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Abstract 
 

A crucial issue associated with a TCAM coprocessor 
with weights is that no more rules can be enforced if the 
weights are exhausted. In this paper, the problem is 
identified and a rule grouping technique is proposed to 
solve the problem. The technique allows virtually 
unlimited number of rules with arbitrary rule structures to 
be enforced.  It requires no special hardware support and 
can be readily implemented in a fully programmable 
network processor and a weight-based TCAM 
coprocessor. 
 
 
1. Introduction 
 

A hardware-based solution for packet classification is 
the use of a ternary content addressable memory (TCAM) 
coprocessor to offload the packet classification tasks from 
a network processor.  Fig. 1 shows the diagram of a 
typical line card with a network processor interfacing with 
a TCAM coprocessor.  When a packet is to be classified, 
the network processor generates a search key from the 
header of the received packet and sends this search key to 
the TCAM coprocessor to find a matched rule in a TCAM 
rule table. The matched rule entry maps to a memory 
address in an associated memory containing the action 
associated with that rule. While waiting for the TCAM 
coprocessor to return an action associated with the 
matched rule for one thread, the network processor does a 
context switching to pick up a different thread without 
wasting clock cycles.  By matching the search key against 
all the rule entries in parallel, the TCAM coprocessor 
achieves one memory access matching performance and 
therefore offers the highest possible packet classification 
performance [1].   

 
There are two types of TCAM coprocessors in the 

market today. One requires that the rules in a TCAM table 
be arranged in an ordered list according to their match 

priorities.  The action associated with the rule in the 
lowest memory address is returned if a search key 
matches multiple rules.  We call this type of TCAM 
coprocessors the Ordered TCAM (OTCAM). 
 

 
 

Fig 1. A network processor and its TCAM 
coprocessor in a line card 

  
The other type of TCAM coprocessors has a weight 

sub-field of fixed size of w bits assigned to each and 
every memory slot. Here a memory slot is defined as a 
memory entry of size equal to the memory width.  By 
properly assigning weight values to all the rules, each 
occupying certain integer number of memory slots, one 
can expect that each search key matching would result in 
a matched rule with the highest weight value among all 
the matched rules. We call this type of TCAM 
coprocessors the WEIghted TCAM (WEITCAM).   

 
In principle, a WEITCAM is easier to manage than 

an OTCAM.  For a WEITCAM, rules can be placed at 
any memory location as long as distinct weights are 
assigned to all the rules with match priority relationship. 



Moreover, WEITCAMs allow the so-called zero table 
management for longest prefix matching (LPM) [2]. By 
assigning a weight value equal to the prefix length for 
each route, a new route can be added at any available 
memory address and a route can be deleted without the 
need to update the weights or re-arrange the existing 
routes in the memory. This means that w equal 5 is 
sufficient to support zero table management for IPv4-
based LPM.  In contrast, for OTCAM, an optimal 
algorithm in terms of the worst-case performance, as 
proposed in [3], requires up to 16 rule entry moves when 
a route is to be added or deleted from an LPM table.  

 
 

Despite the merits mentioned above, a WEITCAM 
may suffer from weight depletion.  Namely, no more 
than 2w rules with match priority relationship can be 
enforced. Weight depletion is a critical issue for 
WEITCAMs simply because new rules may not be 
enforced due to weight depletion, even if the TCAM 
coprocessor has enough memory resource to 
accommodate those rules.  Unfortunately, commercially 
available WEITCAM coprocessors generally have limited 
number of bits assigned to the weight sub-field, e.g., 7 
bits for AMCC nPC2110 [4] and 10 bits for Netlogic 
CFP3256 [5], supporting up to 128 and 1024 weight 
values, respectively. As we shall see shortly, the number 
of rules with priority relationships can be potentially very 
large, causing weight depletion.  

 
In view of the criticality for solving the weight 

depletion issue for WEITCAMs, in this paper, we propose 
a rule grouping technique to deal with the issue. We are 
able to show that with this technique, virtually unlimited 
number of rules with arbitrary rule structures can be 
enforced, at the expense of a second TCAM lookup for 
oversized rule groups with match priority relationship. 
The technique can be readily implemented in a fully 
programmable network processor and the associated 
TCAM coprocessor without additional hardware support.          

 
The rest of the paper is organized as follows.  Section 

2 identifies the weight depletion problem.  Section 3 
describes the rule grouping technique to solve the 
problem. Finally, Section 4 concludes the paper.   
 
2. Weight Depletion Problem 
 

To facilitate the discussion in this as well as the 
following sections, we first define two terms, i.e., 
Connected Rule Group (CRG) and Multiple Match Group 
(MMG). A CRG is a set of rules which form a connected 
graph. A rule table is composed of one or multiple CRGs. 
A CRG is further composed of one or multiple MMGs. 
Here an MMG is a group of rules that have match priority 

relationship.  The following example, which will be 
reused throughout the rest of the paper, illustrates how 
CRGs and MMGs are identified.  

 
Assume there is a policy filtering (PF) table 

composed of 14 rules: {A1, A2, A3, A4, A5, A6, A7, A8, A9, 
A10, A11, A12, A13, A14}. The rule structure is depicted in 
Fig. 2. The area each rule covers is represented by a solid 
line. The integer numbers at different levels represent 
different match priorities or weight values. An arrow 
connects two rules overlapping with each other and it 
points from the lower priority rule with a smaller weight 
value towards the higher priority rule with a higher 
weight value.   

 
An MMG is composed of all the rules along an arrow 

chain. Hence, three MMGs can be identified from Fig. 3. 
They are:  
 
      MMG-1 = {A1, A9, A11, A12, A13}; 
      MMG-2 = {A2, A3, A5, A6, A7, A8, A10, A14} 
      MMG-3 = {A2, A3, A4, A7, A8, A10, A14} 
 

The rules in MMG-1 are chained together. MMG-2 
and MMG-3 share most of the rules.  By definition, 
MMG-1 itself forms a CRG and MMG-2 and MMG-3 
form another one.    

 

 
 

Fig. 2 An example PF rule structure 
 

The above example shows that a rule can belong to 
one or multiple MMGs in a CRG. Obviously, different 
rules in an MMG need to be assigned distinct weight 
values.  

 
Now, we can make the following two important 

observations: (1) The weight assignment can be 
localized to individual CRG, i.e., the whole weight 
space can be reused by different CRGs; (2) In each 
CRG, the required number of weight values is equal to 
the size of the largest MMG in that CRG.  These two 
observations immediately lead to the following 



conclusion: Weight depletion occurs if at least one 
CRG has an oversized MMG in it, i.e., the size of the 
MMG exceeds the weight space size.   

All kinds of MMGs can be built by picking up rules 
with increasing match priority in Fig. 3, along the solid 
lines downward and dotted lines in either direction. The 
rules can be picked up only along a solid line in 
downward direction because a rule, which is a subset of 
the other rule, must have higher match priority than that 
rule. On the other hand, rules can be picked up in either 
direction along a dotted line because either of the two 
intersecting rules may have higher match priority than the 
other one.   

 
The question to be answered is then how large an 

MMG can be for a general PF rule table, e.g., rules in the 
form of 104-bit five-tuples: {source IP address, 
destination IP address, Source Port, Destination Port, 
Protocol Number}. In other words, we want to know 
whether or not the WEITCAM weight space size, e.g., 
128, is big enough to support the largest possible MMG in 
practice.  The following example attempts to answer this 
question. 

 
Allowing rules to be picked up along dotted lines is 

the root causing weight depletion. For example, let’s first 
restrict ourselves by picking up rules only along solid 
lines downward. Obviously, by doing so, one can have up 
to only 3 rules in an MMG. In other words, the number of 
rules in an MMG cannot exceed the rule length, i.e., the 
number of bits in a rule. This is exactly why the zero table 
management for an LPM table using WEITCAM is 
possible. 

 
In general, any bit in a rule can take on any of the 

three possible values, i.e., 0, 1, or x, where ‘x’ represents 
a wildcarded or “don’t care” bit.   Fig. 3 shows all 
possible candidate rules and the rule structure, generated 
from just three bits.  A solid line links between a rule and 
one of its subset rules and a dotted line connects two 
rules, which intersect with each other.   

 
{xxx} 

Now, if we remove the above constraint and allow 
rules to be picked up along both solid lines and dotted 
lines, we can see the number of rules in an MMG can then 
be very large. This is because the rules not only can be 
picked up in downward direction but also in horizontal 
and upward directions. For example, rules can be picked 
up starting from {1xx} to {x11}, and then from {x11} 
back to {0xx}, and so forth.  
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Theoretically,  we have the following results: 
 
                 Nk  =  2k n!/k!(n-k)! , 
 
where Nk is the number of candidate rules with k number 
of unwildcarded bits and  n is the length of the rule in the 
unit of bits. The summation of Nk, for k =0, 1, 2, …, n, 
gives the total number of possible candidate rules, which 
equals 3n.   As an example, for n = 32, in principle, an 
MMG of size equal to Nk, where  Nk = 3,141,447,188,480, 
at k = 10 alone, can be built.  It becomes clear that for 
general PF tables, e.g., 104-bit five-tuple PF table, the 
size of an MMG that one can build is virtually 
unbounded.   Fig. 3 A complete diagram for 3-bit candidate 

rules and the rule structure 
 

Now, let’s look at a more practical example on how a 
large MMG can be formed by simply adding one rule.  
Fig. 4 (a) gives a policy table with 104-bit five-tuple 
rules.  For all the rules, only the source IP address is 
specified and all other fields are wildcarded.  Two CRGs 
with one MMG in each, i.e., B and C, are identified. 
Hence, the same weight values can be assigned to rules in 
B and C as shown in Fig. 4 (a).  Now, suppose a rule D, 
which only specifies the protocol field and all other fields 
are wildcarded, is added to the policy table as shown in 

 
First of all, the all-wildcarded candidate rule {xxx} is 

a superset of all the other candidate rules. It is a default 
match rule and is solely used as a reference point to build 
the rule structure. Hence, it does not appear in any PF 
table.  If a search key does not find a match in the PF 
table, it implies that the search key matches this rule. 

 



Fig. 4 (b). Note that rule D partially overlaps with all the 
rules in both B and C. Assume rule D has higher priority 
than B4 and lower priority than C1.  As a result, each rule 
in C must have a weight value larger than that of D and 
each rule in B must have a weight value smaller than that 
of D.  Hence, adding rule D leads to the merge of B and C 
into a larger MMG. This example demonstrates that large 
MMGs can be formed as a result of introducing partially 
overlapping rules, even though the number of rules that 
can match with a search key simultaneously may be 
small.  
 
 

  
 
Fig. 4   An example of MMG merging as a result 
of adding a new rule   
 

 
Although no statistics were reported on the MMG 

size for the existing PF tables, the statistics on the number 
of partially overlapping rules for ISP’s access control lists 
(ACLs) did suggest that the MMG size could be large 
even for a rather small ACL.  For example, [6] showed 
that for an IPv4 source-destination-pair based ACL with 
only 607 rules, the observed number of partial overlaps is 
2,249.  This implies that potentially a large number of 

rules can be chained together to form a large MMG.  Even 
for prefix based PF tables, the weight depletion problem 
can still occur. For example, for an IPv6 source-
destination-pair  based ACL, in principle, the maximum 
size of an MMG is equal to the rule length, i.e., 256, 
much larger than 128, the weight space size for one of the 
existing WEITCAMs. 
 
 
3. A Rule Grouping Technique 
 

Contrary to requiring that a uniquely matched rule 
need to be returned in the presence of multiple rule 
matches, this technique is based on the very idea of 
allowing multiple simultaneous matches of rules with the 
same matched weight value. It is based on the following 
property of the WEITCAM:  
 
When a search key finds matches with more than one 
rule with the same highest weight value, the action 
associated with one of these matched rules is returned. 
However, exactly which one of the actions is returned 
cannot be determined.  
 

The above property leads to a technique called rule 
grouping technique. The idea is to sequentially break the 
rules in an oversized MMG into up to 2w segments with 
each segment having no more than 2w number of rules and 
to assign the same weight value to all the rules in a 
segment but distinct, increasing weight values for rules in 
different segments with increasing match priorities. 
Hence, a match of a segment implies that the best 
matching rule must be one of the rules in that segment. 
This best matching rule is found through a second rule 
table matching, which is composed of all the segments 
containing more than one rule.  Since a rule can belong to 
multiple MMGs in a CRG, the rule grouping needs to be 
done starting with the largest oversized MMG, and then 
the next largest, and so on, to avoid any possible 
conflicting assignments of rules common to multiple 
MMGs in a CRG. 

 
The best way to explain the details of this technique 

is through an example. Consider the example in Fig. 2.  
Let us assume that w = 2, i.e., the weight space size is 4. 
In this case, all three MMGs are oversized. In what 
follows, we explain how the rule grouping technique can 
be used to solve the weight depletion for this PF table. 

 
Fig. 5 (a) shows how rules are grouped into segments 

to form the first rule table. For MMG-1, four segments are 
created. They are {A1}, {A9}, {A11}, and {A12, A13}. 
Since MMG-2 and MMG-3 belong to the same CRG and 
the size of MMG-2 is larger than that of MMG-3, we first 
group rules for MMG-2. As can be seen in Fig. 5 (a), four 



segments are created. They are {A2}, {A3}, {A5, A6} and 
{A7, A8, A10, A14}. With this assignment for MMG-2, all 
the rules in MMG-3 have assigned weight values except 
A4. A4 can be assigned either weight value 1 or 2. In the 
former case, we create a segment with two rules, i.e., {A3, 
A4}, which has to appear in the second rule table. In the 
latter case, however, we just create a segment with one 
rule, i.e., A4 itself, and it does not appear in the second 
rule table. Hence we assign weight value 2 to A4 in 
MMG-3. 

 
(a) 

 
(b) 

 
Fig. 5 Resulting rule structures as a result of 
the application of the rule grouping technique 

to the rule structure in Fig. 2 
 

The second rule structure then stretches all the 
compressed rule segments {A12, A13}, {A5, A6} and {A7, 
A8, A10, A14} in Fig. 5 (a) back to one rule per level, as 
shown in Fig. 5 (b), corresponding to the second rule 
table. Note that all the segments in Fig. 5 (b) are allowed 
to use the whole weight space.  This works for segments 
from different CRGs, such as {A12, A13} and {A5, A6}, 
since rules from different CRGs have no priority 
relationship. However, this may not work for segments 
from the same CRG, e.g., {A5, A6} and {A7, A8, A10, A14}. 
A key design of this technique is then to use a segment ID 
to append to each rule in the second rule table. Also a 
match of a rule in a segment with more than one rule in 
the first rule table returns the segment ID the matched rule 
is associated with, which is used as part of the search key 
for the second table match. This allows the weight space 
to be locally significant for individual segments. 

Fig. 6 shows the implementation of the above 
example in a WEITCAM coprocessor. Note that, in 
general, up to 2w segments in an oversized MMG can be 
supported and hence a segment ID field size of w bits may 

be required to uniquely identify each segment. Since w = 
2, the segment ID field size is also set to 2.  In this 
example, we assume that the rule length is 3 bits short of 
the TCAM slot width. Hence, there are 3 bits at our 
disposal for free. We assign the last 2 of the 3 bits as the 
segment ID field for each rule in the second rule table.  In 
general, however, if the number of available free bits is 
not large enough to accommodate the segment ID field, 
an extra slot must be allocated for that field.  The last 3 
bits and the 3rd last bit in each rule field in the first and 
second tables, respectively, are not used and hence are 
wildcarded.  

 

 
 
Fig. 6 Table formats in the WEITCAM for the 

rule structures in Fig. 5 
 

In this example, rules in segments {A12, A13}, {A5, 
A6} and {A7, A8, A10, A14} are assigned segment ID 
values 0, 0, 1, respectively. Also note that in each action 
field associated with the first rule table, the first bit is 
used to indicate whether a second table match is needed. 
If it is, i.e., the bit set to 1, instead of an action, a segment 
ID is given in the associated memory.    
 



The procedure for a rule table matching is as follows. 
The network processor generates a search key and passes 
the search key to the WEITCAM to match against the first 
rule table. Upon receiving the returned result from the 
WEITCAM, the network processor first checks the first 
bit in the returned result. If it is 0, the network processor 
starts to process the action that follows it. Otherwise, it 
appends the segment ID following that bit to the search 
key, and passes it to the WEITCAM to match against the 
second rule table to find a final match. 

 
The rule grouping technique can allow the support of 

up to 22w rules in an MMG, at the expense of the possible 
need for a second WEITCAM search and the memory 
space expansion to accommodate the second rule table. 
For instance, with this technique, an MMG with size as 
large as 16,384 can be supported for a WEITCAM with w 
= 7. Obviously, this technique can be easily generalized to 
allow the support of 2kw rules in an MMG, at the expense 
of k WEITCAM searches in the worst case and the adding 
of k more rule tables. This scaling feature allows virtually 
unlimited number of rules in an MMG to be supported. In 
practice, however, k = 2 should be more than enough to 
eliminate weight depletion problem, given that today’s PF 
table sizes are smaller than 10 K and w ≥ 7 for all the 
existing WEITCAMs.   

 
Finally, note that the rule grouping technique takes 

effect if and only if there is at least one oversized MMG 
in the PF table.  In other words, if all the MMGs in the PF 
table are not oversized, applying the rule grouping 
technique to the PF table does not result in the adding of a 
second rule table and a second rule table matching.  
 
4. Conclusions 
 

In this paper, the weight depletion problem for 
WEITCAM coprocessors was identified. A rule grouping 
technique was proposed to solve the weight depletion 
problem. The technique allows virtually unlimited 
number of rules to be enforced.  The implementation of 
the technique requires no specially hardware support and 
can be readily implemented in a fully programmable 
network processor and its WEITCAM coprocessor.   
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