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Abstract--Packet Classification (PC) has been a critical data path 
function for many emerging networking applications. An 
interesting approach is the use of TCAM to achieve deterministic, 
high speed PC. However, apart from high cost and power 
consumption, due to slow growing clock rate for memory 
technology in general, PC based on the traditional single TCAM 
solution has difficulty to keep up with fast growing line rates. 
Moreover, the TCAM storage efficiency is largely affected by the 
need to support rules with ranges, or range matching. In this 
paper, a distributed TCAM scheme that exploits 
chip-level-parallelism is proposed to greatly improve the PC 
throughput. This scheme seamlessly integrates with a range 
encoding scheme, which not only solves the range matching 
problem but also ensures a balanced high throughput 
performance. Using commercially available TCAM chips, the 
proposed scheme achieves PC performance of more than 100 
million packets per second (Mpps) , matching OC768 (40 Gbps) 
line rate.  
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I. INTRODUCTION i 

Packet Classification (PC) has wide applications in 
networking devices to support firewall, access control list 
(ACL), and quality of service (QoS) in access, edge, and/or 
core networks. PC involves various matching conditions, e.g., 
longest prefix matching (LPM), exact matching, and range 
matching, making it a complicated pattern matching issue. 
Moreover, since PC lies in the critical data path of a router and 
it has to act upon each and every packet at wire-speed, this 
creates a potential bottleneck in the router data path, 
particularly for high speed interfaces. For example, at OC192 
(10 Gbps) full line rate, a line card (LC) needs to process about 
25 million packets per second (Mpps) in the worst-case when 
minimum sized packets (40 bytes each) arrive back-to-back. As 
the aggregate line rate to be supported by an LC is moving 
towards OC768, it poses significant challenges for the design of 
packet classifiers to allow wire-speed forwarding.  

The existing algorithmic approach including geometric 
algorithms based on the hierarchical trie [1] [2] [3] [4] and most 
heuristic algorithms [6] [7] [8] [9] generally require 
nondeterministic number of memory accesses for each lookup, 
which makes it difficult to use pipeline to hide the memory 
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access latency, limiting the throughput performance.  Moreover, 
most algorithmic approaches, e.g., geometric algorithms, apply 
only to 2-dimensional cases. Although some heuristic 
algorithms address higher dimensional cases, they offer 
nondeterministic performance, which differs from one case to 
another.    

In contrast, ternary content addressable memory (TCAM) 
based solutions are more viable to match high speed line rates, 
while making software design fairly simple. A TCAM finds a 
matched rule in O(1) clock cycle and therefore offers the 
highest possible lookup/matching performance. However, 
despite its superior performance, it is still a challenge for a 
TCAM based solution to match OC192 to OC768 line rates. For 
example, for a TCAM with 100 MHz clock rate, it can perform 
100 million (M) TCAM lookups per second.  Since each typical 
5-tuple policy table matching requires two TCAM lookups, as 
will be explained in detail later, the TCAM throughput for the 
5-tuple matching is 50Mpps. As aforementioned, to keep up 
with OC192 line rate, PC has to keep up with 25Mpps lookup 
rate, which translates into a budget of two 5-tuple matches per 
packet. The budget reduces to 0.5 matches per packet at OC768. 
Apparently, with LPM and firewall/ACL competing for the 
same TCAM resources, it would be insufficient using a single 
100 MHz TCAM for PC while maintaining OC192 to OC768 
line rates. Although increasing the TCAM clock rate can 
improve the performance, it is unlikely that a TCAM 
technology that matches the OC768 line speed will be available 
anytime soon, given that the memory speed improves by only 
7% each year [17]. 

Instead of striving to reduce the access latency for a single 
TCAM, a more effective approach is to exploit chip-level 
parallelism (CLP) to improve overall PC throughput 
performance. However, a naive approach to realize CLP by 
simply duplicating the databases to a set of uncoordinated 
TCAM chips can be costly, given that TCAM is an expensive 
commodity.  In a previous work [16] by two of the authors of 
the present work, it was demonstrated that by making use of the 
structure of IPv4 route prefixes, a multi-TCAM solution that 
exploits CLP can actually achieve high throughput performance 
gain in supporting LPM with low memory cost.  

Another important benefit of using TCAM CLP for PC is its 
ability to effectively solve the range matching problem. [10] 
reported that today’s real-world policy filtering (PF) tables 
involve significant percentages of rules with ranges. Supporting 
rules with ranges or range matching in TCAM can lead to very 
low TCAM storage efficiency, e.g., 16% as reported in [10]. [10] 
proposed an extended TCAM scheme to improve the TCAM 
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storage efficiency, in which TCAM hierarchy and circuits for 
range comparisons are introduced. Another widely adopted 
solution to deal with range matching is to do a range 
preprocessing/encoding by mapping ranges to a short sequence 
of encoded bits, known as bit-mapping [11].  The application of 
the bit-map based range encoding for packet classification 
using a TCAM were also reported [11] [12] [13] [14] [15]. A 
key challenge for range encoding is the need to encode multiple 
subfields in a search key extracted from the packet to be 
classified at wire-speed. To achieve high speed search key 
encoding, parallel search key sub-field encoding were proposed 
in [11][13], which however, assume the availability of multiple 
processors and multiple memories for the encoding. To ensure 
the applicability of the range encoding scheme to any 
commercial network processors and TCAM coprocessors, the 
authors of this paper proposed to use TCAM itself for 
sequential range encoding [15], which however, reduces the 
TCAM throughput performance.  Using TCAM CLP for range 
encoding provides a natural solution which solves the 
performance issue encountered in [15].    

However, extending the idea in [16] to allow TCAM CLP for 
general PC is a nontrivial task for the following two reasons: 1) 
the structure of a general policy rule, such as a 5-tuple rule is 
much more complex than that of a route and it does not follow a 
simple structure like a prefix; 2) it involves three different 
matching conditions including prefix, range, and exact 
matches. 

In this paper, we propose an efficient TCAM CLP scheme, 
called Distributed Parallel PC with Range Encoding 
(DPPC-RE), for the typical 5-tuple PC. First, a rule database 
partitioning algorithm is designed to allow different partitioned 
rule groups to be distributed to different TCAMs with 
minimum redundancy. Then a greedy heuristic algorithm is 
proposed to evenly balance the traffic load and storage demand 
among all the TCAMs. On the basis of these algorithms and 
combined with the range encoding ideas in [15], both a static 
algorithm and a fully adaptive algorithm are proposed to deal 
with range encoding and load balancing simultaneously. The 
simulation results show that the proposed solution can achieve 
100 Mpps throughput performance matching OC768 line rate, 
with just 50% additional TCAM resource compared with a 
single TCAM solution at about 25 Mpps throughput 
performance.       

The rest of the paper is organized as follows. Section II  gives 
the definitions and theorems which will be used throughout the 
paper. Section III presents the ideas and algorithms of the 
DPPC-RE scheme. Section IV presents the implementation 
details on how to realize DPPC-RE. The performance 
evaluation of the proposed solution is given in Section V. 
Finally, Section VI concludes the paper. 
 

II. DEFINITIONS AND THEOREMS 
Rules: A rule table or policy filtering table includes a set of 

match conditions and their corresponding actions. We consider 
the typical 104-bit five-tuple match conditions, i.e., (SIP(1-32), 

DIP(1-32), SPORT(1-16), DPORT (1-16)，PROT(1-8)ii), where 
SIP, DIP, SPORT, DPORT, and PROT represent source IP 
address, destination IP address, source port, destination port, 
and protocol number, respectively. DIP and SIP require longest 
prefix matching (LPM); SPORT and DPORT generally require 
range matching; and PROT requires exact matching. Except for 
sub-fields with range matching, any other sub-field in a match 
condition can be expressed using a single string of ternary bits, 
i.e., 0, 1, or “don’t care” *. Table I gives an example of a typical 
five-tuple rule table. 

TABLE I An Example of Rule Table with 5-tuple Rules 
 Src IP Dst IP Src Port Dst Port Prot  Action 

L1 1.1.*.* 2.*.*.* * * 6 AF 
L2 2.2.2.2 1.1.*.* * 256-512 6 BF 
L3 3.3.*.* *.*.*.* >1023 512-1024 11 EF 
L4 *.*.*.* 4.4.4.* 5000-6000 >1023 * Accepted 
L5 *.*.*.* *.*.*.* <1023 * * Discard 
… …… …… …… …… …… …… 

BF: Best effort Forwarding     AF: Assured Forwarding 
EF: Expedited Forwarding 

Rule Entry: TCAMs are organized in slots with fixed size 
(e.g., 64 or 72); each rule entry takes 1 or more slots depending 
on its size. Fig. 1 shows the implementation of rule L1 and L2 in 
TCAM with 64-bit slots. Rule L1 has no range in any of its 
subfields and hence it takes 2 slots with 24 free bits in the 
second slot. Each of such rules in the TCAM takes the 
minimum number of slots and is defined as a rule entry. L2 has 
a range {256-512} in its destination port sub-field. This range 
cannot be directly expressed as a string of ternary bits, and must 
be partitioned into two sub-ranges: {256 - 511} and {512}, 
expressed as:  0000 0001 **** **** and 0000 0010 0000 0000. 
Such a range that must be expressed by more than one ternary 
bit strings is defined as the non-Trivial Range. Hence, L2 takes 
4 slots (slots 3, 4, 5 and 6), or 2 rule entries in the TCAM.  

 
Fig. 1 Rules in a TCAM. The range {256-512}is split into 2 sub-ranges  

{256-511}and {512}, and implemented as sub-range 1 and sub-range 2. ‘*’ 
represents a ‘don’t care’ bit, and ‘ x ’=‘ ******** ’, a wildcard byte. The other 
numbers represent the actual byte values. 

In general, if ranges in the SPORT and DPORT sub-fields in 
a match condition take n and m ternary strings, respectively, the 
match condition takes up mn ×  TCAM rule entries. This 
multiplicative expansion of the TCAM usage to support range 
matching is the root that causes low TCAM storage efficiency. 

Range Encoding: An efficient solution to deal with range 
matching is to map a range to a short sequence of encoded bits, 
known as range encoding.  After range encoding, a rule with 
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encoded ranges only takes one rule entry, thus significantly 
improving TCAM storage efficiency.  

Let 0N denote the rule table size, or the number of rules in a 
rule table; N represent the number of TCAM entries required 
to accommodate the rule table without range encoding; eN  
stand for the number of TCAM entries required to 
accommodate the rule table with range encoding. 

Search Key: A search key is a 104 binary bit string composed 
of a five-tuple. For example, <1.1.1.1, 2.2.2.2, 1028, 34556, 
11> is a five-tuple search key. In general, a search key is 
extracted by a network processor from the IP header and passed 
to a packet classifier to match against a five-tuple rule table.  

Matching: In the context of TCAM based PC as is the case in 
this paper, matching refers to ternary matching in the following 
sense. A search key is said to match a particular match 
condition, if for each and every corresponding bit position in 
both search key and the match condition, either of the following 
two conditions is met: (1) the bit values are identical; (2) the bit 
in the match condition is “don’t care” or *.   

So far, we have defined the basic terminologies for rule 
matching. Now we establish some important concepts upon 
which the distributed TCAM PC is developed.      

ID: The idea of the proposed distributed TCAM PC is to 
make use of a small number of bit values extracted from certain 
bit positions in the search key and match condition as IDs to (1) 
divide match conditions or rules into groups, which are mapped 
to different TCAMs; (2) direct a search key to a specific TCAM 
for rule matching.  

In this paper, we use P number of bits picked from given bit 
positions in the DIP, SIP, and/or PROT sub-fields of a match 
condition as the rule ID, denoted as Rule-ID, for the match 
condition and use P number of bits extracted from the 
corresponding search key positions as the key ID, denoted as 
Key-ID, for the search key.  For example, suppose P = 4, and 
they are extracted from SIP(1), DIP(7),DIP(16) and PROT(8). 
Then the rule-ID for the match condition <1.1.*.*, 2.*.*.*, *, *, 
6> is“01*0”and the key-ID for the search key <1.1.1.1, 2.2.2.2, 
1028, 34556, 11> is“0101”. 

ID Groups: We define all the match conditions having the 
same Rule-ID as a Rule-ID group. Since a Rule-ID is composed 
of P ternary bits, the match conditions or rules are classified 
into 3P Rule-ID groups. If “*” is replaced with “2”, we get a 
ternary value for the Rule-ID, which uniquely identifies the 
Rule-ID group (note that the numerical value for different 
Rule-IDs are different). Let jRID be the Rule-ID with value j 
and jRG represent the Rule-ID group with Rule-ID value j. For 
example, for P=4 the Rule-ID group with Rule-ID "00*1" 
is 7RG , since the Rule-ID value j ={0021}3= 7. 

Accordingly, we define the set of all the Rule-ID groups with 
their Rule-IDs matching a given Key-ID as a Key-ID group. 
Since each Key-ID is a binary value, we use this value to 
uniquely identify this Key-ID group. In parallel to the 
definitions for Rule-ID, we define Key-ID iKID  with value i 
as a Key-ID group iKG . We have a total number of 2P Key-ID 
groups.   

With the above definitions, we have  

iKG = ∪
               match  ij KIDRID

jRG . 

For example, for P=3,  the Key-ID group "011" is composed of 
the following 8 Rule-ID groups: "011，*11，0*1，01*，**1，
*1*，0**，***". 

An immediate observation is that different key-ID groups 
may overlap with one another in the sense that different key-ID 
groups may have common Rule-ID groups.  

Distributed Storage Expansion Ratio: Since Key-ID groups 
may overlap with one another, we have:  

|||| ∪
i

i
i

i KGKG ≥∑ , 

where |A| represents the number of elements in set A. In other 
words, using Key-ID to partition rules and distribute them to 
different TCAM introduces redundancy. To formally 
characterize this effect, we further define Distributed Storage 
Expansion Ratio (DER) as NKNDDER /),(= , where ),( KND  
represents the total number of rules required to accommodate N 
rules when rules are distributed to K different TCAMs. Here 
DER characterizes the redundancy introduced by the 
distributed storage of rules with or without range encoding.  

 
Throughput and Traffic Intensity: In this paper, we use 

throughput, traffic intensity, and throughput ratio as 
performance measures of the proposed solution.  Throughput is 
defined as the number of PCs per unit time. It is an important 
measure of the processing power of the proposed solution. 
Traffic intensity is used to characterize the workload in the 
system. As the design is targeted at PC at OC768 line rate, we 
define traffic intensity as the ratio between the actual traffic 
load and the worst-case traffic load at OC768 line rate, i.e., 100 
Mpps.  Throughput ratio is defined as the ratio between 
Throughput and the worst-case traffic load at OC768 line rate. 

Now, two theorems are established, which state under what 
conditions the proposed solution ensures correct rule matching 
and maintains the original ordering of the packets, respectively.  

Theorem 1: For each PC, correct rule matching is guaranteed if  
a) All the rules belonging to the same Key-ID group are 

placed in the same TCAM with correct priority orders.  
b) A search key containing a given Key-ID is matched 

against the rules in the TCAM, in which the corresponding 
Key-ID group is placed.    

Proof:  On the one hand, a necessary condition for a given 
search key to match a rule is that the Rule-ID for this rule 
matches the Key-ID for the search key. On the other hand, any 
rule that does not belong to this Key-ID group cannot match the 
search key, because the Key-ID group contains all the rules that 
match the Key-ID. Hence, a rule match can occur only between 
the search key and the rules belonging to the Key-ID group 
corresponding to the search key. As a result, meeting conditions 
a) and b) will guarantee the correct rule matching □ 

Theorem 2: The original packet ordering for any given 
application flow is maintained if packets with the same Key-ID 
are processed in order.   

Proof:  First, note that packet ordering should be maintained 
only for packets belonging to the same application flow and an 
application flow is in general identified by the five-tuple. 
Second, note that packets from a given application flow must 
have the same Key-ID by definition. Hence, the original packet 



         

ordering for any given application flow is maintained if packets 
with the same Key-ID are processed in order. □ 
 

III. ALGORITHMS AND SOLUTIONS 
The key problems we aim to solve are 1) how to make use of 

CLP to achieve high performance with minimum cost; 2) how 
to solve the TCAM range matching issue to improve the TCAM 
storage efficiency (consequently controlling the cost and power 
consumption). A scheme called Distributed Parallel Packet 
Classification with Range Encoding (DPPC-RE) is proposed.  

The idea of DPPC is the following. First, by appropriately 
selecting the ID bits, a large rule table is partitioned into several 
Key-ID groups of similar sizes. Second, by applying certain 
load-balancing and storage-balancing heuristics, the rules 
(Key-ID groups) are distributed evenly to several TCAM chips. 
As a result, multiple packet classifications corresponding to 
different Key-ID groups can be performed simultaneously, 
which significantly improves PC throughput performance 
without incurring much additional cost.  

The idea of RE is to encode the range sub-fields of the rules 
and the corresponding sub-fields in a search key into bit-vectors, 
respectively.  In this way, the number of ternary strings (or 
TCAM entries, which will be defined shortly in Section III.C) 
required to express a rule with non-trivial ranges can be 
significantly reduced (e.g. to only one string), improving 
TCAM storage efficiency. In DPPC-RE, the TCAM chips that 
are used to perform rule matching are also used to perform 
search key encoding. This not only offers a natural way for 
parallel search key encoding, but also makes it possible to 
develop efficient load-balancing schemes, making DPPC-RE 
indeed a practical solution. In what follows, we introduce 
DPPC-RE in detail. 

A. ID Bits Selection 
  The objective of ID-bit selection is to minimize the number of 
redundant rules (introduced due to the overlapping among 
Key-ID groups) and to balance the size of the Key-ID groups 
(large discrepancy of the Key-ID group sizes may result in low 
TCAM storage utilization).  

A brute-force approach to solve the above optimization 
problem would be to traverse all of the P-bit combination out of 
W-bit rules to get the best solution. However, since the value of 
W is relatively large (104 bits for the typical 5-tuple rules), the 
complexity is generally too high to do so. Hence, we introduce 
a series of empirical rules based on the 5 real-world database 
analyses [18] that are used throughout the rest of the paper to 
simplify the computation as follows:    

1) Since the sub-fields, DPORT and SPORT, in a rule may 
have non-trivial ranges which need to be encoded, we choose 
not to take these two sub-fields into account for ID-bit 
selection; 

2) According to the analysis of several real-world rule 
databases [18], over 70% rules are with non-wildcarded PROT 
sub-field, and over 95% of these non-wildcarded PROT 
sub-fields are either TCP(6) or UDP(11) (approximately 50% 
are TCP). Hence, one may select either the 8th or the 5th bit 

(TCP and UDP PROTs have different values at these two bit 
positions) of the PROT sub-field as one of the ID bits. All the 
rest of the bits in the PROT sub-field have fixed one-to-one 
mapping relationship with the 8th or 5th bits, and do not lead to 
any new information about the PROT; 

3）Note that the rules with wildcard(s) in their Rule-IDs are 
actually those incurring redundant storage. The more the 
wildcards a rule has in its Rule-ID, the more Key-ID groups it 
belongs to and consequently the more redundant storage it 
incurs. In the 5 real-world rule databases, there are over 92% 
rules whose DIP sub-fields are prefixes no longer than 25 bits 
and there are over 90% rules whose SIP sub-fields are prefixes 
no longer than 25 bits. So we choose not to use the last 7 bits 
(i.e., the 26th to 32nd bits) of these two sub-fields, since they 
are wildcards in most cases. 

Based on these 3 empirical rules, the traversal is simplified 
as: choose an optimal (P-1)-bit combination out of 50 bits of 
DIP and SIP sub-fields (DIP(1-25), SIP(1-25)), and then 
combine these (P-1) bits with PROT(8) or PROT(5) to form the 
P-bit ID. 

Fig.2 shows an example of the ID-bit selection for Database 
#5 [18] (with 1550 total number of rules). We use an equally 
weighted sum of two objectives, i.e., the minimization of the 
variance among the sizes of the Key-ID groups and the total 
number of redundant rules, to find the 4-bit combination: 
PROT(5), DIP(1), DIP(21) and SIP(4) iii.  

We find that, although the sizes of the Rule-ID groups are 
unbalanced, the sizes of the Key-ID groups are quite similar, 
which allows memory-efficient schemes to be developed for 
the distribution of rules to TCAMs. 

 
Fig. 2 ID-bit Selection Result of Rule Database Set #5. 

B. Distributed Table Construction 
The next step is to evenly distribute the Key-ID groups to K 

TCAM chips and to balance the classification load among the 
TCAM chips.  For clarity, we first describe the mathematical 
model of the distributed table construction problem as follows. 

Let: 
kQ be the set of the Key-ID groups placed in TCAM #k 

where k=1,2, …, K;  
PjjW 2,...,1],[ = be the frequency of jKID appearances in 

the search keys, indicating the rule-matching load ratio of 
Key-ID group jKG ;  

][kRM be the rule-matching load ratio that is assigned to 
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TCAM #k, namely, ∑
∈

=
kQj

jWkRM ][:][ ; 

][kG be the number of rules distributed to TCAM #k, namely, 
||:][ ∪

Ki QKG
iKGkG

∈

= .  

tC be the capacity tolerance of the TCAM chips (the 
maximum number of rules it can contain), and tL be the 
tolerance (maximum value) of the traffic load ratio that a 
TCAM chip is expected to bear.  

The optimization problem for distributed table construction 
is given by: 
======================================== 
Find a K-division { KkQk ,...,1, = } of the Key-ID groups that 
Minimize:  

];[
,...,1

kRMMax
Kk=     

];[
,...,1

kGMax
Kk =  

Subject To: 
,SQk ∈ ;

,...,1

SQ
Kk

k =
=
∪

 
;][:][ ∑

∈

=
KQj

jWkRM
    

|;|:][ ∪
Ki QKG

iKGkG
∈

=
 

tKk
LkRMMax ≤

=
][

,...,1         
.][

,...,1 tKk
CkGMax ≤

=  
======================================== 

  
 
Consider each Key-ID group as an object and each TCAM 

chip as a knapsack. We find that the problem is actually a 
variance of the Weight-Knapsack problem, which can be proved 
to be NP-hard.  

Note that the problem has multiple objectives, which cannot 
be handled by conventional greedy methods. In what follows, 
we first develop two heuristic algorithms with each taking one 
of the two objectives as a constraint and optimize the other. 
Then, the two algorithms are run to get two solutions, 
respectively, and the better one is chosen finally.  

 
Capacity First Algorithm (CFA): The objective  ][

,...,1
kRMMax

Kk=
 

is regarded as a constraint. In this algorithm, the Key-ID groups 
with relatively more rules will be distributed first. In each round, 
the current Key-ID group will be assigned to the TCAM with 
the least number of rules under the load constraint. 
======================================== 
I) Sort {i, Pi 2,...,2,1= } in decreasing order of || iKG , and 
record the result as{ ]2[],...,2[],1[ PKidKidKid }; 
II) for i from 1 to P2  do  

 Sort {k, Kk ,...,1= } in increasing order of ][kG , and 
record as { ][],...,2[],1[ KScScSc }; 

for k from 1 to K do 
    if tLiKidWkScRM ≤+ ]][[]][[  
    then  ][][][ iKidkSckSc KGQQ ∪=  
             ||]][[ ][kScQkScG = ; 

]];[[]][[]][[ iKidWkScRMkScRM +=  
 break; 

III) Output { }KkQk ,...,1, = and{ KkkRM ,...,1],[ =  }. 
======================================== 

 
 
Load First Algorithm (LFA): In this algorithm, the capacity 
objective is regarded as a constraint. The Key-ID groups with 
relatively larger traffic load ratio will be assigned to TCAM 
first, and the TCAM chips with lower load are chosen. 
======================================== 
I) Sort {i, Pi 2,...,2,1= } in decreasing order of ][iW , and record 
the result as{ ]2[],...,2[],1[ PKidKidKid }; 
II) for i from 1 to P2  do  

 Sort {k, Kk ,...,1= } in increasing order of ][kRM , and 
record as { ][],...,2[],1[ KScScSc }; 

for k from 1 to K do 
    if tiKidkSc CKGQ ≤|| ][][ ∪  
    then  ][][][ iKidkSckSc KGQQ ∪=  
             ||]][[ ][kScQkScG = ; 

]];[[]][[]][[ iKidWkScRMkScRM +=  
 break; 

III) Output { }KkQk ,...,1, = and { KkkRM ,...,1],[ =  }. 
======================================== 
 
The Distributed Table Construction Scheme: The two 
algorithms may not find a feasible solution with a given tL  
value. Hence, they are iteratively run by relaxing tL  in each 
iteration until a feasible solution is found.  In a given iteration, 
if only one of the two algorithms finds a feasible solution, this 
solution would be the final one. If both algorithms find feasible 
solutions,  one of them chosen according to the following rules:  

Suppose that AG and ARM are the two objectives given by 
algorithm A (CFA or LFA), while BG and BRM are the two 
objectives given by a different algorithm B (LFA or CFA). 
1) If AG < BG , and ARM < BRM , we choose the solution given 
by algorithm A; 
2) If AG < BG , but ARM > BRM , we choose the solution given 
by algorithm A when ARM <2/K (the reason will be revealed 
shortly in Section III.D), otherwise we choose the solution 
given by algorithm B. 

The corresponding processing flow is depicted in Fig.3.  
 

 
Fig. 3 Distributed Table Construction Flow. 

We still use the rule database set #5 as an example. Suppose 
that the traffic load distribution among the Key-ID groups is as 
depicted in Fig. 4, which is selected intentionally to have large 
variance to create a difficult case for load-balancing. 



         

    Note that the ID-bits are PROT(5), DIP(1), DIP(21), and 
SIP(4) as obtained  in the last sub-section. Given the constraint 

tC =600 and tL =30%, the results for K=4 and K=5 are shown in 
Tables II and III, respectively. 

 

 
Fig. 4 Traffic Load Distribution among the Key-ID (Key-ID groups).  

For K=5, CFA produces a better result (both objectives are 
better) than that of LFA, as shown in TABLE II. We find that 
the numbers of rules assigned to different TCAMs are very 
close to one another. The Distributed storage Expansion Ratio 
(DER) is 1.51, which means that only about 50% more TCAM 
entries are required (note that 200% (at K=2) or more are 
required in the case when the rule table is duplicated and 
assigned to each TCAM). The maximum traffic load ratio is 
29.4%<2/K=40%. As we shall see soon, using the 
load-balancing schemes proposed in Section III.D, this kind of 
traffic distribution can be perfectly balanced. 
  For K=4, LFA instead produces a better result than that of CFA 
and the maximum and minimum traffic load ratios are 25.9% 
and 23.5%, respectively, very close to a perfectly balanced 
load. 

TABLE II When K=5, CFA gives the best result. No iteration is needed. 
TCAM Key-ID Groups (Table Contents) Number of Rule-ID 

Groups 
Number of 

Rules 
Traffic Load 

Ratio% 
#1 11(1011) 2(0010) 0(0000)  36 478 18.8 
#2 8(1000) 7(0111) 4(0100)  40 439 20.0 
#3 15(1111) 10(1010) 14(1110) 12(1100) 40 489 29.4 
#4 9(1001) 3(0011) 13(1101)  36 445 11.8 
#5 5(0101) 6(0110) 1(0001)  36 494 20.0 

Distributed Storage Expansion Ratio (DER) 2345/1550=1.51 
 

TABLE III When K=4, LFA gives the best result. No iteration is needed. 
TCAM Key-ID Groups (Table Contents) Number of Rule-ID 

Groups 
Number of 

Rules 
Traffic Load 

Ratio% 
#1 2(0010) 15(1111) 13(1101) 0(0000) 45 591 25.9 
#2 12(1100) 8(1000) 9(1001) 11(1011) 40 532 24.7 
#3 6(0110) 5(0101) 3(0011) 14(1110) 46 586 25.9 
#4 7(0111) 10(1010) 4(0100) 1(0001) 50 596 23.5 

Distributed Storage Expansion Ratio (DER) 2304/1550=1.48 

C. Solutions for Range Matching 
    Range matching is a critical issue for effective use of TCAM 
for PC.  The real word databases in [10] showed the TCAM 
storage efficiency can be as low as 16% due to the existence of a 
large number of rules with ranges. We apply our earlier proposed 
Dynamic Range Encoding Scheme (DRES) [15] to distributed 
TCAMs, in order to improve the TCAM storage efficiency.      

DRES [15] makes use of the free bits in each rule entry to 
encode a subset of ranges selected from any rule sub-field with 
ranges. An encoded range is mapped to a code vector 
implemented using the free bits, and the corresponding subfield 
is wildcarded. Hence, a rule with encoded ranges can be 
implemented in 1 rule entry, reducing the TCAM storage usage. 
To match an encoded rule, a search key is preprocessed to 
generate an encoded search key. This preprocess is called search 
Key Encoding (KE).  Accordingly, the PC process in a TCAM 
with range encoding includes two steps: search KE and Rule 
Matching (RM). DRES uses the TCAM coprocessor itself for KE 
to achieve wire-speed PC performance. If the encoded ranges 
come from S sub-fields, S separate range tables are needed for 
search KE. The S range tables as well as the rule table can be 
allocated in the same or different TCAMs.  The KE involves S 
sub-fields matching against the corresponding S range tables to 
get an encoded search key. Then the encoded search key is 

matched against the rule table to get the final result. In summary, 
a PC with range encoding requires S range table lookups for KE 
and 1 RM lookup. 

    For typical 104-bit five-tuple rules, ranges only appear in the 
source and destination port subfields, and hence only 2 range 
tables are needed. For a TCAM with 64-bit slot size, each rule 
takes 2 slots, and leaves 24 free bits for range encoding. Each 
RM takes 2 TCAM lookups (each slot takes 1 lookup). A range 
coming from the source/destination port sub-field takes 1 slot in 
a range table and hence incurring 1 TCAM lookup for each 
range table matching.  In summary, there are a total number of 4 
TCAM lookups per PC.  With a 100 MHz TCAM at 100 million 
lookups per second, DRES can barely support OC192 (i.e. 25 
Mpps) wire-speed performance. The distributed TCAM 
scheme that exploits CLP to increase the TCAM lookup 
performance is needed to support line rates higher than OC192. 
The following sections present the details on how to 
incorporate DRES into the proposed distributed solution. 

 
D. Efficient Load-Balancing Schemes 

Note that the DPPC formulation is static, in the sense that 
once the Key-ID groups are populated in different TCAMs, the 
performance is pretty much subject to traffic pattern changes. 
The inclusion of Range Encoding provides us a very efficient 



         

way to dynamically balance the PC traffic in response to traffic 
pattern changes. The key idea is to duplicate range encoding 
tables to all the TCAMs and hence allow a KE to be performed 
using any one of the TCAMs to dynamically balance the load.  
Since the size of the range tables are small, e.g., no more than 
15 entries for all the 5 real-world databases, duplicating range 
tables to all the TCAMs does not impose distinct overhead.   

We design two algorithms for dynamic RE. First, we define 
some mathematical terms. Let ][kD be the overall traffic load 
ratio assigned to TCAM #k (k=1,2,…K), which includes two 
parts, i.e., the KE traffic load ratio and the RM traffic load ratio, 
with each contributes 50% of the load, according to Section 
III.C.  

Let ][kKE  and ][kRM  be the KE and RM traffic ratio 
allocated to TCAM #k, (k= 1,2,…,K_), respectively. Note 
that ][kRM is determined by the Distributed Table Construction 
process (refer to Section III.B). 

Let  ],[ kiA ,  1],[,,...,1,,0],[ ==≥ ∑
i

kiAKkikiA ,
  

be the 

Adjustment Factor Matrix, which is defined as the percentage 
(ratio) of the KE tasks allocated to TCAM #i, for the 
corresponding RM tasks which are performed in TCAM #k. 
Then the dynamic load balancing problem is formulated as 
follows: 
======================================== 
To decide ],[ kiA , Kki ,...,1, =  

Minimize: 

 ][][
,...,1,...,1

kDMinkDMax
KkKk ==

− . 

Subject to: 
][5.0][5.0][ kRMkKEkD ×+×= , Kk ,...,1= ; 

∑
=

×=
Kk

kRMkiAiKE
,...,1

][],[][ , Ki ,...,1= . 

======================================== 
The following two algorithms are proposed to solve the 

above problem.  

Stagger Round Robin (SRR): The idea is to allocate the KE 
tasks of the incoming packets whose RM tasks are performed in 
a specific TCAM to other TCAM chips in a Round-Robin 
fashion. Mathematically, this means that: 
  0],[ =kkA  and )1/(1],[ −= KkiA , Kkiki ,...,1,,, =≠ . 
We then have, 

][5.0)1/(])[...]1[]1[...]1[(5.0][ kRMKKRMkRMkRMRMkD ×+−++++−++×=

Kk ,...,1= ; therefore 

).1/()2(])[][(5.0][][
,...,1,...,1,...,1,...,1

−−×−×=−
====

KKkRMMinkRMMaxkDMinkDMax
KkKkKkKk

 
Comments:  In the case when K=2, the objective is a constant 
"0". This means that no matter how large the variance of the 
RM load ratios among all the TCAM chips is, SRR can always 
perfectly balance the overall traffic load. 
Since 5.0)1/()2(5.0 <−−× KK , it means in any case, SRR can 
always reduce the variance of the overall load ratio to less than 

half of that of the RM tasks. 
 

Full Adaptation (FA): The idea of FA is to use a counter to 
keep track of the current number of backlogged tasks in the 
buffer at each TCAM chip.  Whenever a packet arrives, the 
corresponding KE task is assigned to the TCAM who has the 
smallest counter value.  

In this case, the values of ],[ ikA are not fixed. The 
expression of ][kD is given by: 

 ])[],[...]]1[]1,[(5.0][5.0][ KRMKkARMkAkRMkD ×++××+×= . 
Note that KiikA ,...,1 ,1],[0 =≤≤ , we have  

1][][5.0 ≤≤× kDkRM , Kk ,...,1= .  

    Taking ],[ kiA  as tunable parameters, it is straightforward 
that the equations: 

])[],[...]1[]1,[(5.0][5.0][/1 KRMKkARMkAkRMkDK ×++××+×==
Kk ,...,1= ,  

must have feasible solutions when KkRM /1][5.0 ≤×  
i.e., KkRM /2][ ≤ , Kk ,...,1= . 

This means that if the conditions: KkRM /2][ ≤ , Kk ,...,1= , 
are all satisfied, the overall traffic load ratio can be perfectly 
balanced (the objective value is 0) in the presence of traffic 
pattern changes.  

Comments: The overall traffic load can be perfectly balanced 
when KkRM /2][ ≤ , Kk ,...,1= , are satisfied, which makes FA 
a very efficient solution when compared with SRR. However, 
FA incurs more implementation cost due to the need of a 
counter for each TCAM chip. 

Further discussions on the performance of SRR and FA are 
presented in Section V. 

 

IV. IMPLEMENTATION OF THE DPPC-RE SCHEME 

The detailed implementation of the DPPC-RE mechanism is 
depicted in Fig.5. Beside the TCAM chips and the associated 
SRAMs to accommodate the match conditions and the 
associated actions, three major additional components are 
included in co-operating with the TCAM chips, i.e., a 
Distributor, a set of Processing Units (PUs) and a Mapper. 
Some associated small buffer queues are used as well. Now we 
describe these components in details.  

A. The Distributor  
This component is actually a scheduler. It partitions the PC 

traffic among the TCAM chips. More specifically, it performs 
three major tasks. First, it extracts the Key-ID from the 5-tuple 
received from a network processing unit (NPU). The Key-ID is 
used as an identifier to dispatch the RM keys to the associated 
TCAM.  The 5-tuple is pushed into the RM FIFO queue of the 
corresponding TCAM (Solid arrows in Fig. 5). 

Second, the distributor distributes the KE traffic among the 
TCAM chips, based on either the FA or SRR algorithm. The 
corresponding information, i.e., the SPORT and DPORT are 
pushed into the KE FIFO of the TCAM selected (dashed arrows 
in Fig.5). 
  Third, the distributor maintains K Serial Numbers (S/Ns) or 



         

S/N counters, one for each TCAM. An S/N is used to identify 
each incoming packet (or more precisely, each incoming 
five-tuple). Whenever a packet arrives, the distributor adds "1" 
(cyclical with modulus equal to the RM FIFO depth) to the S/N 
counter for the corresponding TCAM the packet is mapped to.  
A Tag is defined as the combination of an S/N and a TCAM 
number (CAMID). This tag is used to uniquely identify a 
packet and its associated RM TCAM. The format of the Tag is 
depicted in Fig.6(a). 

 
Fig. 5 DPPC-RE mechanism. 

As we shall explain shortly, the tag is used by Mapper to 
return the KE results back to the correct TCAM and to allow the 
PU for that TCAM to establish the association of these results 
with the corresponding five-tuple in the RM queue. 

 
S/N(5) CAMID(3) 

(a)  Tag Format 
 

PROT(8) DIP(32) SIP(32) DPORT(16) SPORT(16) Tag(8) 
(b) RM Buffer Format 

 
DPORT(16) SPROT(16) Tag(8) 

(c)  KE Buffer Format 

 
Valid(1) DPK(8) SPK(8) 

(d) Key Buffer Format 
 

Fig. 6 Format of Tag, RM FIFO, KE FIFO and Key Buffer. 
 

B. RM FIFO, KE FIFO, Key Buffer, and Tag FIFO 

A RM FIFO is a small FIFO queue where the information for 
RM of the incoming packets is held. The format of each unit in 
the RM FIFO is given in Fig.6(b). (The numbers in the brackets 
indicate the number of memory bits needed for the sub-fields). 

    A KE FIFO is a small FIFO queue where the information 
used for KE is held. The format of each unit in the KE FIFO is 
given in Fig.6(c). 

      Differing from the RM and KE FIFOs, a Key Buffer is not a 
FIFO queue, but a fast register file accessed using an S/N as the 
address. It is where the results of KE (encoded bit vectors of the 
range sub-fields) are held. The size of a Key Buffer equals to 
the size of the corresponding RM FIFO, with one unit in the 
Key Buffer corresponds to one unit in the RM FIFO. The 
format of each unit is given in Fig.6(d). The Valid bit is used to 
indicate whether the content is available and up-to-date. 
    Note that the tags of the key cannot be passed through 
TCAM chips during the matching operations. Hence a Tag 
FIFO is designed for each TCAM chip to keep the tag 
information when the associated keys are being matched. 
 
C. The Processing Unit   

Each TCAM is associated with a Processing Unit (PU). The 
functions of a PU are to (a) schedule the RM and KE tasks 
assigned to the corresponding TCAM, aiming at maximizing 
the utilization of the corresponding TCAM; (b) ensure that the 
results of the incoming packets assigned to this TCAM are 
returned in order. In what follows, we elaborate on these two 
functions.  

(a) Scheduling between RM and KE tasks: Note that, for any 
given packet, the RM operation cannot take place until the KE 
results are returned. Hence, it is apparent that the units in a RM 
FIFO would wait for a longer time than the units in a KE FIFO. 
For this reason, RM tasks should be assigned higher priority 
than KE tasks. However, our analysis (not given here due to the 
page limitation) indicates that a strict-sense priority scheduler 
may lead to non-deterministically large processing delay. So we 
introduce a Weighted-Round-Robin scheme in the PU design. 
More specifically, each type of tasks gain higher priority in turn 
based an asymmetrical Round-Robin mechanism. In other 
words, the KE tasks will gain higher priority for one turn (one 
turn represents 2 TCAM accesses, for either a RM operation or 
two successive KE operations)  after n turns with the higher 
priority assigned to RM tasks. Here n is defined as the 
Round-Robin Ratio (RRR).  

(b) Ordered Processing: Apparently, the order of the returned 
PC results from a specific TCAM is determined by the 
processing order of the RM operation. Since a RM buffer is a 
FIFO queue, the PC results can still be returned in the same 
order as the packet arrivals, although the KE tasks of the 
packets may not be processed in their original sequence iv. As a 
result, if the KE result for a given RM unit returns earlier than 
those units in front of it, this RM unit cannot be executed. 

Specifically, the PU for a given TCAM maintains a pointer 
points to the position in the Key Buffer that contains the KE 
result corresponding to the unit at the head of the RM FIFO. 
The value of the pointer equals the S/N of unit at the head RM 
FIFO. In each TCAM cycle, PU queries the valid bit of the 

                                                        
iv This is because the KE tasks whose RM is processed in a specific TCAM may 
be assigned to different TCAMs to be processed based on the FA or SRR 
algorithms. 



         

position that the pointer points to in the Key Buffer. If the bit is 
set, meaning that the KE result is ready, and it is RM’s turn for 
execution, PU reads the KE results out from the Key Buffer and 
the 5-tuple information out from the RM FIFO queue, and 
launches the RM operation. Meanwhile the valid-bit of the 
current unit in the Key Buffer is reset and the pointer is 
incremented by 1 in a cyclical fashion. Since the S/N for a 
packet in a specific TCAM is assigned cyclically by the 
Distributor, the pointer is guaranteed to always point to the unit 
in the Key Buffer that corresponds to the head unit in the RM 
FIFO. 
 
D. The Mapper  

The function of this component is to manage the result 
returning process of the TCAM chips. According to the 
processing flow of a PC operation, the mapper has to handle 
three types of results, i.e., the KE Phase-I results (for the 
SPORT sub-field), the KE-Phase-II results (for the DPORT 
sub-field), and the RM results. The type of the result is encoded 
in the result itself.   
  If the result from any TCAM is a RM result (which is decoded 
from the result itself), the mapper returns it to the NPU directly. 
If it is a KE-Phase-I result, the mapper stores it in a latch and 
waits for the Phase II result which will come in the next cycle. 
If it is a KE-Phase II result, the mapper uses the tag information 
from the Tag FIFO to determine: 1) which Key Buffer 
(according to the CAMID segment) should this result be 
returned to, and 2) which unit in the Key Buffer (according to 
the S/N segment) should this result be written into. Finally the 
mapper combines the 2 results (of Phase I and II) into one and 
returns it. 

 
E. An Example of the PC Processing Flow 

Suppose that the ID-bit selection is based on Rule database 
#5, and the four ID-bits are PROT(4), DIP(1), DIP(21), and 
SIP(4). The distributed rule table is given in Table II (in Section 
III.B). Given a packet P0 with 5-tuple: <166.111.140.1, 
202.205.4.3, 15335, 80, 6>, the processing flow is the 
following (also shown in Fig. 5):  
①: The 4-bit Key-ID “0010” is extracted by Distributor.  
②: According to the distributed rule table given by TABLE II, 
Key-ID group “0010” is stored in TCAM#1. Suppose that the 
current S/N value of TCAM#1 is “5”, then the CAMID “001” 
and S/N are combined into the Tag with value “00110(5+1)”. 
Then the 5-tuple together with the Tag is pushed into the RM 
FIFO of TCAM#1.  
③: Suppose that, the current queue sizes of the 5 KE FIFOs are 
2,0,1,1, and 1, respectively.  According to the FA algorithm, the 
KE operation of packet P0 is to be performed in TCAM#2.  
Then the two range sub-fields <15535, 80>, together with the 
Tag, are pushed into the KE FIFO associated with TCAM#2.  
④: Suppose that now it is KE’s turn or no RM task is ready for 
execution, PU#2 pops out the head unit (<15535, 
80>+Tag<00100110>) from the KE FIFO, and sends them to 
TCAM#2 to perform the two range encodings successively. 
Meanwhile, the corresponding tag is pushed into the Tag FIFO. 

⑤: When both results are received by Mapper, it combines 
them into one, and pops the head unit from the Tag FIFO.  
⑥: The CAMID field “001” in the Tag indicates the result 
should be sent back to the Key Buffer of TCAM#1, while the 
S/N field “00110” indicates that it should be stored in the 6th 
unit of the Key Buffer. Meanwhile, the corresponding valid bit 
is set. 
⑦: Suppose that all the packets before packet P0 have been 
processed, and P0 is now the head unit in the RM FIFO of 
TCAM#1. Note that packet P0 has S/N “00110”. Hence, when 
it is the RM’s turn, PU#1 probes the valid bit of the 6th unit in 
the Key Buffer.  
⑧:When PU#1 finds that the bit is set, it pops the head unit 
from the RM FIFO (the 5-tuple) and reads the contents out from 
the 6th unit of the Key Buffer (the encoded key of the two 
ranges), and then launches a RM operation in TCAM#1. 
Meanwhile, the valid bit of the 6th unit in the Key Buffer is reset 
and the pointer of PU#1 is incremented by one and points to the 
7th unit. 
⑨: When Mapper receives the RM result, it returns it back to 
the NPU, completing the whole PC process cycle for packet P0.  
 

V. EXPERIMENTAL RESULTS 

A. Simulation Results  
Simulation Setup: Traffic Pattern: Poisson Arrival process; 
Buffer Size: RM FIFO=8; Key Buffer=8, KE FIFO=4, 
Round-Robin-Ratio=3; Traffic Load Distribution among 
Key-ID groups: given in Fig 2. 

 
Fig. 7 Simulation results (Throughput). 

Throughput Performance: The simulation results are given in 
Fig. 7. One can see that at K=5, the OC-768 throughput is 
guaranteed even when the system is heavily loaded (traffic 
intensity tends to 100%), whether FA or SRR algorithm is 
adopted. This is mainly because the theoretic throughput upper 
bound at K=5 (5*100M/4=125Mpps) is 1.25 times of the 
OC768 maximum packet rate (100Mpps). In contrast, at K=4, 
the throughput falls short of the wire-speed when SRR is used, 
while FA performs fairly well, indicating that FA has better 
load-balancing capability than SRR. 

Delay Performance: According to the processing flow of the 
DPPC-RE scheme, the minimum delay for each PC is 10 
TCAM cycles (5 for RM and 5 for KE). In general, however, 
additional cycles are needed for a PC because of the queuing 
effect. We focus on the performance when the system is heavily 
loaded. Fig. 8 shows the delay distribution for the back-to-back 



         

mode, i.e., when packets arrive back-to-back (Traffic intensity 
=100%). 

We note that the average delay are reasonably small except 
for the case at K=4 and when SRR is adopted (avg.delay>20 
TCAM cycles). In this case, when the offered load reaches the 
theoretical limit (i.e., 100 Mpps), a large number of packets are 
dropped due to SRR's inability to effectively balance the load. 

The delay distributions for the cases using FA (K=4 or 5) are 
much more concentrated than those using SRR, suggesting that 
FA offer much smaller and more deterministic delay 
performance than SRR. Note that more deterministic delay 
performance results in less buffer/cache requirements and 
lower implementation complexity for the TCAM Classifier as 
well as other components in the fast data path.  

 
Fig. 8. Delay Distributions of the four simulations. 

Change of Traffic Pattern: In order to measure the stability 
and adaptability of the DPPC-RE scheme when the traffic 
pattern changes over time, we run the following simulations at 
the Back-to-Back mode (traffic intensity=100%). 

The traffic pattern depicted in Fig. 2 is denoted as Pattern I 
(uneven distribution), and the uniform distribution is denoted as 
Pattern II. We first construct the distributed table according to 
one of the patterns and measure the throughput performance 
under this traffic pattern. Then we change the traffic to the other 
pattern and get the throughput performance again without 
reconstructing the distributed table. The associated simulation 
setups are given in Table IV. 

TABLE IV Simulation setups. 
Case Number of 

TCAM 
FA/SRR Table 

constructed from 
Traffic 

change to 
I 5 FA Pattern I Pattern II 
II 5 FA Pattern II Pattern I 
III 4 FA Pattern I Pattern II 
IV 4 FA Pattern II Pattern I 
V 4 SRR Pattern II Pattern I 
VI 4 SRR Pattern I Pattern II 

The results are given in Table V. We find that although the 
traffic pattern changes significantly, the throughput 
performance just decreases slightlyv (<1%) in all the cases 

                                                        
v In Case I, the throughput even increase, which indicates that the change of the 

when FA are adopted. This means that FA excels in adapting to 
traffic pattern changes. The performance of SRR is a bit worse 
(>4% in Case V). Overall, we may conclude that the DPPC-RE 
scheme copes with the changes of traffic pattern well. 
 

TABLE V Throughput ratios in the presence of traffic pattern changes. 

Case Before (%) After (%) 
I 99.76 99.96 
II 100 99.63 
III 99.24 98.68 
IV 98.99 98.07 
V 92.76 88.39 
VI 93.38 91.71 

B. Comparison with other schemes 

    Since each PC operation needs at least 2 TCAM accesses, as 
mentioned in Section III, a single 100MHz TCAM chip cannot 
provide OC768 wire-speed (100Mpps) PC. So CLP must be 
adopted to achieve this goal. Depending on the method of 
achieving CLP (to use distributed storage or to duplicate the 
table), and adopting Key Encoding or not, there would be four 
different possible schemes. They are:  
1) Duplicate Table + No Key Encoding: Two 100MHz TCAM 
chips should be used in parallel to achieve 100Mpps, with each 
containing a full, un-encoded rule table (with N entries). A total 
number of NK × TCAM entries are required. It is the simplest 
to implement and offers deterministic performance (Zero loss 
rate and fixed processing delay); 
2) Duplicate Table + Key Encoding: Four 100MHz TCAM 
chips should be used in parallel to achieve 100Mpps, with each 
containing an encoded rule table (with Ne entries). A total 
number of eNK × TCAM entries are required.  It also offers 
lossly, deterministic performance; 
3) Distributed Storage + Key Encoding (DPPC-RE): Four or 
five 100MHz TCAM chips should be used in parallel.  The total 
number of TCAM entries required is Ne DER× (which is not 
linearly proportional to K). It may incur slight loss when 
heavily loaded; 
  4) Distributed Storage + No Key Encoding: Two 100MHz 
TCAM chips should be used in parallel. The total number of 
TCAM entries required is DERN × .  Without a dynamic 
load-balancing mechanism (which can only be employed when 
adopting Key encoding), its performance is un-deterministic 
and massive loss may occur when the system is heavily loaded 
or traffic pattern changes.  
  The TCAM Expansion Ratio ERs (defined as the ratio of the 
total number of TCAM entries required to the total number of 
rules in the rule database) are calculated for all five real-world 
databases based on these four schemes. The results are given in 
TABLE VI. 

Apparently Distributed+KE, or DPPC-RE significantly 
outperforms all the other three schemes in terms of the TCAM 
storage efficiency. Moreover, with only a slight increase of ER 
for K=5, compared with K=4, OC-768 wire-speed PC 
throughput performance can be guaranteed for Distributed +KE 
                                                                                                 
pattern even has a positive effect on the performance. This may be caused by 
the use of the greedy (i.e. not optimum) algorithm for table construction 



         

(K=5) case.   
 

TABLE VI Comparison of the Expansion Ratio.  

Database #1 #2 #3 #4 #5 
Original Rules  (N0) 279 183 158 264 1550 
Expanded Rules (N) 949 553 415 1638 2180 

After KE (Ne) 279 183 158 264 1550 

Expansion Ratio when paralleled to Support OC768 
Duplicate+NoKE(K=2) 6.80 6.04 5.98 12.40 2.82 

Duplicate+KE(K=4) 4.06 4.09 4.08 4.11 4.02 
Distributed+KE (K=5) 1.59 1.70 1.82 2.19 1.53 
Distributed+KE (K=4) 1.44 1.66 1.76 2.14 1.51 

Distributed+NoKE(K=2) 5.18 4.46 3.43 7.81 1.69 
     

Obviously, DPPC-RE exploits the tradeoff between 
deterministic performance and high statistical throughput 
performance, while the schemes with table duplication gains 
high, deterministic performance at significant memory cost. 
Because the combination of Distributed Storage and Range 
Encoding (i.e., the DPPC-RE scheme) provides a very good 
balance in terms of the worst case performance guarantee and 
low memory cost, it is an attractive solution.  

  

VI. DISCUSSION AND CONCLUSION 

    Insufficient memory bandwidth for a single TCAM chip and 
large expansion ratio caused by the range matching problem are 
the two important issues that have to be solved when adopting 
TCAM to build high performance and low cost packet classifier 
for next generation multi-gigabit router interfaces.  

In this paper, a distributed parallel packet classification 
scheme with range encoding (DPPC-RE) is proposed to 
achieve OC768 (40 Gbps) wire-speed packet classification with 
minimum TCAM cost. DPPC-RE includes a rule partition 
algorithm to distribute rules into different TCAM chips with 
minimum redundancy, and a heuristic algorithm to balance the 
traffic load and storage demand among all TCAMs. The 
implementation details and a comprehensive performance 
evaluation are also presented. 

A key issue that has not been addressed in this paper is how 
to update the rule and range tables with minimum impact on the 
packet classification process. The consistent policy table update 
algorithm (CoPTUA) [19] proposed by two of the authors 
allows the TCAM policy rule and range table to be updated 
without impacting the packet classification process. CoPTUA 
can be easily incorporated into the proposed scheme to 
eliminate the performance impact of rule and range table update. 
However, this issue is not discussed in this paper, due to space 
limitation. 
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