
A Rule Grouping Technique for Weight-Based TCAM Coprocessors

Hao Che, Yong Wang, and Zhijun Wang
The Department of Computer Science and Engineering

The University of Texas at Arlington
Arlington, TX 76019
hche@cse.uta.edu

Abstract

A crucial issue associated with a TCAM coprocessor
with weights is that no more rules can be enforced if the
weights are exhausted. In this paper, the problem is
identified and a rule grouping technique is proposed to
solve the problem. The technique allows virtually
unlimited number of rules with arbitrary rule structures to
be enforced. It requires no special hardware support and
can be readily implemented in a fully programmable
network processor and a weight-based TCAM
coprocessor.

1. Introduction

A hardware-based solution for packet classification is
the use of a ternary content addressable memory (TCAM)
coprocessor to offload the packet classification tasks from
a network processor. Fig. 1 shows the diagram of a
typical line card with a network processor interfacing with
a TCAM coprocessor. When a packet is to be classified,
the network processor generates a search key from the
header of the received packet and sends this search key to
the TCAM coprocessor to find a matched rule in a TCAM
rule table. The matched rule entry maps to a memory
address in an associated memory containing the action
associated with that rule. While waiting for the TCAM
coprocessor to return an action associated with the
matched rule for one thread, the network processor does a
context switching to pick up a different thread without
wasting clock cycles. By matching the search key against
all the rule entries in parallel, the TCAM coprocessor
achieves one memory access matching performance and
therefore offers the highest possible packet classification
performance [1].

There are two types of TCAM coprocessors in the

market today. One requires that the rules in a TCAM table
be arranged in an ordered list according to their match

priorities. The action associated with the rule in the
lowest memory address is returned if a search key
matches multiple rules. We call this type of TCAM
coprocessors the Ordered TCAM (OTCAM).

Fig 1. A network processor and its TCAM
coprocessor in a line card

The other type of TCAM coprocessors has a weight

sub-field of fixed size of w bits assigned to each and
every memory slot. Here a memory slot is defined as a
memory entry of size equal to the memory width. By
properly assigning weight values to all the rules, each
occupying certain integer number of memory slots, one
can expect that each search key matching would result in
a matched rule with the highest weight value among all
the matched rules. We call this type of TCAM
coprocessors the WEIghted TCAM (WEITCAM).

In principle, a WEITCAM is easier to manage than

an OTCAM. For a WEITCAM, rules can be placed at
any memory location as long as distinct weights are
assigned to all the rules with match priority relationship.

Moreover, WEITCAMs allow the so-called zero table
management for longest prefix matching (LPM) [2]. By
assigning a weight value equal to the prefix length for
each route, a new route can be added at any available
memory address and a route can be deleted without the
need to update the weights or re-arrange the existing
routes in the memory. This means that w equal 5 is
sufficient to support zero table management for IPv4-
based LPM. In contrast, for OTCAM, an optimal
algorithm in terms of the worst-case performance, as
proposed in [3], requires up to 16 rule entry moves when
a route is to be added or deleted from an LPM table.

Despite the merits mentioned above, a WEITCAM
may suffer from weight depletion. Namely, no more
than 2w rules with match priority relationship can be
enforced. Weight depletion is a critical issue for
WEITCAMs simply because new rules may not be
enforced due to weight depletion, even if the TCAM
coprocessor has enough memory resource to
accommodate those rules. Unfortunately, commercially
available WEITCAM coprocessors generally have limited
number of bits assigned to the weight sub-field, e.g., 7
bits for AMCC nPC2110 [4] and 10 bits for Netlogic
CFP3256 [5], supporting up to 128 and 1024 weight
values, respectively. As we shall see shortly, the number
of rules with priority relationships can be potentially very
large, causing weight depletion.

In view of the criticality for solving the weight

depletion issue for WEITCAMs, in this paper, we propose
a rule grouping technique to deal with the issue. We are
able to show that with this technique, virtually unlimited
number of rules with arbitrary rule structures can be
enforced, at the expense of a second TCAM lookup for
oversized rule groups with match priority relationship.
The technique can be readily implemented in a fully
programmable network processor and the associated
TCAM coprocessor without additional hardware support.

The rest of the paper is organized as follows. Section

2 identifies the weight depletion problem. Section 3
describes the rule grouping technique to solve the
problem. Finally, Section 4 concludes the paper.

2. Weight Depletion Problem

To facilitate the discussion in this as well as the
following sections, we first define two terms, i.e.,
Connected Rule Group (CRG) and Multiple Match Group
(MMG). A CRG is a set of rules which form a connected
graph. A rule table is composed of one or multiple CRGs.
A CRG is further composed of one or multiple MMGs.
Here an MMG is a group of rules that have match priority

relationship. The following example, which will be
reused throughout the rest of the paper, illustrates how
CRGs and MMGs are identified.

Assume there is a policy filtering (PF) table

composed of 14 rules: {A1, A2, A3, A4, A5, A6, A7, A8, A9,
A10, A11, A12, A13, A14}. The rule structure is depicted in
Fig. 2. The area each rule covers is represented by a solid
line. The integer numbers at different levels represent
different match priorities or weight values. An arrow
connects two rules overlapping with each other and it
points from the lower priority rule with a smaller weight
value towards the higher priority rule with a higher
weight value.

An MMG is composed of all the rules along an arrow

chain. Hence, three MMGs can be identified from Fig. 3.
They are:

 MMG-1 = {A1, A9, A11, A12, A13};
 MMG-2 = {A2, A3, A5, A6, A7, A8, A10, A14}
 MMG-3 = {A2, A3, A4, A7, A8, A10, A14}

The rules in MMG-1 are chained together. MMG-2
and MMG-3 share most of the rules. By definition,
MMG-1 itself forms a CRG and MMG-2 and MMG-3
form another one.

Fig. 2 An example PF rule structure

The above example shows that a rule can belong to
one or multiple MMGs in a CRG. Obviously, different
rules in an MMG need to be assigned distinct weight
values.

Now, we can make the following two important

observations: (1) The weight assignment can be
localized to individual CRG, i.e., the whole weight
space can be reused by different CRGs; (2) In each
CRG, the required number of weight values is equal to
the size of the largest MMG in that CRG. These two
observations immediately lead to the following

conclusion: Weight depletion occurs if at least one
CRG has an oversized MMG in it, i.e., the size of the
MMG exceeds the weight space size.

All kinds of MMGs can be built by picking up rules
with increasing match priority in Fig. 3, along the solid
lines downward and dotted lines in either direction. The
rules can be picked up only along a solid line in
downward direction because a rule, which is a subset of
the other rule, must have higher match priority than that
rule. On the other hand, rules can be picked up in either
direction along a dotted line because either of the two
intersecting rules may have higher match priority than the
other one.

The question to be answered is then how large an

MMG can be for a general PF rule table, e.g., rules in the
form of 104-bit five-tuples: {source IP address,
destination IP address, Source Port, Destination Port,
Protocol Number}. In other words, we want to know
whether or not the WEITCAM weight space size, e.g.,
128, is big enough to support the largest possible MMG in
practice. The following example attempts to answer this
question.

Allowing rules to be picked up along dotted lines is

the root causing weight depletion. For example, let’s first
restrict ourselves by picking up rules only along solid
lines downward. Obviously, by doing so, one can have up
to only 3 rules in an MMG. In other words, the number of
rules in an MMG cannot exceed the rule length, i.e., the
number of bits in a rule. This is exactly why the zero table
management for an LPM table using WEITCAM is
possible.

In general, any bit in a rule can take on any of the

three possible values, i.e., 0, 1, or x, where ‘x’ represents
a wildcarded or “don’t care” bit. Fig. 3 shows all
possible candidate rules and the rule structure, generated
from just three bits. A solid line links between a rule and
one of its subset rules and a dotted line connects two
rules, which intersect with each other.

{xxx}

Now, if we remove the above constraint and allow
rules to be picked up along both solid lines and dotted
lines, we can see the number of rules in an MMG can then
be very large. This is because the rules not only can be
picked up in downward direction but also in horizontal
and upward directions. For example, rules can be picked
up starting from {1xx} to {x11}, and then from {x11}
back to {0xx}, and so forth.

{1xx}

{0xx}

{x1x}

{x0x}

{11x} {10x}

 {01x}

 {00x}

{011} {010}

 {001}

 {000}

{111} {110}

 {101

} {100}

{x11} {x10}

 {x01}

 {x00}

{1x1} {1x0}

 {0x1

} {0x0}

{xx0}

{xx1}

Theoretically, we have the following results:

 Nk = 2k n!/k!(n-k)! ,

where Nk is the number of candidate rules with k number
of unwildcarded bits and n is the length of the rule in the
unit of bits. The summation of Nk, for k =0, 1, 2, …, n,
gives the total number of possible candidate rules, which
equals 3n. As an example, for n = 32, in principle, an
MMG of size equal to Nk, where Nk = 3,141,447,188,480,
at k = 10 alone, can be built. It becomes clear that for
general PF tables, e.g., 104-bit five-tuple PF table, the
size of an MMG that one can build is virtually
unbounded. Fig. 3 A complete diagram for 3-bit candidate

rules and the rule structure

Now, let’s look at a more practical example on how a
large MMG can be formed by simply adding one rule.
Fig. 4 (a) gives a policy table with 104-bit five-tuple
rules. For all the rules, only the source IP address is
specified and all other fields are wildcarded. Two CRGs
with one MMG in each, i.e., B and C, are identified.
Hence, the same weight values can be assigned to rules in
B and C as shown in Fig. 4 (a). Now, suppose a rule D,
which only specifies the protocol field and all other fields
are wildcarded, is added to the policy table as shown in

First of all, the all-wildcarded candidate rule {xxx} is

a superset of all the other candidate rules. It is a default
match rule and is solely used as a reference point to build
the rule structure. Hence, it does not appear in any PF
table. If a search key does not find a match in the PF
table, it implies that the search key matches this rule.

Fig. 4 (b). Note that rule D partially overlaps with all the
rules in both B and C. Assume rule D has higher priority
than B4 and lower priority than C1. As a result, each rule
in C must have a weight value larger than that of D and
each rule in B must have a weight value smaller than that
of D. Hence, adding rule D leads to the merge of B and C
into a larger MMG. This example demonstrates that large
MMGs can be formed as a result of introducing partially
overlapping rules, even though the number of rules that
can match with a search key simultaneously may be
small.

Fig. 4 An example of MMG merging as a result
of adding a new rule

Although no statistics were reported on the MMG

size for the existing PF tables, the statistics on the number
of partially overlapping rules for ISP’s access control lists
(ACLs) did suggest that the MMG size could be large
even for a rather small ACL. For example, [6] showed
that for an IPv4 source-destination-pair based ACL with
only 607 rules, the observed number of partial overlaps is
2,249. This implies that potentially a large number of

rules can be chained together to form a large MMG. Even
for prefix based PF tables, the weight depletion problem
can still occur. For example, for an IPv6 source-
destination-pair based ACL, in principle, the maximum
size of an MMG is equal to the rule length, i.e., 256,
much larger than 128, the weight space size for one of the
existing WEITCAMs.

3. A Rule Grouping Technique

Contrary to requiring that a uniquely matched rule
need to be returned in the presence of multiple rule
matches, this technique is based on the very idea of
allowing multiple simultaneous matches of rules with the
same matched weight value. It is based on the following
property of the WEITCAM:

When a search key finds matches with more than one
rule with the same highest weight value, the action
associated with one of these matched rules is returned.
However, exactly which one of the actions is returned
cannot be determined.

The above property leads to a technique called rule
grouping technique. The idea is to sequentially break the
rules in an oversized MMG into up to 2w segments with
each segment having no more than 2w number of rules and
to assign the same weight value to all the rules in a
segment but distinct, increasing weight values for rules in
different segments with increasing match priorities.
Hence, a match of a segment implies that the best
matching rule must be one of the rules in that segment.
This best matching rule is found through a second rule
table matching, which is composed of all the segments
containing more than one rule. Since a rule can belong to
multiple MMGs in a CRG, the rule grouping needs to be
done starting with the largest oversized MMG, and then
the next largest, and so on, to avoid any possible
conflicting assignments of rules common to multiple
MMGs in a CRG.

The best way to explain the details of this technique

is through an example. Consider the example in Fig. 2.
Let us assume that w = 2, i.e., the weight space size is 4.
In this case, all three MMGs are oversized. In what
follows, we explain how the rule grouping technique can
be used to solve the weight depletion for this PF table.

Fig. 5 (a) shows how rules are grouped into segments

to form the first rule table. For MMG-1, four segments are
created. They are {A1}, {A9}, {A11}, and {A12, A13}.
Since MMG-2 and MMG-3 belong to the same CRG and
the size of MMG-2 is larger than that of MMG-3, we first
group rules for MMG-2. As can be seen in Fig. 5 (a), four

segments are created. They are {A2}, {A3}, {A5, A6} and
{A7, A8, A10, A14}. With this assignment for MMG-2, all
the rules in MMG-3 have assigned weight values except
A4. A4 can be assigned either weight value 1 or 2. In the
former case, we create a segment with two rules, i.e., {A3,
A4}, which has to appear in the second rule table. In the
latter case, however, we just create a segment with one
rule, i.e., A4 itself, and it does not appear in the second
rule table. Hence we assign weight value 2 to A4 in
MMG-3.

(a)

(b)

Fig. 5 Resulting rule structures as a result of
the application of the rule grouping technique

to the rule structure in Fig. 2

The second rule structure then stretches all the
compressed rule segments {A12, A13}, {A5, A6} and {A7,
A8, A10, A14} in Fig. 5 (a) back to one rule per level, as
shown in Fig. 5 (b), corresponding to the second rule
table. Note that all the segments in Fig. 5 (b) are allowed
to use the whole weight space. This works for segments
from different CRGs, such as {A12, A13} and {A5, A6},
since rules from different CRGs have no priority
relationship. However, this may not work for segments
from the same CRG, e.g., {A5, A6} and {A7, A8, A10, A14}.
A key design of this technique is then to use a segment ID
to append to each rule in the second rule table. Also a
match of a rule in a segment with more than one rule in
the first rule table returns the segment ID the matched rule
is associated with, which is used as part of the search key
for the second table match. This allows the weight space
to be locally significant for individual segments.

Fig. 6 shows the implementation of the above
example in a WEITCAM coprocessor. Note that, in
general, up to 2w segments in an oversized MMG can be
supported and hence a segment ID field size of w bits may

be required to uniquely identify each segment. Since w =
2, the segment ID field size is also set to 2. In this
example, we assume that the rule length is 3 bits short of
the TCAM slot width. Hence, there are 3 bits at our
disposal for free. We assign the last 2 of the 3 bits as the
segment ID field for each rule in the second rule table. In
general, however, if the number of available free bits is
not large enough to accommodate the segment ID field,
an extra slot must be allocated for that field. The last 3
bits and the 3rd last bit in each rule field in the first and
second tables, respectively, are not used and hence are
wildcarded.

Fig. 6 Table formats in the WEITCAM for the

rule structures in Fig. 5

In this example, rules in segments {A12, A13}, {A5,
A6} and {A7, A8, A10, A14} are assigned segment ID
values 0, 0, 1, respectively. Also note that in each action
field associated with the first rule table, the first bit is
used to indicate whether a second table match is needed.
If it is, i.e., the bit set to 1, instead of an action, a segment
ID is given in the associated memory.

The procedure for a rule table matching is as follows.
The network processor generates a search key and passes
the search key to the WEITCAM to match against the first
rule table. Upon receiving the returned result from the
WEITCAM, the network processor first checks the first
bit in the returned result. If it is 0, the network processor
starts to process the action that follows it. Otherwise, it
appends the segment ID following that bit to the search
key, and passes it to the WEITCAM to match against the
second rule table to find a final match.

The rule grouping technique can allow the support of

up to 22w rules in an MMG, at the expense of the possible
need for a second WEITCAM search and the memory
space expansion to accommodate the second rule table.
For instance, with this technique, an MMG with size as
large as 16,384 can be supported for a WEITCAM with w
= 7. Obviously, this technique can be easily generalized to
allow the support of 2kw rules in an MMG, at the expense
of k WEITCAM searches in the worst case and the adding
of k more rule tables. This scaling feature allows virtually
unlimited number of rules in an MMG to be supported. In
practice, however, k = 2 should be more than enough to
eliminate weight depletion problem, given that today’s PF
table sizes are smaller than 10 K and w ≥ 7 for all the
existing WEITCAMs.

Finally, note that the rule grouping technique takes

effect if and only if there is at least one oversized MMG
in the PF table. In other words, if all the MMGs in the PF
table are not oversized, applying the rule grouping
technique to the PF table does not result in the adding of a
second rule table and a second rule table matching.

4. Conclusions

In this paper, the weight depletion problem for
WEITCAM coprocessors was identified. A rule grouping
technique was proposed to solve the weight depletion
problem. The technique allows virtually unlimited
number of rules to be enforced. The implementation of
the technique requires no specially hardware support and
can be readily implemented in a fully programmable
network processor and its WEITCAM coprocessor.

References

[1] P. Gupta and N. McKeown, “Algorithms for Packet
Classification,” IEEE Network, March 2001.

[2]http://www.netlogicmicro.com/library/zerotable.html

[3] D. Shah and P. Gupta, “Fast Updating Algorithms for
TCAMs,” IEEE Micro, p. 36, Jan.-Feb 2001.

[4] http://www.amcc.com

[5]http://www.netlogicmicro.com/datasheets/cfp3256.html

[6] M. E. Kounavis, A. Kumar, H. Vin, R. Yavatkar and A. T.
Campbell, “Directions in Packet Classification for Network
Processors”, Second Workshop on Network Processors (NP2),
February 8-9, 2003.

http://www.netlogicmicro.com/library/zerotable.html
http://www.amcc.com/
http://www.netlogicmicro.com/datasheets/cfp3256.html
http://comet.columbia.edu/~campbell/papers/np2.pdf
http://comet.columbia.edu/~campbell/papers/np2.pdf

