1602

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 12, DECEMBER 2004

CoPTUA: Consistent Policy Table Update
Algorithm for TCAM without Locking

Zhijun Wang, Hao Che, Mohan Kumar, Senior Member, IEEE, and Sajal K. Das

Abstract—Due to deterministic and fast lookup performance, Ternary Content Addressable Memory (TCAM) has recently been
gaining popularity in general policy filtering (PF) for packet classification in high-speed networks. However, the PF table update poses
significant challenges for efficient use of TCAM. To avoid erroneous and inconsistent rule matching, the traditional approach is to lock
the PF table during the rule update period, but table locking has a negative impact on data path processing. In this paper, we propose a
novel scheme, called Consistent Policy Table Update Algorithm (CoPTUA), for TCAM. Instead of minimizing the number of rule moves
to reduce the locking time, CoPTUA maintains a consistent PF table throughout the update process, thus eliminating the need for
locking the PF table while ensuring correctness of rule matching. Our analysis and simulation show that, even for a PF table with
100,000 rules, an arbitrary number of rules can be updated simultaneously within 1 second in the worst case, provided that 2 percent of
the PF table entries are empty. Thus, CoPTUA enforces any new rule in less than 1 second for practical PF table size with high

memory utilization and without impacting data path processing.

Index Terms—Network processor, ternary CAM, policy table update, packet classification.

1 INTRODUCTION

s Internet applications proliferate and transmission

bandwidth increases, network processors used for data
path processing in a router need to be able to classify a
packet within a few tens of nanoseconds (ns) in order to
keep up with multigigabit communication channel (line)
rates. In the past few years, significant research efforts have
been made on the design of fast packet classification
algorithms for both Longest Prefix Match (LPM) and
general policy filtering (PF) (e.g., [3], [6], [7], [10], [17],
[18]). Unfortunately, most of these approaches neither
provide deterministic performance guarantees nor keep
up with multigigabit line rates.

An alternative approach which has been gaining
popularity is the use of a ternary content addressable memory
(TCAM) coprocessor to offload the packet classification
tasks from the network processor. TCAMs are fully
associative memories in which each cell can assume one
of three logical states: 0, 1, or don’t care (denoted as “x”).
The state “x” allows a TCAM to store wildcards in any
location in a rule. Each TCAM lookup requires a single
clock cycle and a PF table match may require a multiple
number of TCAM lookups, depending on the rule size.
Thus, TCAM-based packet classification ensures determi-
nistic and fast lookup performance. Indeed, the packet
classification processing at OC-192 line rate using a fully
programmable network processor and its TCAM coproces-
sor is reported in [1].

o The authors are with the Center for Research in Wireless Mobility and
Networking (CReWMaN), Department of Computer Science and En-
gineering, University of Texas at Arlington, Arlington, TX 76019.
E-mail: {zwang, hche, kumar, das)@cse.uta.edu.

Manuscript received 10 Dec. 2003; revised 23 Apr. 2004; accepted 25 May
2004.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0280-1203.

0018-9340/04/$20.00 © 2004 IEEE

Despite fast lookup performance, the TCAM-based
solution poses significant challenges. In addition to high
power consumption and relatively large footprint of the
TCAM hardware, resource management and database
update are also recognized as critical issues. While TCAM
hardware and resource management issues have been
addressed in [4], [8], [11], [12], [13], [15], [19], [20], [21],
the problem of database update has not received much
attention. Our goal in this paper is to develop efficient
techniques to update TCAM databases.

The primary source of concern for general PF table update
in a TCAM comes from a wide adoption of a class of
coprocessors, known as Ordered TCAM or OTCAM [4], in
which PF table rules are arranged in an ordered list such that
higher priority rules are placed in lower memory addresses.
When a search key matches multiple rules, the one in the
lowest memory address is selected and the corresponding
action in an associated memory is returned. In the worst case,
adding a new rule in a PF table may require all the existing
rules and their corresponding actions to be moved to new
memory locations, causing significant interruption of the
data path (i.e., lookup) processing.

Two LPM table update algorithms have been proposed in
[16] to minimize the number of rule moves per rule update in
an OTCAM. The goal is to minimize the LPM table locking
time for rule updates. One of these algorithms is optimal in
terms of the worst-case number (at most 16) of rule moves per
rule update. As we shall explain in the next section, locking
the LPM table for 16 rule moves can actually lead to dropping
of about 18 packets at OC-192 line rate. For general PF table
update, we conjecture that the worst-case number of rule
moves per rule update is O(NN,), where N, is the total number
of rules in the PF table. Consequently, in the presence of
multigigabit line rates, attempting to lock a PF table for rule
update can significantly impact the performance of data path
processing.

Published by the IEEE Computer Society

WANG ET AL.: COPTUA: CONSISTENT POLICY TABLE UPDATE ALGORITHM FOR TCAM WITHOUT LOCKING

In this paper, we take a different approach to tackling
this problem. Instead of designing efficient algorithms to
minimize the number of rule moves and, hence, the locking
time, we propose a Consistent Policy Table Update
Algorithm (CoPTUA) which eliminates the need for TCAM
PF table locking while ensuring the correctness of the rule
matching. The idea behind this novel approach is to
maintain a consistent and error-free PF table during the
update process and avoid inconsistent and/or erroneous
rule matching. A PF table is consistent if, for each rule move,
a search key matching results in the same rule as the one
that would be matched before the rule move. Also, for each
rule addition or deletion, a search key matching results in
the same rule as the one that would be matched just before
or after the addition or deletion. This is possible if there
exists a small number of empty rule entries. Erroneous rule
matching may occur when a rule or its action is being
updated. The proposed CoPTUA avoids erroneous rule
matching by eliminating direct rule overwriting. This is
made possible by decomposing an overwriting operation
into three steps: 1) Deactivate a rule by resetting the valid
bit, 2) write a new rule, 3) activate the new rule by setting
the valid bit. Thus, CoPTUA allows the PF table update
process to take place without locking and, at the same time,
ensures efficient data path processing.

However, the above two requirements tend to increase
the number of operations per rule update and require some
empty memory entries to be allocated in order to allow
consistent rule moves. Our analytical performance study
shows that CoPTUA is very efficient in terms of rule update
time and memory utilization. In particular, for a PF table
with 100,000 rules, the worst-case delay for an arbitrary
number of rule updates is less than 1 second, provided that
only 2 percent of the PF table entries are empty. Consider-
ing the time associated with the rest of the rule update
process, from a remote policy server to the management
plane and then to the data plane interface, this worst-case
delay is negligible. The performance of CoPTUA is also
evaluated by simulation. The results show that the max-
imum update delay is within 0.35 seconds for a TCAM with
up to 100,000 rules and 1 percent empty rule entries.
Therefore, the proposed solution successfully addresses a
critical issue related to the general PF table update, making
OTCAM a favorable choice for high performance packet
classification. We also show that our proposed approach
can be used for consistent PF table update in a WEIghted
TCAM (WEITCAM) coprocessor [4] in which there is a
weight subfield associated with each rule entry and the rule
matching priority is determined by the relative weight
assigned to the rule, rather than the memory location of the
rule as in OTCAM.

The rest of the paper is organized as follows: Section 2
describes the architecture of a TCAM coprocessor. Section 3
identifies the fundamental difficulty in developing fast
PF table update algorithms. Section 4 presents our solution
for OTCAM PF table update without locking. The perfor-
mance of CoPTUA is analyzed and simulated in Section 5.
Section 6 describes how the proposed technique can be used
efficiently for LPM table update and general PF table

1603
Switch Fabric/other interface
Local CPU
|_ Ehakal i~ T T e N VA 1
(Thsrend 1 : Rule UpdateA \. 1 !
= Action 1
Thread 2 E ﬁui: ; : !
Search Key: u T Action2 |,
N s S I Erar :
e 1 .
| Thread m | q.cenueend 1 - LI FR N :
Action
Network i | Rule n—1 = Action n—1 i
¥
PI‘OCIeSSOl”] Rule n -Actionn ||
1 1
1 1
MAC Framer ' TCAM Co-processor ;
I Frame S
Line Card

Fig. 1. A network processor and its TCAM coprocessor.

update in WEITCAMs. Related work is presented in
Section 7. Finally, Section 8 concludes the paper.

2 TCAM COPROCESSOR

Fig. 1 shows a typical TCAM coprocessor used for packet
classification on behalf of a network processor. The
coprocessor contains self-addressable rules which map to
different memory addresses in an associated memory
(normally an SRAM) containing the corresponding actions.
The TCAM is organized in slots. The number of bits in a slot
is fixed (e.g., 64, 72, or 128 bits) as set by the vendors.
Depending on the rule size, a rule may take one or more
slots. A rule matching is performed for all the rules in
parallel. Each parallel matching is done one slot at a time.
Hence, for a table where each rule occupies n slots, n TCAM
clock cycles are required to get a best matched rule.
Therefore, no action can be returned until the n slots are
matched. A typical rule for packet classification is com-
posed of 104-bit five tuples: {source IP address, destination IP
address, source port, destination port, protocol number}. The
rules are either arranged in an ordered list or weighted,
depending on whether an OTCAM or WEITCAM is in use.
A search key composed of the same set of subfields,
extracted from the header of a packet to be classified is
passed from the network processor to the TCAM copro-
cessor for lookup through the corresponding interface. The
matched rule with the highest match priority then results in
the corresponding action in the associated memory to be
returned to the network processor.

The PF table update is generally done via a local CPU/
TCAM coprocessor interface. The local CPU resides in the
same line card (LC) as the TCAM coprocessor. A user has the
choice as to whether or not to lock the network processor/
TCAM coprocessor interface while the TCAM database is
being updated. Without interface locking, TCAM table
lookups via the interface are not interrupted. However, by
doing so, the TCAM coprocessor may return inconsistent
and/or erroneous results. Locking the interface ensures that
the TCAM table lookup always returns correct results, but,
during the database update period, all the threads that need

1604

to access the TCAM coprocessor are suspended, impacting
the data path processing performance.

To quantify the performance impact caused by TCAM
database locking, let us consider a network processor that
needs to support an aggregated line rate of 10 Gbps.
Assume the minimum packet size is 49 bytes, then the
network processor has to process packets at a maximum
rate of about 25 Million packets per second (Mpps) or 40 ns
per packet time. Further, assume that a TCAM memory
width or slot size is 64 bits and a 64-bit PCI bus between the
CPU and TCAM coprocessor runs at 66 MHz clock rate
(15 ns per clock cycle), the same as the PCI for the INTEL
IXP2800 network processor [2].

Now, let us estimate the per rule update time in the
worst case for a 104-bit five-tuple PF table. In this case, each
104-bit rule takes two 64-bit slots in TCAM. Assume that the
action code fits well into one 64-bit associated memory
word so that loading an action requires just one access to
the TCAM coprocessor. To load the rule and its mask
(which must be loaded to set the corresponding wildcard
bits), 128 x 2/64 =4 accesses to TCAM coprocessor are
needed. So, the estimated total number of TCAM copro-
cessor accesses for adding a rule is five. This translates into
about 15 x 5 =75 ns, or about 75/40 ~ 1.9 packet times.
Assume 1,000 rules need to be moved in the worst case to
add a new rule in a PF table with 1,000 rules. Then, up to
1.9 x 1,000 = 1,900 incoming packets may get dropped,
because all the threads handling the packets in the network
processor will be waiting for TCAM coprocessor access
shortly after the TCAM coprocessor is locked (in m packet
times in the best case, where m is the total number of
threads in the network processor) and all the incoming
packets are blocked due to the lack of available threads in
handling them.

Locking the interface for an LPM table update can also be
harmful. Writing a rule requires two accesses to the TCAM
coprocessor to load the rule and its mask and one access to
load the action. This translates into about 15 x 3/40 = 1.1
packet times. As mentioned in the previous section, up to
16 rule moves are needed to add a new rule. Hence, up to
18 packets may be dropped per rule update in the worst
case, where all the threads are waiting for LPM access when
the TCAM coprocessor is locked. The above estimations
clearly demonstrate the limitation in developing fast update
algorithms for minimizing the locking time.

3 CowmpLEXITY oOF OTCAM PoLicy TABLE
UPDATE

In this section, we first introduce some useful concepts and
mathematical notations to facilitate further discussion.

e Rule space: The space of a rule with b bits is defined
as a region in b-dimensional space. Each dimension
in a rule corresponds to a bit that can assume two
values, 0 and 1. A wildcard bit covers the whole
space (i.e., 0 and 1) in the dimension corresponding
to that bit.

For example, xx constitutes a region which covers the whole
of a two-dimensional rule space whereas 11 covers a single
point.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 12, DECEMBER 2004

e Rule overlapping: Two rules A and B are said to
overlap with each other if and only if AN B # (), i.e.,
they have a common subregion in the rule space.

e Superset and Subset rules: A is said to be a superset
rule of B (and, hence, B a subset rule of A) if the
region covered by B in the rule space is a subregion
of that covered by A in the same rule space. This is
denoted as A D B (or, equivalently, B C A).

e Partially overlapping: Rules A and B are said to
partially overlap with each other if they overlap with
each other but have no superset-subset relationship.

For example, rules 1x and x0 are partially overlapping with
a common point 10. On the other hand, rule 11 is a subset
rule of 1x. Clearly, subset-superset relationship is a special
case of overlapping relationship.

Overlapping rules can be matched simultaneously and,
hence, their relative match priorities need to be determined
when they are enforced. Note that a subset rule must have a
higher match priority than its superset rules simply because
the subset rule would never be matched otherwise. On the
other hand, the relative match priorities between two
partially overlapping rules need to be specified by the
network administrator.

We further introduce the following notations:

e A — B: A has a lower match priority than B.

e A<D Ais in a lower match priority memory
location (i.e., in higher memory location) than B in
an OTCAM.

Obviously, if A — B, then we must have A< B. If A — B
and B— C, then A — C. Similarly, A< B and B<C(C
implies A < C.

e Connected rules: Rules A, B, and C are said to be
connected if ANB#(and BN C # 0.

o Connected Rule Graph (CRG): All the connected rules
together form a connected rule graph using arrows
defined above to link between rules with priority
relationship.

e Source (sink) leaf rule: In a CRG, a rule is said to be a
source (sink) leaf rule if there is no lower (higher)
match priority rules associated with it.

e Multiple Match Group(MMG): In a CRG, all the rules
on a directed path from any source leaf rule to any
sink leaf rule form an MMG.

o Independent rules: Two rules A and B are said to be
independent of each other if they do not appear in the
same MMG, denoted as A A B = 0.

Independent rules have no match priority relationship and
can be arbitrarily interleaved in an OTCAM. Obviously, any
two rules from two different CRGs are independent of each
other and, thus, can be arbitrarily interleaved in an OTCAM.

Fig. 2 shows a CRG composed of five rules. The region in
the rule space that each rule covers is represented by a
horizontal line. Note that ANC # 0, BNC #0, CND #1),
CNE#G,AND#0,BNE#0,ANE=0,and BN D = {).
More specifically, we note that C' O E. Furthermore, A and B
are source leaf rules and D and E are sink leaf rules. Hence,
there are a total of four MMGs in this CRG. They are:
A—-C—-D, A—-C—E, B—C—D, and B—(C— E.
Rules A and B do not appear in any MMG simultaneously.

WANG ET AL.: COPTUA: CONSISTENT POLICY TABLE UPDATE ALGORITHM FOR TCAM WITHOUT LOCKING

A B

D ——m — E

Fig. 2. An example of CRG and MMGs. The match priority increases
along the direction of arrows. The region each rule covers is indicated by
a horizontal line.

Hence, A A B = (). Similarly, D A E = {). A rule may appear
in multiple MMGs, but in one CRG only. Obviously, rules
in an MMG must be arranged in an ordered list, whereas
independent rules can be interleaved in arbitrary order in
an OTCAM.

As a special case, for LPM, we note that rules cannot
partially overlap with one another. All the rules in an MMG
must have a superset-subset relationship and a superset
rule must have a shorter prefix length than its subset rules.
Hence, the maximum number of rules in one MMG of an
LPM table is b, the number of bits in an IP address; thus,
b =32 for Internet Protocol version 4 (IPv4). This simple
rule structure is fully leveraged in the design of an optimal
rule update algorithm [16] in terms of the worst-case
performance. By maintaining the empty TCAM slots in the
center of the LPM table and placing rules with different
prefix lengths in different blocks sequentially and evenly
split to the upper and lower half of the OTCAM addresses,
it was shown that, for IPv4, in the worst case, b/2 = 16 rule
moves are required to add a new rule. Since the MMG size
for a general PF table can be as large as IV,, the size of the
PF table itself, following the same algorithm and logic as in
[16], it is easy to show that, in the worst case, at least
N, /2 rule moves are required to add a new rule, regardless
of what algorithm is used. Even worse, unlike LPM, where
the maximum MMG size is fixed, for a general PF table,
adding a new rule can cause two MMGs to be merged into
one larger MMG. Consequently, keeping empty slots in the
center of a PF table does not necessarily lead to an optimal
solution in the worst case. This point is demonstrated in the
following example.

Fig. 3 shows how two MMGs can merge into one MMG
by simply adding one rule which partially overlaps with
some of the rules from both MMGs. The two MMGs M 4
and Mp are shown in Fig. 3a and Fig. 3b with five-tuple
rules A; — Ay — A3 — Ay and By — By — B3 — By, re-
spectively. A search key can match rules in either My or
Mp, but not both. If M4 and Mp belong to two different
CRGs, rules in My are independent of those in Mp and,
hence, they can be placed independently in the table, as
shown in Fig. 3¢, i.e., the empty rule entries are placed in
the center.

Now, suppose a new rule C, which partially overlaps
with A, and B, as shown in Fig. 3d, is to be added. Assume
B, — C and C — A,. After rule C is added, however, M4
and Mz merge into one MMG and all the rules in M4 must

1605

B4 2.222-XXXX=XX=X.X=X

Ay 1LLI-XXX.X-X.X—X.X=5

Ay LLIXXXXX-XX-XX=5 B3 222X-X.X.XX-XX-X.X-4
A; 11 XXX XX XX X—X.X=5 By 22XX—X.XXX-X.X=X.X—=4
D e B| 2.XXX-XX.XX-X.X-X.X-4

B 7 22XX-X.X.X.X-X.X-X.X-4 B, 2222-XXXX—X.X-X.X—X

Bs 2222-xXxx-Xxx-xx-x |} A4 LLLI—xxXXx=Xx-xx=5 !
B3 222X-XXXX-XX-XX~4 || Az LLLX-XXXX=XX-X.X=5 -
Ay LLLI-XXXX-X.X-X.X-5 g Ao LLXX-X.XXX—X.X—-X.X=5 g
Az L11X-XXX.X-X.X-X.X-5 ;i" A1 LXXX=XXXX=X.X=X.X—X ;i"
Empty Slot -’é Empty Slot ?é
Empty Slot éﬂ C XXX X=XXXX=X.X-X.X—6 .E}
g g
2 2

B| 2XXX-X.XXX-X.X-XX~-4 B3 222X-XXXX-XX-XX—4

A 5 L1XX-X.X.X.X=X.X—X.X=5 B, 22XX-XXXX—-XX-X.X—4

A LXXXXXXX=X.X—X.X~-X B| 2XXX-XXXX-XX-X.X—4

(©) (d)

Fig. 3. A new MMG is formed by combining two MMGs and a new rule.
(a) MMG M. (b) MMG M. (c) Original table. (d) Table after rule C'is
inserted.

be moved to the higher match priority memory locations
than C and all the rules in M g must be moved to the lower
match priority memory locations than C, thereby resulting
in all the existing rules being rearranged as shown in Fig. 3d.
This example demonstrates that having empty slots in the
center of the table does not help to minimize the number of
rule moves per rule update in the worst case, as far as a
general PF table is concerned. In summary, we conclude
that the number of rule moves required for adding a new
rule in the worst case for any fast update algorithm is no
better than N, /2 for a general PF table with N, rules.

4 PROPOSED SoLUTION FOR TCAM PoLicy TABLE
UPDATE WITHOUT LOCKING

The previous section demonstrated that locking the TCAM
PF table for rule update can be harmful. In this section, the
proposed Consistent Policy Table Update Algorithm
(CoPTUA) is described in detail. The goal is to eliminate
the need for locking the TCAM table while ensuring
consistent and error-free rule matching during a rule
update process. In CoPTUA, a batch of rules is updated
together to minimize the update delay. A rule update
process includes three steps: 1) deleting rules that need to
be removed, 2) rearranging the remaining rules, and
3) adding new rules. The idea behind CoPTUA is to
maintain the PF table consistency and ensure error-free rule
matching during the update process. The PF table
consistency is maintained if, for each rule move, a search
key matching results in the same rule as the one that would
be matched before the rule move, as well as, for each rule
addition or deletion, a search key matching results in the
same rule as the one that would be matched just before or
after the addition or deletion. Error-free rule matching is
achieved if direct rule overwriting can be avoided for rule
update. CoPTUA meets both conditions and allows the
PF table update process to take place without locking and

1606

yet poses zero impact on the data path processing. The
following subsections present CoOPTUA in detail.

4.1 Hardware Capability
We summarize here the TCAM coprocessor capabilities
required in our solution, which hold true for most of the
existing TCAM coprocessors:

1. Each TCAM rule entry has a valid bit associated
with it. To activate a rule entry, this valid bit needs
to be set. Otherwise, the rule entry is considered
inactive or empty and it will never be matched.
Consequently, the deletion of a rule is nothing more
than resetting the valid bit and adding a rule does
not take effect until this valid bit is set.

2. After a rule is matched, resetting the valid bit has no
effect on the action return process. In other words,
deleting a rule cannot stop the return of the action
for that rule to the network processor if a match for
that rule occurs prior to the deletion operation.

3. Resetting the valid bit for a best matched rule
between two successive partial key matches causes
the rule to not be matched. Instead, the second best
rule is matched.

4. The TCAM is dual port, accessible both from a local
CPU and a network processor simultaneously.

4.2 Update without Policy Table Lock

There are two possible types of incorrect rule matching
during the update process without PF table locking:
1) erroneous rule matching and 2) inconsistent rule
matching. Erroneous rule matching may occur if a rule
gets a match while it or its corresponding action is partially
updated. Inconsistent rule matching means that the rule
that gets a match is not the best matched rule. Inconsistent
rule matching may occur when a key matching takes place
in the middle of a rule update process, which does not
guarantee table consistency until the process finishes. In
what follows, we identify the conditions for avoiding
erroneous and inconsistent rule matching.

Erroneous rule matching can be avoided if the following
condition is met: No update related operations are
performed on a rule and/or its corresponding action if
the valid bit of that rule is set, with the exception of delete
operations, i.e., resetting the valid bit. To meet this
condition, all that needs to be done is to avoid overwriting
an existing rule with its valid bit set. To this end, the
overwriting operations need to be decomposed into three
steps as follows:

e Step 1: A delete process, which involves only a single
operation to reset the valid bit of the existing rule.

e Step2: A write process, which involves multiple
operations to add a new rule and its corresponding
action.

e Step 3: Setting the valid bit for the new rule.

Based on capabilities (2) and (3) in the previous section,
Step 1 cannot cause any erroneous rule matching. Cap-
ability (1) ensures that Step 2 also meets the condition.
Finally, Step 3 obviously meets the condition. Note that a

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 12, DECEMBER 2004

writing process over an empty slot only includes Step 2 and
Step 3.

Inconsistent rule matching can be avoided if the
following conditions are met: 1) For each rule move, a
search key matching results in the same rule as the one that
would be matched before the rule move and 2) for each rule
addition or deletion, a search key matching results in the
same rule as the one that would be matched just before or
after the addition or deletion.

Any PF table update algorithm that meets the above
conditions guarantees that the PF table update process
poses zero impact on the data path (or TCAM lookup)
process, thus eliminating the need for TCAM PF table
locking. In the next section, we propose such an algorithm
for general TCAM PF table update.

4.3 Consistent PF Table Update for OTCAM

In what follows, we simply use move to represent a rule
move process which is composed of a write process to write
a rule to a new location and then a delete process to delete
the rule from its old location. As we shall see in the next
section, for search key matching which requires n clock
cycles, the delete process must be delayed by n — 1 clock
cycles to ensure consistent rule matching. Similarly, we
simply use write to represent a write process. Before
describing the proposed algorithm, let us first present two
theorems.

Theorem 1. After a rule is deleted from a PF table, the
consistency for all the remaining rules in the PF table is
maintained.

Proof. Deleting a rule can only cause the release of a match
priority relationship among the rest of the rules. Hence,
any rules with original match priority relationship either
still preserve the same relationship or become indepen-
dent as a result of the removal of some other rule(s). In
either case, the remaining rules can stay in their original
memory locations without causing inconsistency. O

Note that, when adding a new rule, care must be taken to
ensure that it will not be in conflict with the match priority
relationship for the existing rules. For example, assume
A — B. It is not allowed to simply add rule C and expect to
have B— C — A, ie. reverse the priority relationship
between A and B. In this paper, we assume that, to reverse
the match priority of two existing rules, the following
procedure is followed: 1) One delete process to remove one
of the two rules; 2) one add process to add that rule back at
a different location which reverses the priority relationship
between the two rules. This implies that to go from A — B
to B— C — A involves one delete process and two add
processes instead of a simple add process to add C. With
this assumption, we immediately have the following result:

Theorem 2. Adding a new rule does not change the match
priority relationship among the existing rules in an MMG.

CoPTUA is based on the above two theorems. The basic
idea is the following: Given a batch of updates to be
performed including one or multiple rule deletions and/or
additions, CoPTUA first deletes all the rules which do not
appear in the final configuration that is calculated in the

WANG ET AL.: COPTUA: CONSISTENT POLICY TABLE UPDATE ALGORITHM FOR TCAM WITHOUT LOCKING

rule rule rule
rule rule O rle o =
rule empty empty .g
N rule N rule 0 N rule o _g
rule rule rule g
o0
rule rule o empty 8
3
g
rule rule rule -
T empty empty rule 0
N N : Ne
l empty l empty l rule 0
(a) (b) (c)
— rule rule
oy
e O empty rule 0 E
rule O empty rule O E
e =
N, ‘ empty rule O rule O Lg’
e rule rule %u
empty rule O rule O g
S
&
#ile rule rule
. 2 empt;
mle O rule O pty
Ne ; : ‘ empty
l rule 0 rule O empty

(d) (e) ®

Fig. 4. The table configuration in OTCAM with all empty entries at the
bottom. (a) Original table with IV, rules. (b) After some rules are deleted,
all relevant rules are marked as “0.” (c) After N, relevant rules with
lowest match priority are moved into the empty entries at the bottom.
(d) After the remaining relevant rules are moved toward the top. (e) All
relevant rules are in order. (f) The last configuration by moving relevant
rules toward the top and adding all new incoming rules.

control plane, i.e., those rules which need to be deleted.
Every rule deletion results in a partially updated consistent
PF table, according to Theorem 1. Then, the existing rule
orders are rearranged to the final configuration without
adding the new rules but with the corresponding rule
entries allocated. Note that rule rearrangement must follow
a given procedure to ensure table consistency. This will
result in a consistent intermediate configuration, which is
equivalent to the configuration before the rearrangement,
i.e., the configuration just after the rules were deleted. This
is true because all the rules whose relative orders have been
changed due to this rearrangement must be those rules
which have no priority relationship. Otherwise, their
relative orders are not changed in the final configuration,
according to Theorem 2. Finally, CoPTUA adds the new
rules. CoPTUA is described in detail below.

In CoPTUA, all the N, empty rule entries are kept at
either the top or the bottom of the PF table. Now, suppose
initially all the rules are placed at the top of the PF table (i.e.,
lower memory addresses) as shown in Fig. 4a.

First, delete all the rules which do not appear in the final
configuration, resulting in an intermediate configuration as
shown in Fig. 4b.

Second, a procedure needs to be specified to properly
rearrange the existing rules before any new rules can be

1607

added. To this end, note that rules from different CRGs can
be interleaved in arbitrary order. Hence, only those rules
which are in the same CRG to which any new incoming rule
belongs may have to be rearranged. These rules are defined
to be relevant and all others are irrelevant with respect to
the rules to be added. To facilitate further discussion, we
mark all the relevant rules with “o” in Fig. 4b, Fig. 4c,
Fig. 4d, Fig. 4e, and Fig. 4f.

Now, the rearrangement procedure is as follows: First,
move the relevant rules in increasing match priority order in
which the lower match priority rules are moved before
higher match priority rules to the available lowest match
priority location in the N. empty memory space at the
bottom. In the case that a particular entry in the N, rule
entries is supposed to be taken by a newly added rule, that
entry is left empty. The intermediate configuration after this
rearrangement is shown in Fig. 4c. Next, the relevant rules
in the top N, entries are moved as closely toward the top as
possible in a decreasing match priority order. This is
because, after pushing the relevant rules close to the top,
some empty entries are released and then the relevant rules
can be rearranged close to the bottom. This creates at least
N, empty entries below all relevant rules in the top N,
entries as shown in Fig. 4d. The following step is to
rearrange all the relevant rules in the top N, rule entries
with all empty entries in the lowest priority locations. In
this configuration, the structure of the relevant rules in the
top NV, entries in Fig. 4d is now identical to the one in Fig. 4b
except that there is no empty entry among the relevant
rules. Hence, the same rearrangement procedure, as in
Fig. 4c and Fig. 4d is iteratively applied to the top entries
until all the relevant rules are placed below all the empty
entries, as shown in Fig. 4e. The empty entries here do not
include those allocated to the new rules which are yet to be
added. Subsequently, all the relevant (or irrelevant) rules
are moved toward the top (or bottom) to fill all the available
empty entries in decreasing (or increasing) match priority
order, depending on which one requires the smaller
number of moves.

Finally, the new rules are added to the preallocated
empty rule entries in decreasing match priority order. Fig. 4f
gives the final configuration when all the relevant rules are
moved to the top.

CoPTUA is formally stated in Fig. 5 for a table with all
rules at the top. The update process for a table with all rules
at the bottom is similar. Note that, in this case, the relevant
rules move to the top empty entries following a decreasing
priority order and the relevant rules move to the bottom of
the table following an increasing priority order.

Now, we use an example to illustrate how
CoPTUA works. Assume that a PF table is composed
of three MMGs belonging to three different CRGs, i.e.,
MD {Dg — D2 — Dl}, ME {E3 — EQ — El}, and MF
{F, — F1}, as shown in Fig. 6a. Suppose that a batch of
updates includes the deletion of F; and additions of G' and
H. Further assume:

1. The deletion of E; breaks Mpg into two separate
single-rule CRGs.

2. The addition of rule G merges E3 and E; back into
one new MMG Mg, ie.,, By — G — Es.

1608

CoPTUA Procedure{
Initially, all the rules are located at the top
Delete all the rules which are not in the final configuration
WHILE (Number of relevant rules above the empty entries # 0)
{

Move the relevant rules which are above the empty entries into the
empty entries at the bottom of the table in increasing match
priority order. If a rule to be written is not a rule in the original
table, an empty entry is kept at that location

Move all the relevant rules except the ones which have been moved
to the bottom toward the top in decreasing match priority order

}
IF (Number of moves of relevant rules to the top < Number of moves
of irrelevant rules to the bottom)

Move all the relevant rules towards the top in decreasing match

priority order
ELSE
Move all the irrelevant rules towards the bottom in increasing match
priority order
Write all the new rules to their respective empty entries in decreasing
match priority order

}

Fig. 5. CoPTUA for a table with all rules on the top.

3. The addition of rule H further merges all the
rules in Mp and Mg into one MMG, i.e,,
D3 — Dy - Dy — H— FE; -G — Ej.

By running CoPTUA, four major intermediate steps are
identified which correspond to four consistent PF table
formats, as shown in Fig. 6b, Fig. 6c, Fig. 6d, and Fig. 6e.
First, E, is deleted, as depicted in Fig. 6b. The table is
partially updated as rule E; is deleted. In Fig. 6c, the three
relevant rules with the lowest match priorities are moved to
the bottom of the table in increasing match priority order.
The rule order relationship is kept the same as in Fig. 6b. In
Fig. 6d, the relevant rules at the top are moved toward the
top end in decreasing match priority order. The order does
not change in this step. In Fig. 6e, all the relevant rules are in
their final order and below all empty entries. Note again
that empty entries at 5 and 8 are kept for the two new rules
and should not be considered as empty entries here. The
relative order for rules F; and Ej is reversed, which does
not introduce inconsistency since they are independent at
this point. Since moving all the irrelevant rules to the
bottom requires a smaller number of moves than that of
moving all the relevant rules to the top, F} is moved toward
the bottom. Finally, the new rules G and H are added to
complete the batch updates, resulting in the final config-

uration, as shown in Fig. 6f.
A salient feature of CoPTUA is that the worst-case rule

update performance is independent of the number of rules
to be updated in a batch. This feature allows CoPTUA to
yield an upper bound on the update delay performance,
which is independent of rule structures and update
patterns, as we shall see in Section 5.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 12, DECEMBER 2004

1 D1 1 D1 o 1| Empty slots
2 Fi 2 Fi1 2l F1 !
3 ElI 3 Ejo 3] Ejo0 |8
4 E2 4 | Empty slots 4 Empty slots ~§
5 D2 5 D2 o 5 | Emptyslots| | 5
6 F2 6 Fo 6 F2 E
7 D3 7 D3o 7 Emptyslots | 2
8 Es 8 E3 o 8 E3o | 8
9 | Empty slots 9 | Empty slots 9 D1 o __g
10 Empty slots 10 Empty slots 10 D2 o
11| Empty slots 11 Empty slots 11 D3 o
(a) (b) ()
1 Eio 1| Empty slots 1| Empty slots |
2 F1 2 F1 2 | Empty slots .
3 E3 o 3| Empty slots 3 F1 'g
4 | Empty slots 4 E3 o 4 E3 &
5 | Empty slots S | Empty slots 5 G g
6 F2 6 P2 6 F, 8
7 | Empty slots 7 Eio 7 E %
8 | Empty slots 8 | Empty slots 8 H g
9 Dio 9 Djo 9 Dy =
10 D2o 10 D2 o 10 D2
11 D3o 11 D3o 11| D3

(d) (e) ®

Fig. 6. An example of CoPTUA update process. (a) Original table.
(b) After E; is deleted and the relevant rules are marked as “0.” (c) After
the three lowest relevant rules are moved to the bottom. (d) After the
remaining relevant rules are moved toward the top. (e) After the top
relevant rules are moved below the empty entries. (f) Final configuration
after the irrelevant rules are moved toward the bottom and the new rules
G and H are written.

4.4 Proof of Correctness of COPTUA

To prove the correctness of CoOPTUA, we need to introduce
two lemmas. First, we note that, in the middle of a move
process, a rule may be duplicated just after it has been
written to a new location, while the same rule in the old
location is yet to be deleted. The following lemma states
under what condition duplicated rules may coexist without
causing inconsistent rule matching.

Lemma 1. For any two rules A — B, if there is at least one copy
of B such that all the copies of A < B, then the PF table
consistency is maintained.

Proof. In this case, any search key which matches both A
and B will result in the return of the action associated
with B, which is desired. O

Fig. 7 shows three configurations with duplicated rules.
Here, A— B— C, AND =10, and BAD ={. It is easy to
check that all the rules in the three configurations satisfy the
condition of Lemma 1 and, hence, all three tables are
consistent.

Lemma 2. Assume a search key matching takes n clock cycles. In
a rule move process, the rule in the old location cannot be
deleted until the nth clock cycle after the rule has been written
to its new location.

WANG ET AL.: COPTUA: CONSISTENT POLICY TABLE UPDATE ALGORITHM FOR TCAM WITHOUT LOCKING

€ c c z
B B B g
A A ¢ g
empty B B §
A A A g

(a) (b) ()

Fig. 7. Some examples of consistent table configurations with duplicated
rules satisfying the condition of Lemma 1. Here, A— B— C,
AAND=(,and BAD = 0.

Proof. Let ¢,,; and t,,. be the time instants the search key
match starts and ends, respectively. Note that
tme — tms = n. Let t, be the instant the rule is activated
at its new location and ¢, be the instant the rule is deleted
at the old location. There are two different match cases:
1) tps <t, and 2) t,s >t,. In the first case, to be
consistent, we must have t,. <t;. Consistency is
guaranteed if t,,. =ty +n <t, +n < t; In the second
case, t,,s > t,, for which the rule at the new location is
already valid at the beginning of the search key match
process. In summary, consistent rule matching is
guaranteed as long as t, +n < t4.]

Theorem 3. CoPTUA maintains PF table consistency through-
out the update process.

Proof. As shown in Fig. 5, the first phase in the update
process is to delete all the rules which do not appear in
the final configuration. According to Theorem 1, the
PF table consistency is guaranteed in this phase. The
second phase is an iterative rearrangement process. In
this process, only relevant rules may have to be
rearranged and all the irrelevant rules are not affected.
Relevant rules are moved from the top (bottom) toward
the bottom (top) in increasing (decreasing) match
priority order. This process satisfies the condition in
Lemma 1, provided that each move satisfies the condi-
tion in Lemma 2. The third phase is to either move all the
relevant rules to the top in decreasing match priority
order or all the irrelevant rules to the bottom in
increasing match priority order. Just as in phase two,
the PF table consistency is guaranteed for each move
since the conditions in Lemmas 1 and 2 are satisfied. The
last phase is to add all the new rules with match priority
relationship in decreasing order. After each new rule is
added, the PF table is a partially updated consistent table
because each new rule is located in their preallocated
final location. Moreover, adding new rules with match
priority relationship in decreasing order ensures that, if
the matched rule is a new rule, it is the best one
possible.]

5 PERFORMANCE ANALYSIS AND EVALUATION

As mentioned in Section 1, to ensure error-free and
consistent rule matching, CoPTUA tends to require a larger
number of operations and also a larger number of empty

1609

TABLE 1
Parameter Definition

N | PF table size in the units of the number of rule entries

N, | maximum number of rules in the PF table (N, < N)

R | number of relevant rules for each batch update

N, | number of empty rule entries (N, = N — N,)

« | percentage of rule entries which are empty (o« = N./N,)

5 | ratio between number of empty entries and number of relevant rules

(ie.. 3= N./R)

W | number of write operations per batch update

D | number of delete operations per batch update

W, | worst-case number of write operations per batch update

D,, | worst-case number of delete operations per batch update

n | number of clock cycles for each search key match

t,, | number of clock cycles for writing a rule to TCAM coprocessor

tq | number of clock cycles for deleting a rule from TCAM coprocessor

memory entries than traditional approaches based on
database locking. Hence, there are two critical concerns
for CoPTUA, i.e., rule update time and memory efficiency.
These concerns are resolved in this section by analytical and
simulation studies under various rule structures.

5.1 Number of Write and Delete Operations per

Batch Update

In CoPTUA, the number of write and delete operations in a
batch update process is dependent on the number of
relevant rules and the number of available empty entries in
the PF table. Here, we give analytical upper bounds on the
required number of write and delete operations for a batch
rule update. Table 1 lists the definitions for all the necessary
parameters.

First, consider a batch update process that does not
delete rules but only adds some rules to the PF table with all
empty rule entries at the bottom. The batch update process
is executed following the process described in the previous
section. The main part of the update operation is an iterative
process, as illustrated in Fig. 4c and Fig. 4d. The first step of
each iteration is to write at least N, lowest priority relevant
rules into the empty entries at the bottom of the table and to
delete up to N, redundant rules. The number of either write
or delete operations is at most N, in this step. The second
step of each iteration is to move the remaining relevant
rules toward the top of the PF table. This step costs up to
R —iN, write or delete operations in the ith iteration.
Hence, the total number of operations for either write or
delete is at most (R — (i — 1)NN,) in the ith iteration. The
iterative process continues until all the relevant rules are
moved to their final order and below all empty entries. The
maximum number of iterations is [1/8]. Then, the relevant
(or irrelevant) rules are moved to the top (or bottom),
whichever requires fewer moves. This step costs no more
than the minimum of R and N, — R rule moves. Finally, the
new rules are added to the preallocated empty entries and
these write operations have been accounted for in the

1610

iterative process. Hence, the total number of write and
delete operations per batch update is

[1/5]

WDZ

- % <1 + %DRJF min(R, N, — R).

The larger the 3 value is, the smaller the number of write
and delete operations required for each batch update. When
B > 1,both W and D reach their minimum value min (2R, N,.).

Now, if the batch update process also includes the
deletion of N, rules, the update process first deletes these
rules. Hence, N, extra delete operations are required and

R — (i — 1)N,) + min(R, N, — R)

(1)

D:%<1+ %DR+min(R,N7.—R)+Nd

<o+ [e mince . -

From (1) and (2), we note that the number of write or
delete operations is proportional to the number of relevant
rules. In the worst case, all the rules in the table are relevant,
ie, R= N, and = «. Then, the worst-case upper bounds
on the numbers of write and delete operations are as

follows:
1 1
W, — 1 (1 + H)w 3)
2 a

D, -1 (3 i H) N, (4)

Although the above results are derived based on the
assumption that all the empty rule entries are at the bottom
of the PF table, the results also hold true when they are at
the top of the table. This is because the two cases are
symmetric and no extra operations are required for one
versus the other.

Fig. 8 plots the functional relationship between D,, and
Wy, and o. Note that the number of write operations is N, in
the worst case if the PF table is locked for rule update.
CoPTUA can achieve the same performance in terms of the
number of write operations if o > 100%. As « decreases,
both D, and W, increase. For instance, for a = 1%, W, =
50.5N, and D,, = 51.5N,. The following subsection quanti-
fies the maximum delay per batch update.

(2)

5.2 Upper Bound on Worst-Case Delay per

Rule Update
According to Lemma 2, in a move process, the deletion of a
rule at its old location must be delayed n — 1 clock cycles
after the rule is activated at its new location. Hence, an extra
delay of ¢,, = n — 1 clock cycles needs to be added to each
move. We include this delay into each write time.

In practice, one can avoid t,,, delay for most of the rule
moves by writing a batch of rules to their corresponding
new locations before deleting them. For example, for the
rule moves as shown in Fig. 4c, when the lowest N, number
of rules are moved into the empty entries at the bottom, one
may write and activate all IV, rules in their new locations

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 12, DECEMBER 2004

450 —— Delete |
40 R
35r 1

30 o

25f 1
20f 1
o |
o & |

\
0\‘_*%

ol L R T R R

10 20 30 40 50 60 70 80

Minimum Percentage of Empty Entry

Number of Operations (xR)

N |
]

4
(%))
5o

100

Fig. 8. The number of write and delete operations versus the percentage
of empty rule entries in the worst case.

before deleting all the redundant rules from their old
locations. In this case, at most one extra delay of ¢,,, =n — 1
clock cycles is involved for up to N. moves. However, in the
following worst-case analysis, we assume that each move
incurs an extra delay of ¢,,, = n — 1 clock cycles. The worst-
case upper bound for update process time, t,, can be
expressed as:

t, = Ww(tw + tm’u) + Dytq. (5)

Clearly, the smallest possible batch update interval is ¢, in
the worst case. Hence, the worst-case delay per rule update at
this batch update interval is 2¢,. This is because a new rule
may come just after the last update process begins and it is
updated and activated at the end of the next update process.

Equations (1)-(5) quantitatively characterize the relation-
ship among all the parameters involved. They can be used
to guide the OTCAM coprocessor resource provisioning. A
designer can adjust any of these parameters to obtain a
bounded maximum update delay. For example, if the rule
enforcement can tolerate a longer delay, the higher TCAM
utilization can be achieved. On the other hand, increasing
the local CPU write speed can raise the OTCAM utilization
without incurring longer update delay.

Now, let us estimate the worst-case delay per rule
update by plugging in the parameter values based on the
state-of-the-art technologies. As stated in Section 2, Intel
IXP2800 PCI bus is 64-bit wide and runs at 66 MHz clock
rate (15 ns per clock cycle). We assume that the same CPU
interface is available for the TCAM coprocessor. Then, each
write operation requires five clock cycles for a 104-bit rule
with 64-bit action, plus one clock cycle for activating the
rule. Then, t,, = 15 x 6 = 90 ns. For simplicity, assume the
TCAM clock rate is also 66 MHz (in general, it is larger) and
a search key matching takes two TCAM clock cycles, so
tmy = 15 ns. Each delete takes one clock cycle, i.e.,

= 15 ns. Fig. 9 depicts the result for the maximum delay
per rule update (i.e., two t,) versus o with N, = 100,000
rules.

The maximum delay per rule update using CoPTUA is a
little above 1.2 seconds at a = 1%. This delay reduces to less

WANG ET AL.: COPTUA: CONSISTENT POLICY TABLE UPDATE ALGORITHM FOR TCAM WITHOUT LOCKING

T T T T T T T T T T

o CoPTUA E
—— Locking Method

o o o =

N o @ - o
T T T T Vo
| 1 I I

Maximum rule update delay (seconds)

o
(M)
T
I

° 14 % © 0 Q Q
t

>

15 10 20 30 40 50 60 70 80 90 100
Minimum Percentage of Empty Entry

Fig. 9. The maximum delay versus the percentage of empty rule entries
in the worst case for NV, = 100, 000.

than one second when a >2%. Given that the policy
enforcement is either controlled manually by network
administrators or by a remote policy server, enforcing a
rule usually takes seconds to minutes to accomplish.
Therefore, this maximum delay is negligible. Also plotted
in Fig. 9 is the maximum delay per rule update when an
algorithm based on locking is used. This is about
0.015 seconds, independent of «. During the lock period
(0.0075 seconds, half of the maximum delay per rule
update), however, up to 0.1875 million packets can be
dropped, assuming that the network processor handles
10 Gbps line rate, resulting in significant performance
degradation.

The above analysis clearly demonstrates the viability and
importance of CoPTUA for TCAM PF table update. With
CoPTUA, an OTCAM can then provide true maximum and
deterministic throughput performance guarantee for data
path processing.

5.3 Performance Evaluation by Simulation

The previous section presented the analytical upper bound
on the worst-case delay per rule update as a function of the
percentage of empty rule entries. In this subsection, we
study the maximum delay per rule update by simulation.
The real PF tables available today are generally small,
ranging from a few tens to a few thousand rules in a
PF table. For such small databases, the update delay in
CoPTUA is negligible even if all the rules are relevant. To
test the performance of CoPTUA under large database
systems, we adopt an approach used in [3], [6], [7], where
large numbers of five-tuple PF tables are synthesized using
small real databases as seeds. We synthesize up to 100,000
five-tuple rules based on a small real database with 195 rules
and some other rule statistics, as observed in [3], [6], [7].
In our seed database, about 40 percent of both source and
destination IP addresses are wildcarded. Among these,
about 15 percent are 0 length prefixes (i.e.,, the whole
address is wildcarded) and other prefix lengths are 8, 16,
24 bits. About 30 percent of the port numbers have wildcard
bits. The protocol number is specified in all the rules and

1611

there are only four types of protocols: TCP (Transport
Control Protocol), UDP (User Datagram Protocol), IP
(Internet Protocol), and ICMP (Internet Control Message
Protocol). In our synthesized database, all the rule subfields
except protocol number have a 50 percent chance having
wildcard bits and 20 percent of the subfields that have
wildcard bits are all-wildcarded subfields. We vary the
probability, P,, for the protocol subfield to be all-wild-
carded between 1 percent and 5 percent. If the subfield
value is an exact number (i.e., no wildcard bit in the
subfield), it has a 50 percent chance of being picked from
one of eight possible values and a 50 percent chance of
being picked from one of the remaining 248 values. The
time for writing a rule takes 90 ns and, for deleting a rule,
takes 15 ns, the same as for Intel IXP 2800.

The simulation results shown in this paper are based on
the above parameter setup. Our simulation study with
various other parameter setups (not shown in this paper)
concludes that the most important factor affecting the
update delay performance for CoPTUA is the average
number of overlapping rules per rule for a given N,. In
other words, the update delay performance for CoPTUA is
insensitive to the change of parameter setups as long as the
number of overlapping rules per rule is fixed. The larger the
average number of overlapping rules per rule, the larger is
the number of rule moves for each batch update and,
consequently, the larger is the update delay. Hence,
although our simulation parameter setup may not faithfully
mimic the possible parameter setup for future real world
PF tables, it is expected to provide useful data which
reflects the actual performance of CoPTUA. For this reason,
we simply use P, as a tuning knob to generate a wide range
of average number of overlapping rules per rule, with all
other parameters fixed.

In our simulation, the maximum N, number of rules may
be supported in a PF table and at least 1 percent of N, (i.e.,
N, = 0.01N,) rule entries are kept empty. The rule update
requests are assumed to follow a Poisson arrival process
and the average update request rate is set to 100 per second.
Each update request has 50 percent probability of adding a
new rule and 50 percent probability of deleting an existing
rule. The actual update process is such that, after an update
period (the time between the beginning and end of an
update), the next update process starts immediately as long
as there is at least one update request in the request queue.
If there is more than one request in the queue, all the
requests will be processed as a batch in the next update
process. The update delay for each rule addition is defined
as the interval between the time the rule is activated and the
time the request is received. For each pairing of N, and
P,, values, 20,000 updates are simulated and the maximum
delay is collected.

Fig. 10 shows the average number of overlapping rules
per rule versus N, for different P, values. As expected, the
average number of overlapping rules per rule increases as
N, increases. For a given N, value, a larger P, value results
in a larger average number of overlapping rules per rule.
This is because, as P, becomes larger, a larger number of
rules will have an all-wildcarded protocol subfield, making
it more likely for rules to overlap with each other. For

1612
20 TP, =001 A
" - g
2.l |-—P,=003 - |
e o- P, =005 -
Srer P 1
& 14} -7 .
o B
£ . e
g12 i -
[—~
> 10t e P "
o z
k) a — q
3 8 -
8 P
g - o
26 -]
[0} 7z (8]
& 4" 1
2 / o
I
2» pu |
0 g i i
20 40 60 80 100

Maximum Number of Rules in OTCAM (x1000)
Fig. 10. The average number of overlapping rules per rule.

example, at P, = 0.05, the average number of overlapping
rules per rule increases from below 5 to more than 20 as N,
increases from 20,000 to 100, 000.

Fig. 11 depicts the maximum number of relevant rules
per update versus V,. The maximum number of relevant
rules per update is 20-60 percent of N,. For example, at
N, = 100,000, the maximum number of relevant rules is
about 60,000 for P, =0.05, i.e., 60 percent of N,. This
indicates that the number of relevant rules in the worst case
is on the order of N,.

Fig. 12 shows that the maximum rule update delay at
N, = 100,000 is about 0.35 seconds, much smaller than the
theoretical upper bound (about 1.2 seconds) derived in the
previous section.

The above results clearly indicate that the rule update
delay using CoPTUA isnegligible for a PF table of size aslarge
as 100,000 rule entries and memory utilization as high as
99 percent. Therefore, in practice, for any PF table size in an
OTCAM, using CoPTUA for rule update causes zero impact

60
o P =0.01 e
g — P =0.03 P
:;/50; - P =0.05 o i
12 /E
<2 -
2 -~
= 40+ P J
{ g !
[- (s}
q>) -
© g
T 30t i _
o - o
5 p
g g
gzo_ ,D// i
z -
E
E e °
$10L - 1
=
0 i ‘ :
20 40 60 80 100

Maximum Number of Rules in OTCAM (x1000)

Fig. 11. Maximum number of relevant rules per update.

IEEE TRANSACTIONS ON COMPUTERS,

VOL. 53, NO. 12, DECEMBER 2004

350 , i .
o Pw=0.01

Fagol | —— Pw=003 |
° o P,=005 7
3] 7
8 ;
2 o501]
£
>
3
2 200f .
@
[
B1s0f .
2
@
>
o
£ 100F g
=} -
£ 7
=3 o
S sof P i

i o

0 ‘ . .
20 40 60 80 100

Maximum Number of Rules in OTCAM (x1000)

Fig. 12. Maximum rule update delay.

on the data path processing, while ensuring minimum rule
update delay and providing high memory utilization.

6 ConNsISTENT RULE UPDATE FOR LPM AND
WEITCAM-BASED PoLicYy TABLE

The number of rule moves for LPM table in the worst case is
much smaller than that for PF table update. Thus, the LPM
table has a much smaller chance of getting an inconsistent
or erroneous rule matching without table locking during the
update process. However, if consistent and error-free LPM
must be maintained without TCAM locking, the CoPTUA
should be used.

Since the LPM table update is a special case of the
general policy table update, CoPTUA can be directly
applied to the LPM table update. However, as mentioned
before, any algorithm that meets the two conditions in
Section 4.2 does not require table locking while imposing
zero impact on data path processing. It can be easily
verified that the two algorithms proposed in [16] satisfy the
consistency condition. The error-free condition is met as
long as the overwriting follows the three-step procedure
specified in Section 4.2. Hence, the two algorithms in [16]
can be easily modified to allow rule updating without
locking the LPM table. The added operations are valid bit
set/reset to avoid direct rule overwriting and the
n —1 cycles of waiting period in a rule move process to
satisfy the conditions in Lemma 2. As the maximum
number of rule moves is 16 for the algorithms proposed
in [16], the maximum number of added delete operations is
16 and the maximum waiting interval is 16 clock cycles,
which amounts to only about 480 ns extra delay per rule
update. In contrast, locking the LPM table for the move of
16 rules can affect the data processing of up to 18 packets at
OC-192 line rate, as mentioned in Section 2.

CoPTUA works even better for WEITCAMs [4]. For
policy table update in a WEITCAM, no extra empty rule
entries are required, meaning that the policy table can be
fully utilized. Again, given a batch of updates to be
performed including one or multiple rule deletions and
additions, the rule deletions are performed first, which will

WANG ET AL.: COPTUA: CONSISTENT POLICY TABLE UPDATE ALGORITHM FOR TCAM WITHOUT LOCKING

Rule WT Rule wT
J1 1 I 1
K2 5 K2 3
Empty slot L 4
K1 4 Ky 2
K3 6 K3 6
I3 3 I3 | 6
Empty slot Empty slot
Jo 2 J2 |5

(@) (b)

Fig. 13. A WEITCAM table with six rules, three weight bits for each rule.
(a) Original table. (b) After rule L is inserted.

not cause any inconsistency. To add a rule, instead of
having to move some of the existing rules around, as is the
case for an OTCAM, the weight values of some of the
existing rules may need to be changed. To maintain
consistency, the weight values for the existing rules must
be updated before the new ones are added. Since a weight
value update requires only one clock cycle, it is valid to
match either the new or the old weight value. In other
words, rule weight subfield overwriting is allowed and no
erroneous search key matching can occur while the weight
value is being updated.

To ensure consistency while the weights are being
changed, changing the weights to larger (smaller) values
(here, a larger weight indicates a higher match priority), it
must be executed in decreasing (increasing) match priority
order. After all the rules in the policy table are set to their
final weight, the new rules can then be written and
activated to finalize the configuration.

Let us look at an example as shown in Fig. 13. The
update process is to add a rule L into a policy table. Assume
that LNJ; #0, LNJy #0, LNK; # 0,and L N Ky # (), and
the two MMG M; and Mk initially belong to different
CRGs. Rule L has match priority relationships as follows:
Ji—-L—Jy, and Ky — L — K3. After L is added, the
possible new weights for these rules are shown in Fig. 13b.
In this case, the weights for J; and J; are increased which
must be updated in decreasing match priority order, i.e.,
first update J; and then J;. For K; and K>, the weight
values are to be reduced and updated in the increasing
match priority order, i.e., K1 must be updated before K.
Finally, the new rule L is added with weight value 4.

7 RELATED WORK

Only a few published research papers addressed the TCAM
memory resource management issues. McAuley and Francis
[9] first proposed using TCAM for routing table lookup and
discussed some update issues related to the OTCAM. Shah
and Gupta [16] proposed two algorithms on the rule table
update in the context of the LPM table using OTCAM. One of
these algorithms is considered to be optimal in terms of the
worst-case number of LPM table operations per entry update.

1613

The power consumption issue is addressed in [15] and
[20]. In these methods, the TCAM device is divided into
multiple blocks to accommodate an LPM table. Only the
power for the block that is being searched is turned on and
each match key only needs to search one of these blocks to
find the best matched route, thus reducing the power
consumption.

Some research efforts have been put on the TCAM table
compaction. Liu [11] described two route compacting
techniques to reduce the size of an LPM table in an OTCAM
to increase the TCAM utilization. He also introduced a range
encoding scheme for efficient range matching [12]. Lysecky
and Vahid [14] extended Liu’s work to perform the TCAM
minimization dynamically in the update processor rather
than via the network. Lunteran and Enghersen [13] proposed
a packet filter rule encoding scheme to reduce the rule length
in TCAM. The proposed approach was reported to reduce the
rule length significantly.

8 CONCLUSIONS

In this paper, we proposed a Consistent Policy Table Update
Algorithm (CoPTUA) for general policy table update in an
ordered ternary content address memory (OTCAM). Instead
of attempting to minimize the number of rule moves toreduce
the locking time, CoPTUA maintains policy table consistency
after each rule move, thus eliminating the need for locking the
policy table while ensuring the correctness of the rule
matching. Thus, the use of CoOPTUA for rule update poses
zero impact on data path processing.

Our worst-case analysis showed that, even for a policy
table with 100,000 rules, an arbitrary number of rules can be
updated simultaneously in less than one second, provided
that no less than 2 percent of the rule entries are empty. The
simulation study showed that the maximum update delay
is less than 0.35 seconds for a PF table with 100,000 rules
and at least 1 percent empty rule entries. These imply that,
with CoPTUA, any new rule can be enforced in less than
one second for any practical PF table sizes. Although the
proposed technique is targeted at the PF table update in an
OTCAM, we demonstrated that the proposed technique can
work even better for the PF table update in a WEITCAM.

REFERENCES

[1] “AMCC Ships 10-Gbit/s Processor,” Light Reading, 25 Mar. 2002.

[2] M. Adiletta, M.R. Bluth, D. Bernstein, G. Wolrich, and H.
Wilkinson, “The Next Generation of Intel IXP Network Proces-
sors” Intel Technology |., vol. 6, no. 3, pp 6-18, 2002.

[3] F. Baboescu and G. Varghese, “Scalable Packet Classification,”
Proc. ACM SIGCOMM, 2001.

[4] H. Che, Y. Wang, and Z. Wang, “A Rule Grouping Technique for
Weight-Based TCAM Coprocessors,” Proc. 11th Hot Interconnects
(HOTI), 2003.

[5] A. Feldman and S. Muthukrishnan, “Tradeoff for Packet Classi-
fication,” Proc. INFOCOM, 2001.

[6] P. Gupta and N. McKeown, “Packet Classification on Multiple
Fields,” Proc. ACM SIGCOMM, 1999.

[71 P. Gupta and N. McKeown, “Packet Classification Using
Hierarchical Intelligent Cuttings,” Proc. Seventh Hot Interconnects
(HOTI), 1999.

[8] N.F. Huang, W.E. Chen, C.Y. Lou, and J.M. Chen, “Design of
Multi-Field IPv6 Packet Classifiers Using Ternary CAMs,” Proc.
IEEE GLOBECOM, 2001.

1614

[9] M. Kobayashi, T. Murase, and A. Kuriyama, “A Longest Prefix
Match Search Engine for Multi-Gigabit IP Processing,” Proc. Int’l
Conf. Comm. (ICC), 2000.

[10] T.V.Lakshman and D. Stidialis, “High Speed Policy-Based Packet
Forwarding Using Efficient Multi-Dimensional Range Matching,”
Proc. ACM SIGCOMM, 1998.

[11] H. Liu, “Routing Table Compaction in Ternary CAM,” IEEE
Micro, vol. 22, no. 1, pp. 58-64, 2002.

[12] H. Liu, “Efficient Mapping of Range Classifier into Ternary-

CAM,” Proc. 10th Hot Interconnects (HOTI), 2002.

J.V. Lunteren and A.P.J. Engbersen, “Multi-Field Packet Classifi-

cation Using Ternary CAM,” Electronics Letters, vol. 38, no. 1,

pp- 21-23, 2002.

[14] R. Lysecky and F. Vahid, “On-Chip Logic Minimzation,” Proc.
40th Conf. Design Automation, 2003.

[15] R.Panigrahy and S. Sharma, “Reducing TCAM Consumption and
Increasing Throughput,” Proc. 10th Hot Interconnects (HOTI), 2002.

[16] D. Shah and P. Gupta, “Fast Updating Algorithms for TCAMs,”
IEEE Micro, pp 36-47, 2001.

[17] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, “Fast and
Scalable Layer Four Switching,” Proc. ACM SIGCOMM, 1998.

[18] V. Srinivasan, S. Suri, and M. Waldvogel, “Packet Classification
Using Tuple Space Search,” Proc. ACM SIGCOMM, 1999.

[19] S. Sharma and R. Panigrahy, “Sorting and Searching Using
Ternary CAMs,” Proc. 10th Hot Interconnects (HOTI), 2002.

[20] F. Zane, G. Narlikar, and A. Basu, “CoolCAM: Power-Efficient
TCAMs for Forwarding Engines,” Proc. IEEE INFOCOM, 2003.

[21] K. Zheng, C. Hu, H. Lu, and B. Liu, “An Ultra High Throughput
and Power Efficient TCAM-Based IP Lookup Engine,” Proc. IEEE
INFOCOM, 2004.

[13]

Zhijun Wang received the MS degree in
electrical engineering from Pennsylvania State
University, University Park, in 2001. He is
working toward the PhD degree in the Computer
Science and Engineering Department at the
University of Texas at Arlington. His current
research interests include data management in
mobile networks and peer-to-peer networks,
mobile computing, and networking processors.

Hao Che received the BS degree from Nanjing
University, Nanjing, China, in 1984, the MS
degree in physics from the University of Texas at
Arlington, in 1994, and the PhD degree in
electrical engineering from the University of
Texas at Austin in 1998. He was an assistant
professor of electrical engineering at Pennsylva-
nia State University, University Park, from 1998
to 2000 and a system architect with Santera
Systems, Inc., Plano, Texas, from 2000 to 2002.
Since September 2002, he has been an assistant professor of computer
science and engineering at the University of Texas at Arlington. His
current research interests include network architecture and design,
network resource management, multiservice switching architecture, and
network processor design.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 12, DECEMBER 2004

Mohan Kumar received the PhD (1992) and
MTech (1985) degrees from the Indian Institute
of Science and the BE degree (1982) from
Bangalore University in India. He is an associate
professor of computer science and engineering
at the University of Texas at Arlington. His
current research interests are in pervasive
computing, wireless networks and mobility,
active networks, mobile agents, and distributed

- computing. Recently, he has developed or
codeveloped algorithms for active-network-based routing and multi-
casting in wireless networks and caching prefetching in mobile
distributed computing. He has published more than 95 articles in
refereed journals and conference proceedings and supervised master’s
and doctoral theses in the areas of pervasive computing, caching/
prefetching, active networks, wireless networks and mobility, and
scheduling in distributed systems. He is on the editorial board of The
Computer Journal and he has guest edited special issues of several
leading international journals, including MONET and WINET issues and
the IEEE Transactions on Computers. He is a cofounder of the IEEE
International Conference on Pervasive Computing and Communications
(PerCom) and served as the program chair for PerCom 2003 and is the
general chair for PerCom 2005. He has also served on the technical
program committees of numerous international conferences/workshops.
He is a senior member of the IEEE. Prior to joining The University of
Texas at Arlington in 2001, he held faculty positions at the Curtin
University of Technology, Perth, Australia (1992-2000), the Indian
Institute of Science (1986-1992), and Bangalore University (1985-1986).

Sajal K. Das received the BS degree in 1983
from Calcutta University, the MS degree in 1984
from the Indian Institute of Science, Bangalore,
and the PhD degree in 1988 from the University
of Central Florida, Orlando, all in computer
science. He is currently a professor of computer
science and engineering and also the founding
director of the Center for Research in Wireless
Mobility and Networking (CReWMaN) at the
University of Texas at Arlington (UTA). Prior to
1999, he was a professor of computer science at the University of North
Texas (UNT), Denton, where he founded the Center for Research in
Wireless Computing (CReW) in 1997 and also served as the director of
the Center for Research in Parallel and Distributed Computing (CRPDC)
during 1995-1997. He was a recipient of the UNT Student Association’s
Honor Professor Award in 1991 and 1997 for best teaching and
scholarly research, UNT’s Developing Scholars Award in 1996 for
outstanding research, UTA’s Outstanding Faculty Research Award in
Computer Science in 2001 and 2003, and the UTA College of
Engineering Research Excellence Award in 2003. An internationally
known computer scientist, he has visited numerous universities,
research organizations, government, and industry labs worldwide for
collaborative research and invited seminar talks. He is also frequently
invited as a keynote speaker at international conferences and symposia.
His’ current research interests include resource and mobility manage-
ment in wireless networks, mobile and pervasive computing, wireless
multimedia and QoS provisioning, sensor networks, mobile internet
architectures and protocols, parallel processing, grid computing,
performance modeling, and simulation. He has published more than
250 research papers in these areas, directed numerous industry and
government funded projects, and holds four US patents in wireless
mobile networks. He serves on the editorial boards of the IEEE
Transactions on Mobile Computing, ACM/Kluwer Wireless Networks,
Parallel Processing Letters, and the Journal of Parallel Algorithms and
Applications. He is vice chair of the IEEE TCPP and TCCC Executive
Committees and on the advisory boards of several cutting-edge
companies.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

