Mt

∏mq
i=1

a
ki
i

βi(ki)

∑Mt

n=0
1

β0(Mt−n)

∑

k1+···+kmq=n

∏mq
i=1

a
ki
i

βi(ki)

(6)

whereai = p0iµ0

µi
.

We now have the following general result:

Theorem : limMt→∞ PI = 0 if and only if m0ai

mi
< 1, ∀i = 1, 2, · · · , mq.
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The theorem simply states that whenm0ai

mi
> 1, adding threads cannot completely hide theith resource

access latency from the CPU, i.e., resourcei presents a performance bottleneck. This condition is surpris-

ingly simple, while being very general, applicable to any processor architectures that can be modeled by the

class of processor models defined by the queuing network in Fig. 2 and thedesign space in Fig. 1.

To illustrate the power of the above result, we give a special case here. Consider the case whenmq = 1,

i.e., the model in Fig. 2 only has two queuing servers, a CPU server and a resource server. We have,

As Mt goes to infinity,

lim
Mt→∞

PI =



















1
m

m0
0

m0!
A−m0+1

A−1
+

∑m0−1

k′=0

(

a1
m1

)

−k′

/k′!
A > 1

0 A < 1

(7)

This gives the general condition under which the resource becomes a bottleneck whenA > 1, whereA =

a1m0

m1
= µ0m0

µ1m1
, agreeing with the general result in Theorem. This condition tells us that if theaverage

service rate times the level of parallelism (i.e.,m1) at the resource is slower than the service rate times the

level of parallelism (i.e.,m0) at the CPU server, the resource becomes a bottleneck that throttles the overall

throughput.

Finally, it is interesting to note that whenm0 = m1 = 1 (i.e., the CPU is coarse-grained and resource

access mechanism is FCFS), we have,

lim
Mt→∞

PI =















a1−1
a1

a1 > 1

0 a1 < 1

(8)

A deterministic version of this result was derived in [3] and later on a resultidentical to the one in Eq. (8)

was derived and studied in [22]. Clearly, the result given in Theorem isfar more general than the results

given in [3] and [22].

So far, we have assumed that there is no cache effect, i.e.,Pih(Si) = 0, for i = 1, 2, · · · , mq. Since
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Si is the cache resource allocated to accommodate the cached data from resource i, we must haveS ≥

∑

i=1:mq Si, whereS is the total cache size. Now, we take into account of the caching effects for the model

in Fig. 2, i.e.,Pih(Si) ≥ 0. To simplify the discussion, we assume that all the resources are memory

resources, so that caching can help reduce the resource access latencies for all the resources.

Assuming there is no correlation among consecutive cache hits, our cachemodel only amounts to the

change ofp0i to (1−Pih(Si))p0i and consequently,ai changes to(1−Pih(Si))ai. The product-form prop-

erty of the model is preserved. Hence, we have the following corollary in parallel to Theorem,

Corollary : limMt→∞ PI = 0 if and only if m0(1−Pih(Si))ai

mi
≤ 1, ∀i = 1, 2, · · · , mq.

5 Proof of Theorem

This section provides a detailed proof of the theorem given in the previoussection.

Proof of Theorem: The theorem can be decomposed into two parts:

(1) if m0ai

mi
≤ 1, ∀i = 1, 2, · · · , mq, thenlimMt→∞ PI = 0.

(2) if there is at least one term in{m0ai/mi}i=1:mq larger than1, thenlimMt→∞ PI > 0.

In what follows, we prove these two parts separately.

First, we prove the first part. Without loss of generality, assume
amq

mmq
= max

{

ai

mi

}

and a1

m1
=

min
{

ai

mi

}

, for i ∈ [1, mq]. Dividing both the numerator and denominator of Eq. (6) by
(

amq

mmq

)Mt

, we

have,

PI =

∑

k1+···+kmq =Mt

∏mq

i=1

(

aimmq

miamq

)ki m
ki
i

βi(ki)

∑Mt

n=0

(

amq

mmq

)n−Mt

β0(Mt−n)

∑

k1+···+kmq =n

∏mq

i=1

(

aimmq

miamq

)ki m
ki
i

βi(ki)

(9)

Since a1

m1
≤ ai

mi
≤

amq

mmq
, for i = 2, · · · , mq − 1, we have,

(

a1mmq

m1amq

)

≤

(

aimmq

miamq

)

≤

(

amqmmq

mmqamq

)

= 1 (10)
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Hence,

PI ≤

∑

k1+···+kmq =Mt

∏mq

i=1
m

ki
i

βi(ki)

∑Mt

n=0

(

amq

mmq

)n−MT

β0(Mt−n)

∑

k1+···+kmq =n

∏mq

i=1

(

a1mmq

m1amq

)ki m
ki
i

βi(ki)

(11)

The queuing serverqi can be generally viewed as an M/M/mi queue,i ∈ (0, · · · , mq). Since for∀ki,

βi(ki) ≥ mi!m
ki−mi

i andβi(k) < mi!m
ki

i and noticing that there are(Mt+mq−1)!
Mt!(mq−1)! elements in

∑

k1+···+kmq
,

we have:

PI <

∑

k1+···+kmq =Mt

∏mq

i=1
m

mi
i

mi!

∑Mt

n=0

(

amq

mmq

)n−MT

β0(Mt−n)

∑

k1+···+kmq =n

∏mq

i=1

(

a1mmq

m1amq

)ki 1
mi!

=

(Mt+mq−1)!
Mt!(mq−1)!

∏mq

i=1
m

mi
i

mi!

∑Mt

n=0





(

mmq

amq

)MT −n

β0(Mt−n) ·
(n+mq−1)!
n!(mq−1)! ·

(

a1mmq

m1amq

)n
·
∏mq

i=1
1

mi!





<
1

(

Mmq

amq

)Mt

·
∑Mt

n=0
1

β0(Mt−n)

(

a1

m1

)n
·
∏mq

i=1 mi
mi

=
1

(

Mmq

m0amq

)Mt ∏mq

i=1 mi
mi

∑Mt

n=0
m

Mt−n

0

β0(Mt−n)

(

a1m0

m1

)n

≤
1

(

Mmq

m0amq

)Mt ∏mq

i=1 mi
mi

∑Mt

n=0
m

Mt−n

0

m0!m
Mt−n

0

(

a1m0

m1

)n

=
1

(

1
m0!

∏mq

i=1 mi
mi

)(

Mmq

m0amq

)Mt

·
1−

(

a1m0
m1

)Mt+1

1−
a1m0

m1

(12)

Denote the last expression in Eq. (12) as= P ′

I . Sincea1m0

m1
≤

amq m0

mmq
≤ 1, limMt→∞ P ′

I = 0. From Eq.

(12), we haveP ′

I > PI . Note thatPI ≥ 0. HencelimMt→∞ PI = 0.

Now we prove the second part. To facilitate the proof, the dependency ofPI onmq is explicitly included

in PI as a superscript, i.e.,P (mq)
I . Futhermore, since there is at least one term in{m0ai/mi}i=1:mq larger

than1, we assumem0a1

m1
> 1. Formq = 1 (i.e., there is only one resource), from Eq. (6), we have

P
(1)
I =

a
Mt
1

β1(Mt)

∑Mt

k1=0
a

k1
1

β0(Mt−k1)β1(k1)

(13)
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According to the assumption in part (2),m0a1

m1
> 1; from Eq. (7) we have,

lim
Mt→∞

P
(1)
I =

1

m
m0
0

m0! ·

(

a1m0
m1

)

−m0+1

a1m0
m1

−1
+

∑m0−1
k1=0

(

a1
m1

)

−k1

k1!

> 0 (14)

This means that for the single resource case, the second part of the theorem holds true. To prove the theorem

holds true in general, we need to show that it holds true for∀mq. Now if P
(mq+1)
I ≥ P

(mq)
I for ∀mq, the

second part of the theorem will hold true for∀mq. In the following, we show this is indeed the case.

For∀mq, Let

P
(mq)
I =

∑

k1+···+kmq =Mt

∏mq

i=1
a

ki
i

βi(ki)

∑Mt

n=0
1

β0(Mt−n)

∑

k1+···+kmq =n

∏mq

i=1
a

ki
i

βi(ki)

(15)

Notice that Eq. (15) is the same as Eq. (6). Formq + 1, we have,

P
(mq+1)
I =

∑

k1+···+kmq +kmq+1=Mt

∏mq+1
i=1

a
ki
i

βi(ki)

∑Mt

n=0
1

β0(Mt−n)

∑

k1+···+kmq +kmq+1=n

∏mq+1
i=1

a
ki
i

βi(ki)

(16)

or

P
(mq+1)
I =

∑

k1+···+kmq =Mt

∏mq

i=1
a

ki
i

βi(ki)
+

∑Mt

n=0
1

β0(Mt−n)

∑

k1+···+kmq =n

∏mq

i=1
a

ki
i

βi(ki)
+

∑Mt

kmq+1=1

a
kmq+1

mq+1

βmq+1(kmq+1)

∑

k1+···+kmq =Mt−kmq+1

∏mq

i=1
a

ki
i

βi(ki)

∑Mt

n=1
1

β0(Mt−n)

∑n
kmq+1=1

a
kmq+1

mq+1

βmq+1(kmq+1)

∑

k1+···+kmq =n−kmq+1

∏mq

i=1
a

ki
i

βi(ki)

(17)

Eq. (17) is written in such a form that the first terms in both the numerator and the denominator are the same

as the numerator and denominator in Eq. (16), respectively. Now, letL andR be the second term in the

denominator multiplied by the first term in the numerator, and the first term in the denominator multiplied

by the second term in the numerator, respectively, as given below:

L = {

Mt
∑

n=1

1

β0(Mt − n)
·

n
∑

kmq+1=1

a
kmq+1

mq+1

βmq+1(kmq+1)
·

∑

k1+···+kmq =n−kmq+1

mq
∏

i=1

aki

i

βi(ki)
}·{

∑

k1+···+kmq =Mt

mq
∏

i=1

aki

i

βi(ki)
}

(18)
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R = {

Mt
∑

n=0

1

β0(Mt − n)
·

∑

k1+···+kmq =n

mq
∏

i=1

aki

i

βi(ki)
}·{

Mt
∑

kmq+1=1

a
kmq+1

mq+1

βmq+1(kmq+1)
·

∑

k1+···+kmq =Mt−kmq+1

mq
∏

i=1

aki

i

βi(ki)
}

(19)

Obviously,P (mq+1)
I ≥ P

(mq)
I if and only if R ≥ L. To showR ≥ L, we construct another quantityL′ as

follows:

L′ =

Mt
∑

n=1

1

β0(Mt − n)
·

n
∑

kmq+1=1

a
kmq+1

mq+1

βmq+1(kmq+1)
·

∑

k1+···+kmq =Mt−kmq+1

mq
∏

i=1

aki

i

βi(ki)
·

∑

k1+···+kmq =n

mq
∏

i=1

aki

i

βi(ki)

(20)

To proveR ≥ L, we first show thatL′ ≥ L and thenR ≥ L′.

First, we note that the first two sums in Eq. (18) are the same as the first two sums in Eq. (20), except in

Eq. (20), there is an extra term atn = 0. Clearly, if we could show that for any givenn > 0, the last two

sums in Eq. (20) is no less than the last two sums in Eq. (18), we haveL′ ≥ L. In other words, we want to

showE′ ≥ E, where,

E =
∑

k1+···+kmq =n−kmq+1

mq
∏

i=1

aki

i

βi(ki)
·

∑

k1+···+kmq =Mt

mq
∏

i=1

aki

i

βi(ki)
(21)

and

E′ =
∑

k1+···+kmq =Mt−kmq+1

mq
∏

i=1

aki

i

βi(ki)
·

∑

k1+···+kmq =n

mq
∏

i=1

aki

i

βi(ki)
(22)

According toCorrolary A given in Appendix, bothE andE′ have the sameZ value, i.e.,Z = Mt +

n − kmq+1. In E, let A be the smaller one ofMt andn − kmq+1 and inE′, A′ be the smaller one ofn

andMt − kmq+1. Note that ifA′ ≥ A thenE′ ≥ E, since, according toCorrolary A, E andE′ are

monotonously increasing function whenA′, A ∈ [1, ⌊Z
2 ⌋]. As a result, to proveL′ ≥ L, we need to show

thatA′ ≥ A.

SinceMt ≥ n ≥ kmq+1 ≥ 1, Mt > n − kmq+1, A = n − kmq+1. In E′, since bothn andMt − kmq+1

can be smaller than⌊Z
2 ⌋, we have,
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A′ − A =















Mt − n n > ⌊Z
2 ⌋

kmq+1 n ≤ ⌊Z
2 ⌋

Again, sinceMt ≥ n ≥ kmq+1 ≥ 1, A′ − A ≥ 0 always holds. So we haveE′ ≥ E, and therefore,

L′ ≥ L.

Finally, we show thatR ≥ L′. We first rewrite Eq. (20) as follows:

L′ =

Mt
∑

n=1

1

β0(Mt − n)
·

∑

k1+···+kmq =n

mq
∏

i=1

aki

i

βi(ki)
·

n
∑

kmq+1=1

a
kmq+1

mq+1

βmq+1(kmq+1)
·

∑

k1+···+kmq =Mt−kmq+1

mq
∏

i=1

aki

i

βi(ki)

(23)

We note that at any givenn, the part with the last two sums in Eq. (19) is no less than the part with the last

two sums in Eq. (23), becauseMt ≥ n for ∀n. Furthermore, the parts involving the first two sums in Eq.

(19) and Eq. (23) are the same, except that the part in Eq. (19) has anextra term atn = 0. Hence, we have

R ≥ L′. Since we have shown thatL′ ≥ L, R ≥ L and thereforeP (mq+1)
I ≥ P

(mq)
I ≥ P

(1)
I > 0.

6 Thread and Cache Resource Provisioning

It is clear that cache is needed in addition to multithreading to remove the bottleneck resourcei if

m0ai

mi
> 1, according to Theorem. Now according to Corollary, the minimum amount of cache resourceSi

that is needed to remove the bottleneck resourcei must satisfy the following equation:

m0(1 − Pih(si))ai

mi
= 1 (24)

from Eq. (24) we have,

Si = P−1
ih (1 −

mi

m0ai
) (25)

whereP−1
ih is the inverse function ofPih. Clearly, Si = 0 if resourcei is not a bottleneck resource.

The condition thatS ≥
∑

i=1:mq Si gives us a good idea as to how much total cache resource is needed
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to maximize the throughput performance. IfS is a given, this condition determines whether maximum

throughput performance can be achieved or not, with maximal thread and cache resource provisioned.

In summary, we have the following algorithm for effective thread and cache resource provisioning:

• if m0ai

mi
< 1, for all i = 1, 2, · · · , mq, the maximum throughput performance can be achieved by

adding sufficient number of threads and cache is not needed

• else if (without loss of generality)m0a1

m1
≤ m0a2

m2
≤ · · · ≤

m0ak−1

mk−1
≤ 1 < m0ak

mk
≤ · · · ≤

m0amq

mmq ,

calculateSi for i = k, · · · , mq from Eq. (25). IfS ≥
∑

i=k:mq Si, outputSi for cache resource

provisioning; else outputSi and request for additional(
∑

i=k:mq Si − S) cache memory.

To make the above discussion generally applicable to any detailed caching models, so far we have not

mentioned whatPih(Si) should look like. In practice,Pih(Si) is a complicated function of not onlySi, but

also data request patterns, thread scheduling discipline, cache replacement algorithm, etc. A widely adopted

analytical model is:Pih(Si) = 1 −
(

Si

δ + 1
)

−(ǫ−1)
, as discussed in [23]. Since how to model the cache hit

probability is not the focus of this paper, we shall not discuss this issue further in this paper.

7 Testing of General Conditions

The general conditions given in this paper are derived based on the queuing network models with closed-

form solutions. This raises the concern whether these general conditions are accurate enough when applied

to real multithreaded processors.

To address the above concern, we first note that when modeling the multithreaded processors using

queuing network models, there are two major areas that may introduce inaccuracies. The first area is the

modeling of various types of resources, e.g., SMT, coarse-grained CPU, and pipelined memory accesses.

The second area is the modeling of the stochastic nature of the workload, e.g., exponentially distributed

CPU service time and unloaded memory access latency. The first area is generally concerned with the lack
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of modeling of micro-architectural and the instruction-level details. Our study in [24], however, indicated

that this may introduce5 − 15% inaccuracies to the performance data. This should be tolerable given that

these general conditions are generally used in the initial programming phasefor resource provisioning. In

general, program fine tuning may be done in later phases to further optimize the performance. On the other

hand, the second area needs more careful justification. The exponential service time assumption made in

M/M/1 and M/M/m models are far from accurate enough to characterize the stochastic nature of the program

execution. Hence, in this section, we focus on testing the accuracy of the general conditions by removing

the assumptions made in the second area.

To test the accuracy of the general conditions in rather extreme conditions, we consider service time dis-

tributions with long tails for both CPU and memory components. More specifically,the Pareto distributions

are used to characterize the service times. Pareto distributions account for a wide range of code segment

sizes, or equivalently, the thread service times at the CPU, and large variations of memory access latencies.

The aim is to test whether such significant deviations from the exponential distributions would (a) shift the

appearance of a bottleneck resource away from the point in the parameter space identified by the general

conditions; and (b) significantly blur the boundaries between the bottleneckand non-bottleneck regions. We

use the simulation results of the original queuing network models as benchmarks for the testing.
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Figure 4: Exponential Distribution
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Figure 5: Pareto Distribution
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We consider the processor model with four memory resources. We run simulation for both the original

queuing network models (whose service times are Exponential) and the queuing network models with Pareto

service times. The results in term of CPU idle probability versus the number of threads are presented in Fig.

4 and Fig. 5. For each of these two cases, four scenarios are studied:(a) coarse-grained CPU and FCFS

memories; (b) coarse-grained CPU and memories with pipelined accesses; (c) SMT and FCFS memories;

and (d) SMT and memories with pipelined accesses. The result for the fourscenarios are presented in the

four subplots in Fig. 4 and Fig. 5. In each subplot, four curves are given. Of which two correspond to the

cases where one bottleneck resource is identified according to the general conditions (m0a1

m1
> 1), whereas

the other two do not involve bottleneck resource according to the generalconditions.

As one can see, for both Fig. 4 and Fig. 5, there is a clean division between the two sets of curves for all

the subplots. Namely, as the number of threads increases, the two curves corresponding to the cases without

bottleneck resource identified converge to zero, whereas the other two level out at some nonzero values.

The above results clearly indicate that the general conditions derived in this paper are insensitive to

the actual service time distributions of the processor components, even though they are obtained based

on the exponential service time distributions. As a result, the general conditions may be used as power

means to help quickly identify the bottleneck resources by performing a simple statistic estimation of a few

parameters.

8 Conclusions and Future Work

In this paper, the fundamental conditions for multithreaded processor bottleneck resource identification

are derived for a class of processor models based on queuing network techniques. These conditions are

general and applicable to a large design space. Based on these conditions, we arrive at a generic algorithm for

thread and cache resource provisioning. This algorithm can serve as guidelines for the design of practically

useful algorithms for thread and cache resource provisioning.
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The results presented in this paper can be generalized to the case where there are multiple cores in the

system, which is under way and will be reported elsewhere. Here we provide some intuitions how the results

presented in this paper may be generalized to the multicore case. For multicore processors, we are concerned

with the potential bottleneck resources shared by multiple cores. With a class of multicore processor models,

quite similar to the one presented in this paper, one can show that the aggregated thread arrival process at

a shared resource can be derived from the thread arrival processes coming from individual cores. This will

lead to general conditions that apply to virtually unlimited number of cores, i.e., many-core processors.
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A Appendix

Theorem A: There areN boxes (N ≥ 2). The capacity of theith box (i = 1, 2, · · · , N ) is ki, and
∑N

i=1 ki = M .

SN (y) is the number of different ways to puty identical balls into theseN boxes. ThenSN (y) is a monotonously

increasing function ofy, wheny ∈ [1, ⌊M
2 ⌋], andSN (y) reaches its maximal value wheny = ⌊M

2 ⌋.

Proof: We prove it by induction.

Basis step (N = 2): we define a step functionu(x) as follows:

u(x) =















1 x > 0

0 x ≤ 0

(26)

S2(y) can be calculated as follows: first, assume that there is no capacity constraints for both boxes (i.e.k1 =

∞, k2 = ∞). Then there are(y+1)!
y!·1! different ways to puty balls into these two boxes. However, since the size of

the boxes is not infinity, we can only put at mostk1 balls in box1, so the number of ways by which we can put

more thank1 balls in the 1st box must be excluded, which is
∑y

j1=1 u(j1 − k1). Similarly, for the 2nd box, there are

∑y

j2=1 u(j2 − k2) number of different ways needs to be excluded. Therefore, for y, y + 1 ≤ ⌊M
2 ⌋, we have,

S2(y) =
(y + 1)!

y! · 1!
−

y
∑

j1=1

u(j1 − k1) −

y
∑

j2=1

u(j2 − k2) (27)

S2(y + 1) =
(y + 2)!

(y + 1)! · 1!
−

y+1
∑

j1=1

u(j1 − k1) −

y+1
∑

j2=1

u(j2 − k2)

=
(y + 2)!

(y + 1)!
−

y
∑

j1=1

u(j1 − k1) −

y
∑

j2=1

u(j2 − k2) − u(y + 1 − k1) − u(y + 1 − k2) (28)

We further have,

S2(y + 1) − S2(y) =
1

y + 1
·
(y + 1)!

y!
− [u(y + 1 − k1) + u(y + 1 − k2)]

= 1 − [u(y + 1 − k1) + u(y + 1 − k2)] (29)

We want to showS2(y + 1) − S2(y) ≥ 0 or equivalently,[u(y + 1 − k1) + u(y + 1 − k2)] ≤ 1.

Foru(y + 1 − k1)

If (y + 1 − k1) ≤ 0 thenu(y + 1 − k1) = 0, [u(y + 1 − k1) + u(y + 1 − k2)] = u(y + 1 − k2) ≤ 1, and

25



S2(y + 1) − S2(y) ≥ 0.

else if(y + 1 − k1) > 0 thenu(y + 1 − k1) = 1 andy + 1 > k1

u(y + 1 − k2) = u(y + 1 − M + k1), becausek2 = M − k1.

∵ (y + 1 − k1) > 0,

∴ y + 1 > k1. ∵ y + 1 ≤ ⌊M
2 ⌋,

∴ k1 < y + 1 ≤ ⌊M
2 ⌋

∴ (y + 1 − M + k1) < 0, ∴ u(y + 1 − k2) = u(y + 1 − M + k1) = 0 and[u(y + 1 − k1) + u(y + 1 − k2)] ≤ 1.

∴ S2(y + 1) − S2(y) ≥ 0, i.e., the theorem holds true forN = 2.

Induction hypothesis (N ≥ 2): SN (y + 1) ≥ SN (y), for y, y + 1 ≤ ⌊M
2 ⌋

Induction step: now considerN + 1 boxes andy balls (y, y + 1 ≤ ⌊M
2 ⌋). Here we consider the firstN boxes as one

group and the(N + 1)th box as the other group. Consider puttingj balls into the(N + 1)th box, and the rest(y − j)

balls into the firstN boxes. The different ways to put(y − j) balls into the firstN boxes is given bySN (y − j). We

may putj (j ∈ [0, kN+1]) balls into the(N + 1)th box. We have,

SN+1(y) =

y
∑

j=0

u(kN+1 − j)SN (y − j) (30)

Similarly, we have,

SN+1(y + 1) =

y+1
∑

j=0

u(kN+1 − j)SN (y + 1 − j) (31)

Every term in Eq. (31), i.e.,u(kN+1 − j)SN (y + 1 − j), is no less than the term in Eq. (30), sinceSN (y + 1 − j) ≥

SN (y − j) (induction hypothesis). Furthermore, Eq. (31) has one moretermu(kN+1 − (y + 1))SN (y + 1− (y + 1)),

which is non-negtive. Therefore,SN+1(y + 1) ≥ SN+1(y), for y, y + 1 ≤ ⌊M
2 ⌋

Corollary A For polynomial functionF =
∑

k1+···+kn=A

∏n
i=1 a

k1

i

i

∑

k1+···+kn=B

∏n
i=1 a

k2

i

i , andA + B = Z,

Z is a constant. AssumeA ≤ B. Then F reaches its maximal value whenA = ⌊Z
2 ⌋, and F is a monotonously

increasing function of A, forA ∈ [1, ⌊Z
2 ⌋]

Proof: We define:

F =
∑

k1+···+kn=A

n
∏

i=1

a
k1

i

i

∑

k1+···+kn=B

n
∏

i=1

a
k2

i

i

=
∑

k0

1
+···+k0

n
=Z

C(k0
1, · · · , k0

n) ·

n
∏

i=1

a
k0

i

i (32)
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We haveA + B = Z, andk1
i + k2

i = k0
i . C(k0

1, · · · , k0
n) (denoted byC for convenience) is the coefficient for each

term in Eq. (32). For givenA andB, the value ofF is determined byC. The question of how to calculateC can be

mapped to a combinatorial problem below:

Suppose we haven boxes. The capacity of theith box isk0
i (

∑n

i=1 k0
i = Z). It turns out thatC is the number of ways

to putA identical balls into these boxes. This combinatorial problem is addressed inTheorem A. SinceA + B = Z,

andZ is a constant, we just have one variable. For convenience, weassume thatA is the smaller than B. According to

Theorem A, C reaches its maximal value whenA = ⌊Z
2 ⌋, andC is a monotonously function ofA, for A ∈ [1, ⌊Z

2 ⌋].

Therefore, F reaches its maximal value whenA = ⌊Z
2 ⌋, and F is a monotonously function of A, forA ∈ [1, ⌊Z

2 ⌋].
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