Fundamental Conditions on Bottleneck Resource ldentificdto

Multithreaded Processors

Abstract

This paper studies general properties for a class of quenehgork models that at the thread level,
characterize a class of single-core multithreaded procgséth various kind of thread scheduling disci-
plines and parallel resources. In particular, we find, witttbematical rigor, the general conditions under
which the bottleneck resources appear. Our simulatiomgedemonstrates that these general conditions
remain to be accurate when some key simplistic assumptiaaenm the queuing network models are
removed. The test of these conditions for a specific workkad processor in this class only involves
some statistic parameter estimation of the workload, ntakipossible to quickly identify bottleneck
resources without actually running the program in the gsoe We also demonstrate how these general
conditions, combined with any given caching model, can keadseful guidelines and algorithms for
thread and cache resource provisioning that maximizesitbaghput performance. Finally, we provide

insights on how these conditions may be generalized to the @Bmany-core processors.
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1 Introduction

As the gap between processor speed and resource (e.g., memory JsacktE€s speeds ever widens, the

role of multithreading and caching as the two major resource access laidimtydnd reduction techniques



has become increasingly important. However, it is a challenge as to how\siprothread and cache
resources to achieve high throughput performance, which is deterrbinealltiple intertwined factors,
including workload characteristics, thread scheduling discipline, rescaccess latencies, and resource
access mechanisms. The thread and cache resource provisioningkauwst these factors into account to
be effective. In fact, adding more threads and caching more data wjikatet® a given resource do not
always help hide more resource access latency from the CPU, if thecesaxcess itself does not contribute
to longer CPU idle time. To be effective, the thread and cache resowreisipning must aim at removing
resource bottlenecks that lead to longer CPU idle time and hence, redwaradl throughput performance.

Hence, for thread and cache provisioning, a key issue to be addrisskew to identify bottleneck
resources that constrain the overall throughput performance.hBear& testing is the widely adopted ap-
proach to address this issue. However, this approach has limited predtiotixer for future workloads and
is time consuming. The existing design space exploration techniques aimindiagfgeneral properties
of the design space requires intelligent interpolation of sampled bencharatksence can still be too time
consuming and heavy-duty from a programmer’s point of view. A moretjma approach is to be able
to identify bottleneck resources by simply performing a test of certain condifiovolving all the above
mentioned intertwined factors. In this paper, the aim is to find such germmdltions for a large class of
single-core processors. The generalization of the results in this pafier tase of many-core processors
will be reported elsewhere. In Section 8, however, the insights on homayeextend the current results to
the many-core case will be briefly discussed.

Given the intricate interactions among many factors, it would be very diffi€eier possible, to derive
general conditions from benchmark or simulation based approachesslyldhese general conditions need
to be presented in a mathematical expression involving all the interactingda@tothis end, an analytical
modeling technigue that can capture all the major interacting factors andvee smalytically should to

be sought. In this paper, we show that such general conditions cagrikedifor a class of closed queuing



networks that models a class of single-core multithreaded processoesthtahd level, overlooking micro-
architectural details. As a first order approximation, this class of psocesodels allows simultaneous
multithreaded (SMT), fine-grained, and coarse-grained CPU an@sgaglpipelined, and parallel resource
access mechanisms. We also demonstrate that these general conditiangedmaaccurate, when some
key simplistic assumptions made in this class of models are removed. Moreavesting of a thread-level
processor simulation tool against cycle-accurate simulation indicated tedboking micro-architectural
details, such as instruction-level-pipeline (ILP) aborts, introdGeek% inaccuracy to the thread-level tool
[24]. Hence, we believe that these general conditions can be usealdiicerto aid the initial configuration
of the thread and cache resources.

The rest of the paper is organized as follows. Section 2 reviews thedelatdk. Section 3 describes
the modeling technigue used in this paper. Section 4 presents the main resuttse igeneral conditions,
and highlights the main ideas by means of an example. Section 5 gives thditteamof of the general
conditions. Based on these general conditions, Section 6 developsricgdgorithm that serves as a useful
guideline for the development of algorithms for effective thread andeceetource provisioning. Section 7
tests the accuracy of the general conditions with some key assumptions inde&mgdechnique removed.
Finally, Section 8 concludes the paper and presents a brief discusdimwome may generalize the general

conditions to the case of many-core processors.

2 related work

For a given processor and workload, the bottleneck resourceddariiified through simulation and/or
benchmark testing (e.g., [5, 7, 8, 12, 14]). Clearly, general condittamsiot be drawn from such ap-
proaches. In contrast, the existing design space exploration techrfggeg6, 10, 11, 18]) can identify
bottleneck resources over a large design space. However, sincarthall based on intelligent search al-

gorithms guided by the benchmark samples, it is computationally too expeiisbver possible, for the



existing techniques to construct the general conditions for bottleneokine=s to appear, expressible in
terms of the functional relationships among various system and worklaaghpgers covering the entire
design space. More importantly, it is overkill for a programmer to employ semiques to aid the pro-

gramming.

Compared with the above approaches, analytical modeling techniquesrareiaime in dealing with the
problem in question. We can roughly classify the existing analytical psocesodels into two categories,
i.e., processor specific and generic. The processor specific modegpattemodel in substantial detail
of specific processor architectures and to accurately characteripetftemance of the processors, e.g.,
[4, 19]. Itis obvious that by design, processor specific models arsuitable for the study of the general
properties pertaining to a large design space.

On the other hand, the generic models attempt to capture the generaltigopbared by many pro-
cessors of the same kind, overlooking micro-architectural details. Thematable models of this kind is
Amdabhl’s [20] and its variations (e.g., [21]) that capture the scaling ptigsefor multiprocessors without
taking into account of the memory resource access mechanisms, multithreétipdines, and so on. In
[9], a mean value analysis of a generic multithreaded multicore processal wiosimilar nature is per-
formed. The performance results reveal that there is a performatieg tabe avoided as the number of
threads increases, a phenomenon similar to the one found in [15, 1] inrtextof single multithreaded
processors. Again, this model does not take into account of the parcggecific features into account,
such as memory access mechanisms and thread scheduling disciplinesgAlthegeneric queuing mod-
els presented in [15, 1, 13] do capture somewhat more processdficsfeatures, which, however, are
restricted to a single processor model, i.e., an M/M/1 queuing model, modelingdatbe-grained CPUs
and memory resources with a FCFS access mechanism. Moreover, nbeesgfsting models attempts to
model the workload in a large workload space. If we draw a three dimeaigiesign space in a cone shape,

in terms of resource access mechanisms, thread scheduling disciplidego@toads as shown in Fig. 1,



the existing analytical models only cover a small cone on the left.
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Figure 1: Design Space

The approach taken in this paper differs from the above existing ones getise that it directly studies
a class of processor models, which inherently accounts for all possibipanent models defined in the
design space in Fig. 1, including SMT, coarse and fine grained thréadisiing disciplines for a multi-
threaded CPU and both sequential and parallel/pipelined access mechéistigr resources, and the
entire workload dimension. As a result, the general properties obtainedisaclass of processor models
apply to the entire design space. Even though the work presented in tlisipapstricted to a class of

single-core processors, the approach taken can be generalizeadss¢hef many-core processors.

3 Modd

The approach taken in this paper finds a middle ground between generiting@aal processor-specific
modeling approaches. To scale to a large design space, the approashsfamn modeling thread-level
activities, overlooking microarchitectural details. In the meantime, it takes atouat processor specific
features that have strong effects on the thread level performande.tiNd based on our testing results in
[24], overlooking micro-architectural details, such as instruction-lpyatline (ILP) aborts, only introduces

5 — 15% inaccuracy to the thread-level models/simulators. So we can expect thasthis obtained in this
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paper could be used in practice for quantitative resource allocationglless providing significant insights
on understanding the processor behaviors.

In this section, we describe our model, including processor model ogjaoniz processor component
models, and the workload model.

Processor Model OrganizationLike the existing queuing network models for multithreaded processors
(e.g., [15, 1, 13]), our model works at the thread level, in the sensd thaly captures the events that have
major impacts on the thread level performance. In other words, the instrdetiel and microarchitectural
details are overlooked, unless they trigger events at the thread leyehsaa instruction for memory access
that causes the thread to stall or an instruction to access a critical regicatises serialization effect at the
thread level. Correspondingly all the components including CPU, cache/mesnd interconnect network
are modeled at a highly abstract level, overlooking microarchitectual detaisenough to capture the
thread level activities. More specifically, each component is modeled asuirg server with a set of
possible queuing disciplines, modeling the thread scheduling disciplinesauroe access mechanisms,
as given in Fig. 1. These queuing servers are interconnected to fguawang network. In this queuing
network, a number of jobs or threads move from one server to anothegiwith routing probabilities (note
that this view is purely conceptual and in a real processor, it is not teadBithat move from one component
to another but the tasks that the threads handle).

In this paper, we consider a class of closed queuing network models givieig. 2. This class of
models characterizes a class of processors with a single CPU, a cadta) arbitrary number of parallel
resources, denoted agy, (€.g., a main memory, a coprocessor, an I/O device, or even a crititahyein
this model, we assume that the interconnection network has sufficient lwihde transfer data between
CPU and the parallel resources without creating a bottleneck and haac®ttexplicitly modeled. Upon
exiting the CPU server, a thread has probabjlifyto visit parallel resourceé, wherei = 1,2,--- ;mgq. In

the case of memory resource access, the thread will first check if thestegl data is available in the cache.
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Figure 2: queuing network model

In our model, no details of cache access mechanisms are modeled, exaepieshit probability?;;, (.S;)
that causes the thread to immediately loop back to the CPU and a cache migsiljpyoba— P;;,(S;))
that causes the thread to accessitheesource. Heré; is the size of the cache memory block allocated
to the cached data from memory resouiceAll the other components are modeled as queuing servers.
The CPU queuing server mimics the thread scheduling disciplines listed in tlagl $okeduling discipline
dimension in Fig. 1 and all other parallel queuing servers mimic the resoucessamechanisms in the
resource dimension in Fig. 1. An arbitrary number of thredds,circulates in the closed queuing network,
with routing probabilityp;; to visit server;j upon exiting servef, mimicking the stochastic behaviors of a
long-running parallelizable program or multiple programs handled by tkrigaparallel (such as parallel
packet processing in a network processor or parallel queries ater pgocessor).

Component ModeldVithout resorting to any approximation techniques, the existing queuingrietmod-
eling techniques will allow both resource and thread scheduling disciplinendiores in the design space
(see Fig. 1) to be exploited analytically. As a first order approximationiretgince in these two dimensions
can be modeled using a queuing model that has local balance equatiolitd€aels to solutions of product
form or closed form). More specifically, Table 1 shows how these two diinas can be approximately

modeled by only three queuing models with local balance equations, inclddjfg/oo; M/M/m FCFS



Queue Model
M/G/oo| MIM/mFCFS | MIG/1PS | M/M/1

Component

SMT U U

Fine-Grained Thread

scheduling .
Coarse-Grained Thread schedulijpg
scheduling =
FCFS shared Memory,
Cache, Interconnection 0

Network,or Critical Region

FCFS Memory with

with Popelined Access

Table 1: Component modeling using queuing models with local balance eguation

(including M/M/1); and M/G/1 PS (processor sharing).
Note that for all the multithread scheduling disciplines, the service time distributi@igqueuing model
models the time distribution for a thread to be serviced at the correspondéuinguserver. With this in

mind, the following explains the rationales behind the mappings in Table 1:

e SMT: It allows multiple issues in one clock cycle from independent threadating multiple virtual
CPUs. If the number of threads in use is no greater than the number of issoae clock cycle,
the CPU can be approximately modeled asMnG /oo queue, mimicking multiple CPUs handling
all the threads in parallel, otherwise, it can be approximately modeled as amMiikeue, i.e., not

enough virtual CPUs to handle all the threads and some may have to belqueue



e Fine-grained thread scheduling discipline: All the threads access ther€s@urce will share the
CPU resource at the finest granularity, i.e., one instruction per threatbima-robin fashion. This
discipline can be approximately modeled as an M/G/1 PS queue, i.e., all thestsieaed equal

amount of the total CPU resource in parallel.

e Coarse-Grained thread scheduling discipline: All the threads acceS®theesource will be serviced
in a round-robin fashion and the context is switched only when the threstellisd, waiting for the
return of other resource accesses. This can be approximately modete&@FS queue, e.g., an

M/M/1 queue.

e FCFS Shared Memory, Cache, Interconnect Network, or Critical Regibis kind of resources can

be modeled as an M/M/1 queue.

e FCFS Memory with Pipelined Access: The pipeline depth determines how masadthcan be ser-

viced simultaneous in the M/M/m FCFS queue.

Note that in the case of memory structure with multiple memory banks, each menmkrynéads to be
modeled as a separate queuing server.
Workload Model A workload is generally defined as the collection of data processingresgents pre-
sented to the system during a specific period of time [17]. In the contextirofnedel,a workload is a

mapping of a program to the model organization and a model configuratio

[ ]CPU

B | BN | [ Resource 1
Il Resource 2

Figure 3: code path

To be more specific, consider an example code path at the thread levietedap Fig. 3. This code

path is a mapping of a program or a program task to a thread in the modeizatian in Fig. 2. Itis
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composed of different colored segments, each corresponding to thieemwf CPU cycles the thread is
processed at the CPU or a resource. Obviously, the length of eatteses determined by both program
or program task characteristics and the processing speed at thepoordeng CPU or resource. It represents
the actual service time the thread is being serviced at a queuing serténcluling the queue waiting
time). Therefore ideally, the service time distribution for a queuing servet bmugqual to the segment
length distribution for all the segments from all the threads processedtasahaer. This can be done
for M/G /oo and M /G /1 PS queuing models in Table 1. However, for the M/M/1 and M/M/m queuing
models in Table 1, the service time distributions are a given, i.e., exponentidtipdtied. This service time
distribution is uniguely determined by the average serviceurghter queuing servet. In this casey; should
be calculated as the inverse of the average segment length for all therdsdrom all the threads processed
at serveri. This is obviously an inaccurate characterization of the workload. In spit@s, in Section 7,
we shall demonstrate that the general conditions derived from this simpld tnoteout to be accurate. In
what follows, we use; to collectively represent the service time distributions or configuratiompetexs
that need to be configured for serveObviously, the routing probability;;, in the model in Fig. 2, should
be determined by theto-j segment transition statistics collectable from the code paths handled by all the
threads.

In summary, a workload for the model in Fig. 2 is uniquely defined by a gmedel configuration in
terms of{u; } that determine the service time distributions for all the queuing servers atidg@robabil-
ities {p;; }, hereafter denoted a$;(;}, {p;;}). As aresult, {1;}, {p;;}) defines the entire workload space.

Our work focuses on the study of the entire workload space, i.e., the spaoned by the parametefs.(},

{pi;})-
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4 Main Results

To limit the exposure, for the time being, we assume that there is no cache in thed md-ig. 2,
i.e., Pip(S;) = 0. The results with caching will be given at the end of this section. Defifwe) as the
probability that there are: threads at the CPU server. We focus on the performance meBsuteP(0),
i.e., the probability that the CPU server is in the idle state. In particular, we tt@dted in its asymptotic
behavior, i.e., whethdim,,, ... Pr = 0. It tells us whether or not multithreading can completely hide the
resource access latencies from the CPU, provided that the threanlaes®abundant, and hence, whether
the multithreading can help achieve the maximum throughput performancepdifismance measure will
lead to the identification of the general conditions under which the bottlemesokirces are bound to appear,
regardless how many threads are used.

Define f;(k;) as the steady state probability that there Arehreads at queuing server for i =
0,1,---,mgq, whered- "% k; = M,. Letg; represent queuing serve(see Fig. 2), foi = 0,1,--- ,mg.

Following the convolution algorithm [2], we have,

— fO(O)Q1*2*---*mq(Mt)

i QO*I*Q*---*mq(Mt) (1)
where
QO*1*2*...*mq(Mt) = Z fO(m)q1*2*...*mq(n) (2)
m~+n=»M;
and
mq
q1424-xmgq (1) = Z H Fi(k:) 3)

kl—‘r"-—l—kmq:n =1

Eq. (1) holds true for any queuing servers listed in Table 1 and any npadameters{(;}, {pi;}) . In

other words P; is a performance measure for a class of processor models defined ititbedesign space
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in Fig. 1.

According to Table 1, bottd/ /G /oo and M /M /m queuing models can be used to model SMT-based
CPU server and thé//G /1 PS queuing model is used to model fine-grained CPU server in Fig. 2. All
the resource-related servers can be modeled usingy/ /1 and M /M /m queuing models. To simplify the
design, in this paper, we adopf /M /m for SMT and only consider a special caseMf/G/1 PS, i.e.,

M /M /1 PS for the fine-grained CPU server. So the queuing model for CP@rser¥ig. 2 isM /M /my,
and queuing model for the resource-related servers\gf&!/m; i = 1,--- ,mq. With these simplifica-

tions, the service time distributions for all the queuing servers are themerpally distributed and uniquely

determined by their average service ragtgdor i = 0,1,--- ,mq and f;(k;) can be generally express as
follows:
ol
i(ki) = =+ 4

whereq; is the relative utilization of;;. «; = % fori =1,2,---mgandagy = % ande; is the relative
1

thread arrival rate a;. In this systemeo = >, _, . €. () is define as follows:

1 M/M/1 & M/M/1PS
x! M /M /o
Blx) = (5)
x! M/M/m FCFS z<m
m!m@™  M/M/m FCFS z>m

Substituting Eq.(4) into Eq. (1), we have,

ki

Z qu @
k‘l+"'+kmq:Mt =1 ,Bl(k‘l)

Pr=

M, 1 af’ ©
mq i
Zn:to Bo(M;—n) Zk1+---+kmq=n Hi:l Bi(ki)

wherea; = ”‘Lﬂ
We now have the following general result:
Theorem : limys, .o Pr = 0if and only if%ﬁ” <1,Vi=1,2,--- ,mq.
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The theorem simply states that wh@‘h@jﬂ > 1, adding threads cannot completely hide itheresource
access latency from the CPU, i.e., resourpeesents a performance bottleneck. This condition is surpris-
ingly simple, while being very general, applicable to any processor artimigéscthat can be modeled by the
class of processor models defined by the queuing network in Fig. 2 adésign space in Fig. 1.

To illustrate the power of the above result, we give a special case hensidér the case whenq = 1,

i.e., the model in Fig. 2 only has two queuing servers, a CPU server asdace server. We have,

As M; goes to infinity,

L A>1
m’mO —mp+1 e — a k! ,
lim Py = mo! = +Zk’0:01(m711) /e (7)
Mi—o0 I
0 A<1

This gives the general condition under which the resource becometienbok whend > 1, whereA =
“;n—”fo = % agreeing with the general result in Theorem. This condition tells us that iivbeage
service rate times the level of parallelism (ix.;) at the resource is slower than the service rate times the
level of parallelism (i.e.;ng) at the CPU server, the resource becomes a bottleneck that throttlesth# ov
throughput.

Finally, it is interesting to note that wheny, = m; = 1 (i.e., the CPU is coarse-grained and resource
access mechanism is FCFS), we have,

a1—1
| >1

lim P;=
Mi—o0

(8)

0 a; <1

A deterministic version of this result was derived in [3] and later on a rédeititical to the one in Eq. (8)
was derived and studied in [22]. Clearly, the result given in Theorefarimore general than the results
given in [3] and [22].

So far, we have assumed that there is no cache effectpj;g.$;) = 0, fori = 1,2,--- ,mq. Since
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S; is the cache resource allocated to accommodate the cached data fromceésae must haveS >
>_i=1.mq Si» WhereS is the total cache size. Now, we take into account of the caching effedtssfanodel
in Fig. 2, i.e.,P;z(S;) > 0. To simplify the discussion, we assume that all the resources are memory
resources, so that caching can help reduce the resource accesietater all the resources.

Assuming there is no correlation among consecutive cache hits, our amded only amounts to the
change opy; to (1 — P;;(.S;))po; and consequently,; changes t¢1 — Py, (.S;))a,. The product-form prop-

erty of the model is preserved. Hence, we have the following corollargiallel to Theorem,

Corollary :  limps, .o, Py = 0 if and only if W <1,Vi=1,2,---,mgq.

5 Proof of Theorem

This section provides a detailed proof of the theorem given in the preseison.
Proof of Theorem: The theorem can be decomposed into two parts:
(1) if 0% < 1,Vi = 1,2, ,my, thenlimyy, oo Pr = 0.
(2) if there is at least one term fmoa;/m; }i=1.m, larger thant, thenlimyy, .. Pr > 0.
In what follows, we prove these two parts separately.
First, we prove the first part. Without loss of generality, assugrﬁné; = max{%} and 7‘;—11 =

M,
min {7‘;—} for i € [1,m,]. Dividing both the numerator and denominator of Eq. (6)<Q%{:Tq> t, we

have,
mq [ @iMmg \™ m,
Ek1+“‘+qu:Mt [Lih (miamq> Bi (ki)
PI = @ n—My (9)
=)
ZMt LZ qu @iMmg my
n=0 ﬂo(]\/[t—’n,) k1+"'+k7nq:n =1 miamg Bl(kl)
H ai a5 Amq ) — e —
Since - < [ < mmq,forz =2,---,my — 1, we have,
m1Gm, mMiQm, Mg, myg
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Hence,

ki
P[ < - n_MTl-‘r +hmg ¢ 1li=1 3;(k;) (11)
mgq
M, <mm ) m aimmm kl mfl
Zn:to ﬁo((jwt*n) Zlﬂ—‘rm—l—kmq:n Hi:ql (mlamZ) Bi (ki)
The queuing servey; can be generally viewed as an MM/ queue;i € (0,--- ,my). Since forvk;,

Bi(ki) > mi!mfi—mi andg;(k) < mz'mf and noticing that there a% elements irElirerkmq,

t!

we have:

mg mznz

amyg n—Mp .

EMt Mmg z qu a1Mmmg \™ 1
n=0  Bo(M¢—n) kit tkmg=n LLli=1 \ miam, m;!

(Mt+mq—1)! qu mznz
M (mg—1)! 11li=1 "1

Mp—n
mmq
ZMt < 4mq ) (ntmg—1)! (almmq )n . qu 1

n=0 Bo(Mi—n)  nl(mg—1)! M1amg =1 m;!
1

M, n
Mm t M, 1 m
1 . to & (4L . q .my;
( Amgq ) Z”ZO Bo(M¢—n) <m1) Hi:l my;
1

M, My—
Mg ‘ qu m.;Mi ZMt m " (amg \"
MOamg i=1""" n=0 Bo(M¢—n) mi

IA

My Mi—n n
Mg qu M, M ZMt Mo aimg
moamg i=1"" n=0 mo!méwt_n m1

= (12)

M+1

M 7(“1””0)
- qu my; M Mg\ —1 R
mo! 11i=1""" moGmg 1— 210
m

1

Denote the last expression in Eq. (12)-as’]. Since™ < ™0 < | limyy, o P = 0. From Eq.

mgq

(12), we haveP; > P;. Note thatP; > 0. Hencelimy, oo Pr = 0.

Now we prove the second part. To facilitate the proof, the dependenyarim, is explicitly included
in Pr as a superscript, i.eE](mQ). Futhermore, since there is at least one terffvina; /m; }i=1.m, larger

thanl, we assumé&r® > 1. Form, = 1 (i.e., there is only one resource), from Eg. (6), we have

a]V[t
1

= %y
My e
Zklio ﬁQ(Mt—kl)ﬁl(kl)
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According to the assumption in part (Z}2* > 1; from Eq. (7) we have,

1
]\%}Lq)o P( ) mq <a1m0>7m0+1 (al ) k1 >0 (14)
7:2)0! . W;llmo,l _i_zzrio 01 L

my

This means that for the single resource case, the second part of thenthiealds true. To prove the theorem
holds true in general, we need to show that it holds truerfag. Now if P}m"“) > P}m") for Ym,, the

second part of the theorem will hold true fam,,. In the following, we show this is indeed the case.

Forvm,, Let
ks
mq 4,
P(mq) - Zk1+"'+kmq:Mt Hi:l Bi(k:) (15)
; =
M, mg @’
>0 W Zk’ﬁ- thmg=n [T Bi (ki)
Notice that Eq. (15) is the same as Eq. (6). For+ 1, we have,
k.
mg+1 a;*
P(qurl) B Zk1+~~-+kmq+kmq+1=Mt Hi:ql Bi(ki) (16)
, =
M, mg+1 a;
> o W Zk’1+ Akmgthmg+1=n [T Bi (ki)
or
m ai)i
plmgrt) _ etk =i i gl +
I - ki
M, mg _a;"
Zn tO ﬂO(Mt n Zk1+ +kmq*n Hi:ql ,67(161) +
armatt my _ab a7
m q 7
D121 B g ) bty =M1 Ll ()
mq+l k;

(3

Mt mqg+1 mgq a
Z” 1 Bo(Mi—n) Mt kaqH:l Bmg+1(kmg+1) ZliF"'Jrkmq:”*kqu Hl—l /31( i)

Eq. (17) is written in such a form that the first terms in both the numerator @dktmominator are the same
as the numerator and denominator in Eq. (16), respectively. Nou, &td R be the second term in the
denominator multiplied by the first term in the numerator, and the first term in thendeator multiplied

by the second term in the numerator, respectively, as given below:

M, km(ff
L= _ Omatt :
O a0n—w Mt_n Z Ft(bngrt) > Hﬁl SIS Hﬁl
mq ki+- +k'mq7n k'm,q+lz 1 ki+- +k‘7nq7Mt

(18)
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kmq+1

e

¢I+1 mq+1) ky +~"+k‘mq:Mt k?mq+11 1

M, )
= {nz:;] Bo(M; —n) 'k . ;k;mqml_[l Bi(k
(19)

Obviously,P}m"“) > P}mq) if and only if R > L. To showR > L, we construct another quantifyf as

follows:
kmq+1
Z Z mq“ > H >
ﬂOMt_n Pt (k1) Bt g =My kg 1 = 161 R J=ni= 1ﬂZ i)
(20)

To proveR > L, we first show thaf.’ > L and thenR > L'.

First, we note that the first two sums in Eq. (18) are the same as the first mgisEq. (20), exceptin
Eq. (20), there is an extra termat= 0. Clearly, if we could show that for any given > 0, the last two
sums in Eg. (20) is no less than the last two sums in Eq. (18), weHaweL. In other words, we want to
showE’ > E, where,

E= Z H ,81 Z H /81 ) (21)

kit tkmg =n—kmg 41 i=1 i) ket kmg =My i=1

and

aki

RN VR | ST S | @)
ﬁl’b /821

k1+"'+kmq:Mt ]Cm +1 1= 1 k +-- +km =n1=1

According toCorrolary A given in Appendix, bothE and E’ have the sam& value, i.e.,.Z = M; +
n — km,+1. In E, let A be the smaller one aof/; andn — k,,,+1 and inE’, A’ be the smaller one of
and M; — ky,,+1. Note that if A’ > A thenE’ > E, since, according t€orrolary A, E and E’ are
monotonously increasing function wheti, A € [1,|Z]]. As aresult, to provd/ > L, we need to show
thatA’ > A.

SinceM; > n > kpyp1 > 1, My > n — kyyyy1, A =n — k1. In EY, since botth andM; — k41

can be smaller thab%J, we have,
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W My—n n>|%]

Again, sinceM; > n > ky,11 > 1, A" — A > 0 always holds. So we hav®’ > E, and therefore,
L' > L.

Finally, we show thafz > L’. We first rewrite Eq. (20) as follows:

k’mq+1

mq+1
2 NIES

mq+1) k,‘ ++kmq:Mt kmq+1l 1

M 1
:;ﬁ(](Mt—n)' 2 Hﬂz

kit tkmg=ni=1 km

(23)
We note that at any given, the part with the last two sums in Eq. (19) is no less than the part with the last
two sums in Eq. (23), becaudd; > n for Vn. Furthermore, the parts involving the first two sums in Eq.
(19) and Eqg. (23) are the same, except that the part in Eq. (19) regrarterm at: = 0. Hence, we have

R > L'. Since we have shown that > L, R > L and thereforeP}qu) > P}mq) > P}l) > 0.

6 Thread and Cache Resource Provisioning

It is clear that cache is needed in addition to multithreading to remove the bokleesaurce; if
o > 1, according to Theorem. Now according to Corollary, the minimum amountafeceesource;

that is needed to remove the bottleneck resournest satisfy the following equation:

mo(1 — Pip(si))a;

mg

—1 (24)

from Eg. (24) we have,

my;

Si= Pyl (1——) (25)

moa;

1

where P, * is the inverse function of;,. Clearly, S; = 0 if resource: is not a bottleneck resource.

The condition thatS > > S; gives us a good idea as to how much total cache resource is needed

i=1:mq
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to maximize the throughput performance. dfis a given, this condition determines whether maximum
throughput performance can be achieved or not, with maximal threade@he cesource provisioned.

In summary, we have the following algorithm for effective thread and €aekource provisioning:

o if 0% < 1, foralli = 1,2,---,mgq, the maximum throughput performance can be achieved by

7

adding sufficient number of threads and cache is not needed

o else if (without loss of generalityeer < mofz < ... < MOd=l < ] o Motk <., < M0dmg,

ma2 - - Mg-1 mg - - Mmmq

calculateS; for i = k,--- ,mq from Eq. (25). IfS > > S;, outputS; for cache resource

i=k:mgq

provisioning; else output; and request for addition@p _ S; — S) cache memory.

i=k:mgq

To make the above discussion generally applicable to any detailed cachirgdsmsmifar we have not
mentioned what’;, (S;) should look like. In practiceP;;(S;) is a complicated function of not onl§;, but
also data request patterns, thread scheduling discipline, cache raplga@dgorithm, etc. A widely adopted
analytical model isP;,(S;) =1 — (% + 1) 7(671), as discussed in [23]. Since how to model the cache hit

probability is not the focus of this paper, we shall not discuss this isstheefun this paper.

7 Testing of General Conditions

The general conditions given in this paper are derived based on¢éngunetwork models with closed-
form solutions. This raises the concern whether these general cosditieraccurate enough when applied
to real multithreaded processors.

To address the above concern, we first note that when modeling the maltidttrgorocessors using
gueuing network models, there are two major areas that may introduce liaeiesu The first area is the
modeling of various types of resources, e.g., SMT, coarse-grainéy &Rl pipelined memory accesses.
The second area is the modeling of the stochastic nature of the workloadex@gnentially distributed

CPU service time and unloaded memory access latency. The first areaiallyeooncerned with the lack
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of modeling of micro-architectural and the instruction-level details. Ourystud24], however, indicated

that this may introducé — 15% inaccuracies to the performance data. This should be tolerable given that
these general conditions are generally used in the initial programming fitagsource provisioning. In
general, program fine tuning may be done in later phases to further optiripetformance. On the other
hand, the second area needs more careful justification. The expdseni@e time assumption made in
M/M/1 and M/M/m models are far from accurate enough to characterize tbleagtic nature of the program
execution. Hence, in this section, we focus on testing the accuracy oétieral conditions by removing

the assumptions made in the second area.

To test the accuracy of the general conditions in rather extreme conditierconsider service time dis-
tributions with long tails for both CPU and memory components. More specifitiaiyPareto distributions
are used to characterize the service times. Pareto distributions accoanwvide range of code segment
sizes, or equivalently, the thread service times at the CPU, and largéaragiaf memory access latencies.
The aim is to test whether such significant deviations from the exponeigigbdtions would (a) shift the
appearance of a bottleneck resource away from the point in the parapate identified by the general
conditions; and (b) significantly blur the boundaries between the bottlemetkon-bottleneck regions. We

use the simulation results of the original queuing network models as benchfoatke testing.

Coarse-grained CPU, FCFS Memorie€oarse—grained CPU, Memory Parallelism = 3 Coarse-grained CPU, FCFS Memorie€oarse—grained CPU, Memory Parallelism = 3
0.8 0.8 0.8 0.8
mOal/ml=11 mOal/ml=1.1 mOal/ml=11
—>—moOal/ml=12 —>—moOal/ml=14 —>—moOal/ml=14
moOal/ml=0.93 mOal/ml=0.93 moOal/ml=0.93
moOal/ml=0.53

mOal/ml=1.1
—>—m0al/m1=13
moOal/ml=0.93
mOal/ml =0.76

o
)
o
o
o
)
o
)

mOal/ml = 0.58

moOal/ml=0.62

CPU Idle probability
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> mOal/ml=11 > moOal/ml=1.1 > mOal/ml=11 2 moOal/ml=1.1
% 03 —>—moOal/ml=12 E 06 —>—mOal/ml=14 % 03 —>—moOal/ml=12 E 06 —*—m0al/m1=13
8 moOal/ml =0.93 8 mOal/ml=0.93 S moOal/ml =0.93 3 mOal/ml=0.93
S = S = S = £ =
uE; 0.2 m0al/ml=0.7 3 0.4 mOal/ml = 0.58 g 0.2 moOal/ml=0.53 3 0.4 mOal/ml = 0.58
] ] ] 3
o)
O O () O
0 0 0 0
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
No. of Threads No. of Threads No. of Threads No. of Threads
Figure 4: Exponential Distribution Figure 5: Pareto Distribution
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We consider the processor model with four memory resources. We ruhasionufor both the original
gueuing network models (whose service times are Exponential) and thieeguetwork models with Pareto
service times. The results in term of CPU idle probability versus the numbereaidh are presented in Fig.
4 and Fig. 5. For each of these two cases, four scenarios are st(ajemharse-grained CPU and FCFS
memories; (b) coarse-grained CPU and memories with pipelined access88 T and FCFS memories;
and (d) SMT and memories with pipelined accesses. The result for thedenarios are presented in the
four subplots in Fig. 4 and Fig. 5. In each subplot, four curves arengi®f which two correspond to the
cases where one bottleneck resource is identified according to theibemeditions %‘1 > 1), whereas
the other two do not involve bottleneck resource according to the gesmrditions.

As one can see, for both Fig. 4 and Fig. 5, there is a clean division betivedwo sets of curves for all
the subplots. Namely, as the number of threads increases, the two comesponding to the cases without
bottleneck resource identified converge to zero, whereas the othenstolg at some nonzero values.

The above results clearly indicate that the general conditions derivedsipadper are insensitive to
the actual service time distributions of the processor components, eveghtlitoey are obtained based
on the exponential service time distributions. As a result, the general corgitiay be used as power
means to help quickly identify the bottleneck resources by performing a simfiltistastimation of a few

parameters.

8 Conclusions and Future Work

In this paper, the fundamental conditions for multithreaded processorrmskeesource identification
are derived for a class of processor models based on queuing kewebiniques. These conditions are
general and applicable to a large design space. Based on these candig@rrive at a generic algorithm for
thread and cache resource provisioning. This algorithm can servedsdiges for the design of practically

useful algorithms for thread and cache resource provisioning.
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The results presented in this paper can be generalized to the case vanerarthmultiple cores in the
system, which is under way and will be reported elsewhere. Here wégrsgme intuitions how the results
presented in this paper may be generalized to the multicore case. For multimoeegors, we are concerned
with the potential bottleneck resources shared by multiple cores. With a €iasdtizore processor models,
quite similar to the one presented in this paper, one can show that the agdrégaad arrival process at
a shared resource can be derived from the thread arrival pesEesming from individual cores. This will

lead to general conditions that apply to virtually unlimited number of cores, i.@y{t@re processors.
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A Appendix

Theorem A: There areV boxes (V > 2). The capacity of thethbox ¢ =1,2,--- , N)isk;, andzf\il ki =M.
Sn(y) is the number of different ways to pytidentical balls into thes& boxes. ThenSy (y) is a monotonously
increasing function of, wheny € [1, |4 |], andSy (y) reaches its maximal value when= | 4 |.

Proof: We prove it by induction.

Basisstep (IV = 2): we define a step functiom(z) as follows:

u(z) = (26)

S2(y) can be calculated as follows: first, assume that there is paciig constraints for both boxes (i.&; =
00, ko = o0). Then there aréz%)! different ways to puty balls into these two boxes. However, since the size of
the boxes is not infinity, we can only put at mdst balls in box1, so the number of ways by which we can put

more thark; balls in the 1st box must be excluded, Whicfﬁglz1 u(j1 — k1). Similarly, for the 2nd box, there are

Y u(js — ko) number of different ways needs to be excluded. Therefore;,fo+ 1 < |2 |, we have,
j2=1 2

Y
Sa(0) = L = 3 i - k) - 3wl — ko) @7)
o Jji=1 j2=1
y+1 y+1
Say+1) = m —j;um — k1) —J;IU(JQ — k2)
y+2)! & . N
= |_Z“(Jl—lﬁ)—ZU(Jz—kz)—u(y+1—k1)_u(y+1_k2) (28)
(y +1)! ji=1 J2=1
We further have,
Saly+ 1) = 5al0) = —p - U fuly = k) a1 )
= 1—-[u(y+1—ki)+uly+1-—k) (29)

We want to showsy(y + 1) — Sa(y) > 0 or equivalentlyfu(y +1 — k1) +u(y + 1 — k2)] < 1.
Foru(y+1— k)

If (y+1—Fk) <O0thenu(y+1—4%k) =0, [uly+1—FKk)+uly+1—Fk)] =uly+1-—k%k) <1, and
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Sa(y +1) = Sa(y) > 0

elseif(y+1—k;) >0thenu(y+1—Fk)=1landy+1> k;

u(ly+1—ke)=u(ly+1— M+ k), becausés = M — k;.

c(y+1—"Fk) >0,

Sy+l>kccy+1< |2,

ski<y+1< ¥

Y1 =M+k) <0, uly+l—ky)=uly+1—M+k)=0andu(y+1—k1)+uly+1—ky)] <1
SS2(y+ 1) — Sa(y) > 0, i.e., the theorem holds true foF = 2.

Induction hypothesis (N > 2): Sy (y +1) > Sy (y), fory,y + 1 < | ¥ ]

Induction step: now considetV + 1 boxes and, balls @,y + 1 < L%J) Here we consider the firé{ boxes as one
group and thé N + 1)th box as the other group. Consider puttjnigalls into the( N + 1)th box, and the resty — j)
balls into the firstV boxes. The different ways to pay — j) balls into the firstV boxes is given bysy (y — 7). We

may putj (5 € [0, kn41]) balls into the(V + 1)th box. We have,

Y
Sn+1(y) =D _ulknir — §)Sn(y — j) (30)
7=0
Similarly, we have,
y+1
Sy +1) =D ulknir —§)Sn(y+1—4) (31)
j=0

Every termin Eq. (31), i.ey(kn4+1 — 7)Sn(y + 1 —j), is no less than the term in Eq. (30), sifgg(y + 1 —j) >
Sn(y — 7) (induction hypothesis). Furthermore, Eq. (31) has one m@reu(kyy1 — (y+1))Sn(y+1— (y+ 1)),

which is non-negtive. Therefor€y 41 (y +1) > Syy1(y), fory,y +1 < 4]

Corollary A For polynomial functiont” = 37, ., _, [ a; Zk1+ S ) K andA+ B = Z,
Z is a constant. Assumd < B. Then F reaches its maximal value whén= [£], and F is a monotonously
increasing function of A, for € [1, [ £ ]]

Proof: We define:

D S | (D S 1

kitetky=Ai=1  kitetk,=Bi=1

- Y Ok Ha’f° (32)

K+ +k0 =2
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We haveA + B = Z, andk} + kZ = kY. C(K?,--- , k) (denoted byC for convenience) is the coefficient for each
term in Eq. (32). For giverd and B, the value ofF’ is determined by”. The question of how to calculateé can be
mapped to a combinatorial problem below:

Suppose we have boxes. The capacity of théh box isk? (3_;-, kY = Z). Itturns out thatC' is the number of ways
to put A identical balls into these boxes. This combinatorial peabis addressed ifiheorem A. SinceA + B = Z,
andZ is a constant, we just have one variable. For conveniencasagme thatl is the smaller than B. According to
Theorem A, C reaches its maximal value wheh= ||, andC is a monotonously function of, for A € [1, [ £]].

Therefore, F reaches its maximal value wher- | £ |, and F is a monotonously function of A, fer € [1, [ £ ]].
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