

TCAM-based Distributed Parallel Packet Classification
Algorithm with Range-Matching Solutioni

Abstract--Packet Classification (PC) has been a critical data path
function for many emerging networking applications. An
interesting approach is the use of TCAM to achieve deterministic,
high speed PC. However, apart from high cost and power
consumption, due to slow growing clock rate for memory
technology in general, PC based on the traditional single TCAM
solution has difficulty to keep up with fast growing line rates.
Moreover, the TCAM storage efficiency is largely affected by the
need to support rules with ranges, or range matching. In this
paper, a distributed TCAM scheme that exploits
chip-level-parallelism is proposed to greatly improve the PC
throughput. This scheme seamlessly integrates with a range
encoding scheme, which not only solves the range matching
problem but also ensures a balanced high throughput
performance. Using commercially available TCAM chips, the
proposed scheme achieves PC performance of more than 100
million packets per second (Mpps) , matching OC768 (40 Gbps)
line rate.

Key words—System Design, Simulations

I. INTRODUCTION i

Packet Classification (PC) has wide applications in
networking devices to support firewall, access control list
(ACL), and quality of service (QoS) in access, edge, and/or
core networks. PC involves various matching conditions, e.g.,
longest prefix matching (LPM), exact matching, and range
matching, making it a complicated pattern matching issue.
Moreover, since PC lies in the critical data path of a router and
it has to act upon each and every packet at wire-speed, this
creates a potential bottleneck in the router data path,
particularly for high speed interfaces. For example, at OC192
(10 Gbps) full line rate, a line card (LC) needs to process about
25 million packets per second (Mpps) in the worst-case when
minimum sized packets (40 bytes each) arrive back-to-back. As
the aggregate line rate to be supported by an LC is moving
towards OC768, it poses significant challenges for the design of
packet classifiers to allow wire-speed forwarding.

The existing algorithmic approach including geometric
algorithms based on the hierarchical trie [1] [2] [3] [4] and most
heuristic algorithms [6] [7] [8] [9] generally require
nondeterministic number of memory accesses for each lookup,
which makes it difficult to use pipeline to hide the memory

iThis research is supported by the NSFC (No.60173009 & No.60373007) and
the National 863 High-tech Plan (No.2003AA115110 & No.
2002AA103011-1).

access latency, limiting the throughput performance. Moreover,
most algorithmic approaches, e.g., geometric algorithms, apply
only to 2-dimensional cases. Although some heuristic
algorithms address higher dimensional cases, they offer
nondeterministic performance, which differs from one case to
another.

In contrast, ternary content addressable memory (TCAM)
based solutions are more viable to match high speed line rates,
while making software design fairly simple. A TCAM finds a
matched rule in O(1) clock cycle and therefore offers the
highest possible lookup/matching performance. However,
despite its superior performance, it is still a challenge for a
TCAM based solution to match OC192 to OC768 line rates. For
example, for a TCAM with 100 MHz clock rate, it can perform
100 million (M) TCAM lookups per second. Since each typical
5-tuple policy table matching requires two TCAM lookups, as
will be explained in detail later, the TCAM throughput for the
5-tuple matching is 50Mpps. As aforementioned, to keep up
with OC192 line rate, PC has to keep up with 25Mpps lookup
rate, which translates into a budget of two 5-tuple matches per
packet. The budget reduces to 0.5 matches per packet at OC768.
Apparently, with LPM and firewall/ACL competing for the
same TCAM resources, it would be insufficient using a single
100 MHz TCAM for PC while maintaining OC192 to OC768
line rates. Although increasing the TCAM clock rate can
improve the performance, it is unlikely that a TCAM
technology that matches the OC768 line speed will be available
anytime soon, given that the memory speed improves by only
7% each year [17].

Instead of striving to reduce the access latency for a single
TCAM, a more effective approach is to exploit chip-level
parallelism (CLP) to improve overall PC throughput
performance. However, a naive approach to realize CLP by
simply duplicating the databases to a set of uncoordinated
TCAM chips can be costly, given that TCAM is an expensive
commodity. In a previous work [16] by two of the authors of
the present work, it was demonstrated that by making use of the
structure of IPv4 route prefixes, a multi-TCAM solution that
exploits CLP can actually achieve high throughput performance
gain in supporting LPM with low memory cost.

Another important benefit of using TCAM CLP for PC is its
ability to effectively solve the range matching problem. [10]
reported that today’s real-world policy filtering (PF) tables
involve significant percentages of rules with ranges. Supporting
rules with ranges or range matching in TCAM can lead to very
low TCAM storage efficiency, e.g., 16% as reported in [10]. [10]
proposed an extended TCAM scheme to improve the TCAM

Kai Zheng1, Hao Che2, Zhijun Wang2, Bin Liu1
1The Department of Computer Science, Tsinghua University, Beijing, P.R.China 100084

2The Department of Computer Science and Engineering; The University of Texas at Arlington, Arlington, TX 76019, USA
zk01@mails.Tsinghua.edu.cn, {hche, zwang}@cse.uta.edu, liub@Tsinghua.edu.cn

storage efficiency, in which TCAM hierarchy and circuits for
range comparisons are introduced. Another widely adopted
solution to deal with range matching is to do a range
preprocessing/encoding by mapping ranges to a short sequence
of encoded bits, known as bit-mapping [11]. The application of
the bit-map based range encoding for packet classification
using a TCAM were also reported [11] [12] [13] [14] [15]. A
key challenge for range encoding is the need to encode multiple
subfields in a search key extracted from the packet to be
classified at wire-speed. To achieve high speed search key
encoding, parallel search key sub-field encoding were proposed
in [11][13], which however, assume the availability of multiple
processors and multiple memories for the encoding. To ensure
the applicability of the range encoding scheme to any
commercial network processors and TCAM coprocessors, the
authors of this paper proposed to use TCAM itself for
sequential range encoding [15], which however, reduces the
TCAM throughput performance. Using TCAM CLP for range
encoding provides a natural solution which solves the
performance issue encountered in [15].

However, extending the idea in [16] to allow TCAM CLP for
general PC is a nontrivial task for the following two reasons: 1)
the structure of a general policy rule, such as a 5-tuple rule is
much more complex than that of a route and it does not follow a
simple structure like a prefix; 2) it involves three different
matching conditions including prefix, range, and exact
matches.

In this paper, we propose an efficient TCAM CLP scheme,
called Distributed Parallel PC with Range Encoding
(DPPC-RE), for the typical 5-tuple PC. First, a rule database
partitioning algorithm is designed to allow different partitioned
rule groups to be distributed to different TCAMs with
minimum redundancy. Then a greedy heuristic algorithm is
proposed to evenly balance the traffic load and storage demand
among all the TCAMs. On the basis of these algorithms and
combined with the range encoding ideas in [15], both a static
algorithm and a fully adaptive algorithm are proposed to deal
with range encoding and load balancing simultaneously. The
simulation results show that the proposed solution can achieve
100 Mpps throughput performance matching OC768 line rate,
with just 50% additional TCAM resource compared with a
single TCAM solution at about 25 Mpps throughput
performance.

The rest of the paper is organized as follows. Section II gives
the definitions and theorems which will be used throughout the
paper. Section III presents the ideas and algorithms of the
DPPC-RE scheme. Section IV presents the implementation
details on how to realize DPPC-RE. The performance
evaluation of the proposed solution is given in Section V.
Finally, Section VI concludes the paper.

II. DEFINITIONS AND THEOREMS
Rules: A rule table or policy filtering table includes a set of

match conditions and their corresponding actions. We consider
the typical 104-bit five-tuple match conditions, i.e., (SIP(1-32),

DIP(1-32), SPORT(1-16), DPORT (1-16)，PROT(1-8)ii), where
SIP, DIP, SPORT, DPORT, and PROT represent source IP
address, destination IP address, source port, destination port,
and protocol number, respectively. DIP and SIP require longest
prefix matching (LPM); SPORT and DPORT generally require
range matching; and PROT requires exact matching. Except for
sub-fields with range matching, any other sub-field in a match
condition can be expressed using a single string of ternary bits,
i.e., 0, 1, or “don’t care” *. Table I gives an example of a typical
five-tuple rule table.

TABLE I An Example of Rule Table with 5-tuple Rules
 Src IP Dst IP Src Port Dst Port Prot Action

L1 1.1.*.* 2.*.*.* * * 6 AF
L2 2.2.2.2 1.1.*.* * 256-512 6 BF
L3 3.3.*.* *.*.*.* >1023 512-1024 11 EF
L4 *.*.*.* 4.4.4.* 5000-6000 >1023 * Accepted
L5 *.*.*.* *.*.*.* <1023 * * Discard
… …… …… …… …… …… ……

BF: Best effort Forwarding AF: Assured Forwarding
EF: Expedited Forwarding

Rule Entry: TCAMs are organized in slots with fixed size
(e.g., 64 or 72); each rule entry takes 1 or more slots depending
on its size. Fig. 1 shows the implementation of rule L1 and L2 in
TCAM with 64-bit slots. Rule L1 has no range in any of its
subfields and hence it takes 2 slots with 24 free bits in the
second slot. Each of such rules in the TCAM takes the
minimum number of slots and is defined as a rule entry. L2 has
a range {256-512} in its destination port sub-field. This range
cannot be directly expressed as a string of ternary bits, and must
be partitioned into two sub-ranges: {256 - 511} and {512},
expressed as: 0000 0001 **** **** and 0000 0010 0000 0000.
Such a range that must be expressed by more than one ternary
bit strings is defined as the non-Trivial Range. Hence, L2 takes
4 slots (slots 3, 4, 5 and 6), or 2 rule entries in the TCAM.

Fig. 1 Rules in a TCAM. The range {256-512}is split into 2 sub-ranges

{256-511}and {512}, and implemented as sub-range 1 and sub-range 2. ‘*’
represents a ‘don’t care’ bit, and ‘ x ’=‘ ******** ’, a wildcard byte. The other
numbers represent the actual byte values.

In general, if ranges in the SPORT and DPORT sub-fields in
a match condition take n and m ternary strings, respectively, the
match condition takes up mn × TCAM rule entries. This
multiplicative expansion of the TCAM usage to support range
matching is the root that causes low TCAM storage efficiency.

Range Encoding: An efficient solution to deal with range
matching is to map a range to a short sequence of encoded bits,
known as range encoding. After range encoding, a rule with

ii The bits in the sub-field are ordered with the 1st bit (MSB) lies in the leftmost
position.

encoded ranges only takes one rule entry, thus significantly
improving TCAM storage efficiency.

Let 0N denote the rule table size, or the number of rules in a
rule table; N represent the number of TCAM entries required
to accommodate the rule table without range encoding; eN
stand for the number of TCAM entries required to
accommodate the rule table with range encoding.

Search Key: A search key is a 104 binary bit string composed
of a five-tuple. For example, <1.1.1.1, 2.2.2.2, 1028, 34556,
11> is a five-tuple search key. In general, a search key is
extracted by a network processor from the IP header and passed
to a packet classifier to match against a five-tuple rule table.

Matching: In the context of TCAM based PC as is the case in
this paper, matching refers to ternary matching in the following
sense. A search key is said to match a particular match
condition, if for each and every corresponding bit position in
both search key and the match condition, either of the following
two conditions is met: (1) the bit values are identical; (2) the bit
in the match condition is “don’t care” or *.

So far, we have defined the basic terminologies for rule
matching. Now we establish some important concepts upon
which the distributed TCAM PC is developed.

ID: The idea of the proposed distributed TCAM PC is to
make use of a small number of bit values extracted from certain
bit positions in the search key and match condition as IDs to (1)
divide match conditions or rules into groups, which are mapped
to different TCAMs; (2) direct a search key to a specific TCAM
for rule matching.

In this paper, we use P number of bits picked from given bit
positions in the DIP, SIP, and/or PROT sub-fields of a match
condition as the rule ID, denoted as Rule-ID, for the match
condition and use P number of bits extracted from the
corresponding search key positions as the key ID, denoted as
Key-ID, for the search key. For example, suppose P = 4, and
they are extracted from SIP(1), DIP(7),DIP(16) and PROT(8).
Then the rule-ID for the match condition <1.1.*.*, 2.*.*.*, *, *,
6> is“01*0”and the key-ID for the search key <1.1.1.1, 2.2.2.2,
1028, 34556, 11> is“0101”.

ID Groups: We define all the match conditions having the
same Rule-ID as a Rule-ID group. Since a Rule-ID is composed
of P ternary bits, the match conditions or rules are classified
into 3P Rule-ID groups. If “*” is replaced with “2”, we get a
ternary value for the Rule-ID, which uniquely identifies the
Rule-ID group (note that the numerical value for different
Rule-IDs are different). Let jRID be the Rule-ID with value j
and jRG represent the Rule-ID group with Rule-ID value j. For
example, for P=4 the Rule-ID group with Rule-ID "00*1"
is 7RG , since the Rule-ID value j ={0021}3= 7.

Accordingly, we define the set of all the Rule-ID groups with
their Rule-IDs matching a given Key-ID as a Key-ID group.
Since each Key-ID is a binary value, we use this value to
uniquely identify this Key-ID group. In parallel to the
definitions for Rule-ID, we define Key-ID iKID with value i
as a Key-ID group iKG . We have a total number of 2P Key-ID
groups.

With the above definitions, we have

iKG = ∪
 match ij KIDRID

jRG .

For example, for P=3, the Key-ID group "011" is composed of
the following 8 Rule-ID groups: "011，*11，0*1，01*，**1，
1，0**，***".

An immediate observation is that different key-ID groups
may overlap with one another in the sense that different key-ID
groups may have common Rule-ID groups.

Distributed Storage Expansion Ratio: Since Key-ID groups
may overlap with one another, we have:

|||| ∪
i

i
i

i KGKG ≥∑ ,

where |A| represents the number of elements in set A. In other
words, using Key-ID to partition rules and distribute them to
different TCAM introduces redundancy. To formally
characterize this effect, we further define Distributed Storage
Expansion Ratio (DER) as NKNDDER /),(= , where),(KND
represents the total number of rules required to accommodate N
rules when rules are distributed to K different TCAMs. Here
DER characterizes the redundancy introduced by the
distributed storage of rules with or without range encoding.

Throughput and Traffic Intensity: In this paper, we use

throughput, traffic intensity, and throughput ratio as
performance measures of the proposed solution. Throughput is
defined as the number of PCs per unit time. It is an important
measure of the processing power of the proposed solution.
Traffic intensity is used to characterize the workload in the
system. As the design is targeted at PC at OC768 line rate, we
define traffic intensity as the ratio between the actual traffic
load and the worst-case traffic load at OC768 line rate, i.e., 100
Mpps. Throughput ratio is defined as the ratio between
Throughput and the worst-case traffic load at OC768 line rate.

Now, two theorems are established, which state under what
conditions the proposed solution ensures correct rule matching
and maintains the original ordering of the packets, respectively.

Theorem 1: For each PC, correct rule matching is guaranteed if
a) All the rules belonging to the same Key-ID group are

placed in the same TCAM with correct priority orders.
b) A search key containing a given Key-ID is matched

against the rules in the TCAM, in which the corresponding
Key-ID group is placed.

Proof: On the one hand, a necessary condition for a given
search key to match a rule is that the Rule-ID for this rule
matches the Key-ID for the search key. On the other hand, any
rule that does not belong to this Key-ID group cannot match the
search key, because the Key-ID group contains all the rules that
match the Key-ID. Hence, a rule match can occur only between
the search key and the rules belonging to the Key-ID group
corresponding to the search key. As a result, meeting conditions
a) and b) will guarantee the correct rule matching □

Theorem 2: The original packet ordering for any given
application flow is maintained if packets with the same Key-ID
are processed in order.

Proof: First, note that packet ordering should be maintained
only for packets belonging to the same application flow and an
application flow is in general identified by the five-tuple.
Second, note that packets from a given application flow must
have the same Key-ID by definition. Hence, the original packet

ordering for any given application flow is maintained if packets
with the same Key-ID are processed in order. □

III. ALGORITHMS AND SOLUTIONS
The key problems we aim to solve are 1) how to make use of

CLP to achieve high performance with minimum cost; 2) how
to solve the TCAM range matching issue to improve the TCAM
storage efficiency (consequently controlling the cost and power
consumption). A scheme called Distributed Parallel Packet
Classification with Range Encoding (DPPC-RE) is proposed.

The idea of DPPC is the following. First, by appropriately
selecting the ID bits, a large rule table is partitioned into several
Key-ID groups of similar sizes. Second, by applying certain
load-balancing and storage-balancing heuristics, the rules
(Key-ID groups) are distributed evenly to several TCAM chips.
As a result, multiple packet classifications corresponding to
different Key-ID groups can be performed simultaneously,
which significantly improves PC throughput performance
without incurring much additional cost.

The idea of RE is to encode the range sub-fields of the rules
and the corresponding sub-fields in a search key into bit-vectors,
respectively. In this way, the number of ternary strings (or
TCAM entries, which will be defined shortly in Section III.C)
required to express a rule with non-trivial ranges can be
significantly reduced (e.g. to only one string), improving
TCAM storage efficiency. In DPPC-RE, the TCAM chips that
are used to perform rule matching are also used to perform
search key encoding. This not only offers a natural way for
parallel search key encoding, but also makes it possible to
develop efficient load-balancing schemes, making DPPC-RE
indeed a practical solution. In what follows, we introduce
DPPC-RE in detail.

A. ID Bits Selection
 The objective of ID-bit selection is to minimize the number of
redundant rules (introduced due to the overlapping among
Key-ID groups) and to balance the size of the Key-ID groups
(large discrepancy of the Key-ID group sizes may result in low
TCAM storage utilization).

A brute-force approach to solve the above optimization
problem would be to traverse all of the P-bit combination out of
W-bit rules to get the best solution. However, since the value of
W is relatively large (104 bits for the typical 5-tuple rules), the
complexity is generally too high to do so. Hence, we introduce
a series of empirical rules based on the 5 real-world database
analyses [18] that are used throughout the rest of the paper to
simplify the computation as follows:

1) Since the sub-fields, DPORT and SPORT, in a rule may
have non-trivial ranges which need to be encoded, we choose
not to take these two sub-fields into account for ID-bit
selection;

2) According to the analysis of several real-world rule
databases [18], over 70% rules are with non-wildcarded PROT
sub-field, and over 95% of these non-wildcarded PROT
sub-fields are either TCP(6) or UDP(11) (approximately 50%
are TCP). Hence, one may select either the 8th or the 5th bit

(TCP and UDP PROTs have different values at these two bit
positions) of the PROT sub-field as one of the ID bits. All the
rest of the bits in the PROT sub-field have fixed one-to-one
mapping relationship with the 8th or 5th bits, and do not lead to
any new information about the PROT;

3）Note that the rules with wildcard(s) in their Rule-IDs are
actually those incurring redundant storage. The more the
wildcards a rule has in its Rule-ID, the more Key-ID groups it
belongs to and consequently the more redundant storage it
incurs. In the 5 real-world rule databases, there are over 92%
rules whose DIP sub-fields are prefixes no longer than 25 bits
and there are over 90% rules whose SIP sub-fields are prefixes
no longer than 25 bits. So we choose not to use the last 7 bits
(i.e., the 26th to 32nd bits) of these two sub-fields, since they
are wildcards in most cases.

Based on these 3 empirical rules, the traversal is simplified
as: choose an optimal (P-1)-bit combination out of 50 bits of
DIP and SIP sub-fields (DIP(1-25), SIP(1-25)), and then
combine these (P-1) bits with PROT(8) or PROT(5) to form the
P-bit ID.

Fig.2 shows an example of the ID-bit selection for Database
#5 [18] (with 1550 total number of rules). We use an equally
weighted sum of two objectives, i.e., the minimization of the
variance among the sizes of the Key-ID groups and the total
number of redundant rules, to find the 4-bit combination:
PROT(5), DIP(1), DIP(21) and SIP(4) iii.

We find that, although the sizes of the Rule-ID groups are
unbalanced, the sizes of the Key-ID groups are quite similar,
which allows memory-efficient schemes to be developed for
the distribution of rules to TCAMs.

Fig. 2 ID-bit Selection Result of Rule Database Set #5.

B. Distributed Table Construction
The next step is to evenly distribute the Key-ID groups to K

TCAM chips and to balance the classification load among the
TCAM chips. For clarity, we first describe the mathematical
model of the distributed table construction problem as follows.

Let:
kQ be the set of the Key-ID groups placed in TCAM #k

where k=1,2, …, K;
PjjW 2,...,1],[= be the frequency of jKID appearances in

the search keys, indicating the rule-matching load ratio of
Key-ID group jKG ;

][kRM be the rule-matching load ratio that is assigned to

iii The leftmost is the least significant

TCAM #k, namely, ∑
∈

=
kQj

jWkRM][:][;

][kG be the number of rules distributed to TCAM #k, namely,
||:][∪

Ki QKG
iKGkG

∈

= .

tC be the capacity tolerance of the TCAM chips (the
maximum number of rules it can contain), and tL be the
tolerance (maximum value) of the traffic load ratio that a
TCAM chip is expected to bear.

The optimization problem for distributed table construction
is given by:
==
Find a K-division { KkQk ,...,1, = } of the Key-ID groups that
Minimize:

];[
,...,1

kRMMax
Kk=

];[
,...,1

kGMax
Kk =

Subject To:
,SQk ∈ ;

,...,1

SQ
Kk

k =
=
∪

;][:][∑

∈

=
KQj

jWkRM

|;|:][∪
Ki QKG

iKGkG
∈

=

tKk
LkRMMax ≤

=
][

,...,1
.][

,...,1 tKk
CkGMax ≤

=
==

Consider each Key-ID group as an object and each TCAM

chip as a knapsack. We find that the problem is actually a
variance of the Weight-Knapsack problem, which can be proved
to be NP-hard.

Note that the problem has multiple objectives, which cannot
be handled by conventional greedy methods. In what follows,
we first develop two heuristic algorithms with each taking one
of the two objectives as a constraint and optimize the other.
Then, the two algorithms are run to get two solutions,
respectively, and the better one is chosen finally.

Capacity First Algorithm (CFA): The objective][

,...,1
kRMMax

Kk=

is regarded as a constraint. In this algorithm, the Key-ID groups
with relatively more rules will be distributed first. In each round,
the current Key-ID group will be assigned to the TCAM with
the least number of rules under the load constraint.
==
I) Sort {i, Pi 2,...,2,1= } in decreasing order of || iKG , and
record the result as{]2[],...,2[],1[PKidKidKid };
II) for i from 1 to P2 do

 Sort {k, Kk ,...,1= } in increasing order of][kG , and
record as {][],...,2[],1[KScScSc };

for k from 1 to K do
 if tLiKidWkScRM ≤+]][[]][[
 then][][][iKidkSckSc KGQQ ∪=
 ||]][[][kScQkScG = ;

]];[[]][[]][[iKidWkScRMkScRM +=
 break;

III) Output { }KkQk ,...,1, = and{ KkkRM ,...,1],[= }.
==

Load First Algorithm (LFA): In this algorithm, the capacity
objective is regarded as a constraint. The Key-ID groups with
relatively larger traffic load ratio will be assigned to TCAM
first, and the TCAM chips with lower load are chosen.
==
I) Sort {i, Pi 2,...,2,1= } in decreasing order of][iW , and record
the result as{]2[],...,2[],1[PKidKidKid };
II) for i from 1 to P2 do

 Sort {k, Kk ,...,1= } in increasing order of][kRM , and
record as {][],...,2[],1[KScScSc };

for k from 1 to K do
 if tiKidkSc CKGQ ≤||][][∪
 then][][][iKidkSckSc KGQQ ∪=
 ||]][[][kScQkScG = ;

]];[[]][[]][[iKidWkScRMkScRM +=
 break;

III) Output { }KkQk ,...,1, = and { KkkRM ,...,1],[= }.
==

The Distributed Table Construction Scheme: The two
algorithms may not find a feasible solution with a given tL
value. Hence, they are iteratively run by relaxing tL in each
iteration until a feasible solution is found. In a given iteration,
if only one of the two algorithms finds a feasible solution, this
solution would be the final one. If both algorithms find feasible
solutions, one of them chosen according to the following rules:

Suppose that AG and ARM are the two objectives given by
algorithm A (CFA or LFA), while BG and BRM are the two
objectives given by a different algorithm B (LFA or CFA).
1) If AG < BG , and ARM < BRM , we choose the solution given
by algorithm A;
2) If AG < BG , but ARM > BRM , we choose the solution given
by algorithm A when ARM <2/K (the reason will be revealed
shortly in Section III.D), otherwise we choose the solution
given by algorithm B.

The corresponding processing flow is depicted in Fig.3.

Fig. 3 Distributed Table Construction Flow.

We still use the rule database set #5 as an example. Suppose
that the traffic load distribution among the Key-ID groups is as
depicted in Fig. 4, which is selected intentionally to have large
variance to create a difficult case for load-balancing.

 Note that the ID-bits are PROT(5), DIP(1), DIP(21), and
SIP(4) as obtained in the last sub-section. Given the constraint

tC =600 and tL =30%, the results for K=4 and K=5 are shown in
Tables II and III, respectively.

Fig. 4 Traffic Load Distribution among the Key-ID (Key-ID groups).

For K=5, CFA produces a better result (both objectives are
better) than that of LFA, as shown in TABLE II. We find that
the numbers of rules assigned to different TCAMs are very
close to one another. The Distributed storage Expansion Ratio
(DER) is 1.51, which means that only about 50% more TCAM
entries are required (note that 200% (at K=2) or more are
required in the case when the rule table is duplicated and
assigned to each TCAM). The maximum traffic load ratio is
29.4%<2/K=40%. As we shall see soon, using the
load-balancing schemes proposed in Section III.D, this kind of
traffic distribution can be perfectly balanced.
 For K=4, LFA instead produces a better result than that of CFA
and the maximum and minimum traffic load ratios are 25.9%
and 23.5%, respectively, very close to a perfectly balanced
load.

TABLE II When K=5, CFA gives the best result. No iteration is needed.
TCAM Key-ID Groups (Table Contents) Number of Rule-ID

Groups
Number of

Rules
Traffic Load

Ratio%
#1 11(1011) 2(0010) 0(0000) 36 478 18.8
#2 8(1000) 7(0111) 4(0100) 40 439 20.0
#3 15(1111) 10(1010) 14(1110) 12(1100) 40 489 29.4
#4 9(1001) 3(0011) 13(1101) 36 445 11.8
#5 5(0101) 6(0110) 1(0001) 36 494 20.0

Distributed Storage Expansion Ratio (DER) 2345/1550=1.51

TABLE III When K=4, LFA gives the best result. No iteration is needed.
TCAM Key-ID Groups (Table Contents) Number of Rule-ID

Groups
Number of

Rules
Traffic Load

Ratio%
#1 2(0010) 15(1111) 13(1101) 0(0000) 45 591 25.9
#2 12(1100) 8(1000) 9(1001) 11(1011) 40 532 24.7
#3 6(0110) 5(0101) 3(0011) 14(1110) 46 586 25.9
#4 7(0111) 10(1010) 4(0100) 1(0001) 50 596 23.5

Distributed Storage Expansion Ratio (DER) 2304/1550=1.48

C. Solutions for Range Matching
 Range matching is a critical issue for effective use of TCAM
for PC. The real word databases in [10] showed the TCAM
storage efficiency can be as low as 16% due to the existence of a
large number of rules with ranges. We apply our earlier proposed
Dynamic Range Encoding Scheme (DRES) [15] to distributed
TCAMs, in order to improve the TCAM storage efficiency.

DRES [15] makes use of the free bits in each rule entry to
encode a subset of ranges selected from any rule sub-field with
ranges. An encoded range is mapped to a code vector
implemented using the free bits, and the corresponding subfield
is wildcarded. Hence, a rule with encoded ranges can be
implemented in 1 rule entry, reducing the TCAM storage usage.
To match an encoded rule, a search key is preprocessed to
generate an encoded search key. This preprocess is called search
Key Encoding (KE). Accordingly, the PC process in a TCAM
with range encoding includes two steps: search KE and Rule
Matching (RM). DRES uses the TCAM coprocessor itself for KE
to achieve wire-speed PC performance. If the encoded ranges
come from S sub-fields, S separate range tables are needed for
search KE. The S range tables as well as the rule table can be
allocated in the same or different TCAMs. The KE involves S
sub-fields matching against the corresponding S range tables to
get an encoded search key. Then the encoded search key is

matched against the rule table to get the final result. In summary,
a PC with range encoding requires S range table lookups for KE
and 1 RM lookup.

 For typical 104-bit five-tuple rules, ranges only appear in the
source and destination port subfields, and hence only 2 range
tables are needed. For a TCAM with 64-bit slot size, each rule
takes 2 slots, and leaves 24 free bits for range encoding. Each
RM takes 2 TCAM lookups (each slot takes 1 lookup). A range
coming from the source/destination port sub-field takes 1 slot in
a range table and hence incurring 1 TCAM lookup for each
range table matching. In summary, there are a total number of 4
TCAM lookups per PC. With a 100 MHz TCAM at 100 million
lookups per second, DRES can barely support OC192 (i.e. 25
Mpps) wire-speed performance. The distributed TCAM
scheme that exploits CLP to increase the TCAM lookup
performance is needed to support line rates higher than OC192.
The following sections present the details on how to
incorporate DRES into the proposed distributed solution.

D. Efficient Load-Balancing Schemes

Note that the DPPC formulation is static, in the sense that
once the Key-ID groups are populated in different TCAMs, the
performance is pretty much subject to traffic pattern changes.
The inclusion of Range Encoding provides us a very efficient

way to dynamically balance the PC traffic in response to traffic
pattern changes. The key idea is to duplicate range encoding
tables to all the TCAMs and hence allow a KE to be performed
using any one of the TCAMs to dynamically balance the load.
Since the size of the range tables are small, e.g., no more than
15 entries for all the 5 real-world databases, duplicating range
tables to all the TCAMs does not impose distinct overhead.

We design two algorithms for dynamic RE. First, we define
some mathematical terms. Let][kD be the overall traffic load
ratio assigned to TCAM #k (k=1,2,…K), which includes two
parts, i.e., the KE traffic load ratio and the RM traffic load ratio,
with each contributes 50% of the load, according to Section
III.C.

Let][kKE and][kRM be the KE and RM traffic ratio
allocated to TCAM #k, (k= 1,2,…,K_), respectively. Note
that][kRM is determined by the Distributed Table Construction
process (refer to Section III.B).

Let],[kiA , 1],[,,...,1,,0],[==≥ ∑
i

kiAKkikiA ,

be the

Adjustment Factor Matrix, which is defined as the percentage
(ratio) of the KE tasks allocated to TCAM #i, for the
corresponding RM tasks which are performed in TCAM #k.
Then the dynamic load balancing problem is formulated as
follows:
==
To decide],[kiA , Kki ,...,1, =

Minimize:

][][
,...,1,...,1

kDMinkDMax
KkKk ==

− .

Subject to:
][5.0][5.0][kRMkKEkD ×+×= , Kk ,...,1= ;

∑
=

×=
Kk

kRMkiAiKE
,...,1

][],[][, Ki ,...,1= .

==
The following two algorithms are proposed to solve the

above problem.

Stagger Round Robin (SRR): The idea is to allocate the KE
tasks of the incoming packets whose RM tasks are performed in
a specific TCAM to other TCAM chips in a Round-Robin
fashion. Mathematically, this means that:
 0],[=kkA and)1/(1],[−= KkiA , Kkiki ,...,1,,, =≠ .
We then have,

][5.0)1/(])[...]1[]1[...]1[(5.0][kRMKKRMkRMkRMRMkD ×+−++++−++×=

Kk ,...,1= ; therefore

).1/()2(])[][(5.0][][
,...,1,...,1,...,1,...,1

−−×−×=−
====

KKkRMMinkRMMaxkDMinkDMax
KkKkKkKk

Comments: In the case when K=2, the objective is a constant
"0". This means that no matter how large the variance of the
RM load ratios among all the TCAM chips is, SRR can always
perfectly balance the overall traffic load.
Since 5.0)1/()2(5.0 <−−× KK , it means in any case, SRR can
always reduce the variance of the overall load ratio to less than

half of that of the RM tasks.

Full Adaptation (FA): The idea of FA is to use a counter to
keep track of the current number of backlogged tasks in the
buffer at each TCAM chip. Whenever a packet arrives, the
corresponding KE task is assigned to the TCAM who has the
smallest counter value.

In this case, the values of],[ikA are not fixed. The
expression of][kD is given by:

])[],[...]]1[]1,[(5.0][5.0][KRMKkARMkAkRMkD ×++××+×= .
Note that KiikA ,...,1 ,1],[0 =≤≤ , we have

1][][5.0 ≤≤× kDkRM , Kk ,...,1= .

 Taking],[kiA as tunable parameters, it is straightforward
that the equations:

])[],[...]1[]1,[(5.0][5.0][/1 KRMKkARMkAkRMkDK ×++××+×==
Kk ,...,1= ,

must have feasible solutions when KkRM /1][5.0 ≤×
i.e., KkRM /2][≤ , Kk ,...,1= .

This means that if the conditions: KkRM /2][≤ , Kk ,...,1= ,
are all satisfied, the overall traffic load ratio can be perfectly
balanced (the objective value is 0) in the presence of traffic
pattern changes.

Comments: The overall traffic load can be perfectly balanced
when KkRM /2][≤ , Kk ,...,1= , are satisfied, which makes FA
a very efficient solution when compared with SRR. However,
FA incurs more implementation cost due to the need of a
counter for each TCAM chip.

Further discussions on the performance of SRR and FA are
presented in Section V.

IV. IMPLEMENTATION OF THE DPPC-RE SCHEME

The detailed implementation of the DPPC-RE mechanism is
depicted in Fig.5. Beside the TCAM chips and the associated
SRAMs to accommodate the match conditions and the
associated actions, three major additional components are
included in co-operating with the TCAM chips, i.e., a
Distributor, a set of Processing Units (PUs) and a Mapper.
Some associated small buffer queues are used as well. Now we
describe these components in details.

A. The Distributor
This component is actually a scheduler. It partitions the PC

traffic among the TCAM chips. More specifically, it performs
three major tasks. First, it extracts the Key-ID from the 5-tuple
received from a network processing unit (NPU). The Key-ID is
used as an identifier to dispatch the RM keys to the associated
TCAM. The 5-tuple is pushed into the RM FIFO queue of the
corresponding TCAM (Solid arrows in Fig. 5).

Second, the distributor distributes the KE traffic among the
TCAM chips, based on either the FA or SRR algorithm. The
corresponding information, i.e., the SPORT and DPORT are
pushed into the KE FIFO of the TCAM selected (dashed arrows
in Fig.5).
 Third, the distributor maintains K Serial Numbers (S/Ns) or

S/N counters, one for each TCAM. An S/N is used to identify
each incoming packet (or more precisely, each incoming
five-tuple). Whenever a packet arrives, the distributor adds "1"
(cyclical with modulus equal to the RM FIFO depth) to the S/N
counter for the corresponding TCAM the packet is mapped to.
A Tag is defined as the combination of an S/N and a TCAM
number (CAMID). This tag is used to uniquely identify a
packet and its associated RM TCAM. The format of the Tag is
depicted in Fig.6(a).

Fig. 5 DPPC-RE mechanism.

As we shall explain shortly, the tag is used by Mapper to
return the KE results back to the correct TCAM and to allow the
PU for that TCAM to establish the association of these results
with the corresponding five-tuple in the RM queue.

S/N(5) CAMID(3)

(a) Tag Format

PROT(8) DIP(32) SIP(32) DPORT(16) SPORT(16) Tag(8)
(b) RM Buffer Format

DPORT(16) SPROT(16) Tag(8)

(c) KE Buffer Format

Valid(1) DPK(8) SPK(8)

(d) Key Buffer Format

Fig. 6 Format of Tag, RM FIFO, KE FIFO and Key Buffer.

B. RM FIFO, KE FIFO, Key Buffer, and Tag FIFO

A RM FIFO is a small FIFO queue where the information for
RM of the incoming packets is held. The format of each unit in
the RM FIFO is given in Fig.6(b). (The numbers in the brackets
indicate the number of memory bits needed for the sub-fields).

 A KE FIFO is a small FIFO queue where the information
used for KE is held. The format of each unit in the KE FIFO is
given in Fig.6(c).

 Differing from the RM and KE FIFOs, a Key Buffer is not a
FIFO queue, but a fast register file accessed using an S/N as the
address. It is where the results of KE (encoded bit vectors of the
range sub-fields) are held. The size of a Key Buffer equals to
the size of the corresponding RM FIFO, with one unit in the
Key Buffer corresponds to one unit in the RM FIFO. The
format of each unit is given in Fig.6(d). The Valid bit is used to
indicate whether the content is available and up-to-date.
 Note that the tags of the key cannot be passed through
TCAM chips during the matching operations. Hence a Tag
FIFO is designed for each TCAM chip to keep the tag
information when the associated keys are being matched.

C. The Processing Unit

Each TCAM is associated with a Processing Unit (PU). The
functions of a PU are to (a) schedule the RM and KE tasks
assigned to the corresponding TCAM, aiming at maximizing
the utilization of the corresponding TCAM; (b) ensure that the
results of the incoming packets assigned to this TCAM are
returned in order. In what follows, we elaborate on these two
functions.

(a) Scheduling between RM and KE tasks: Note that, for any
given packet, the RM operation cannot take place until the KE
results are returned. Hence, it is apparent that the units in a RM
FIFO would wait for a longer time than the units in a KE FIFO.
For this reason, RM tasks should be assigned higher priority
than KE tasks. However, our analysis (not given here due to the
page limitation) indicates that a strict-sense priority scheduler
may lead to non-deterministically large processing delay. So we
introduce a Weighted-Round-Robin scheme in the PU design.
More specifically, each type of tasks gain higher priority in turn
based an asymmetrical Round-Robin mechanism. In other
words, the KE tasks will gain higher priority for one turn (one
turn represents 2 TCAM accesses, for either a RM operation or
two successive KE operations) after n turns with the higher
priority assigned to RM tasks. Here n is defined as the
Round-Robin Ratio (RRR).

(b) Ordered Processing: Apparently, the order of the returned
PC results from a specific TCAM is determined by the
processing order of the RM operation. Since a RM buffer is a
FIFO queue, the PC results can still be returned in the same
order as the packet arrivals, although the KE tasks of the
packets may not be processed in their original sequence iv. As a
result, if the KE result for a given RM unit returns earlier than
those units in front of it, this RM unit cannot be executed.

Specifically, the PU for a given TCAM maintains a pointer
points to the position in the Key Buffer that contains the KE
result corresponding to the unit at the head of the RM FIFO.
The value of the pointer equals the S/N of unit at the head RM
FIFO. In each TCAM cycle, PU queries the valid bit of the

iv This is because the KE tasks whose RM is processed in a specific TCAM may
be assigned to different TCAMs to be processed based on the FA or SRR
algorithms.

position that the pointer points to in the Key Buffer. If the bit is
set, meaning that the KE result is ready, and it is RM’s turn for
execution, PU reads the KE results out from the Key Buffer and
the 5-tuple information out from the RM FIFO queue, and
launches the RM operation. Meanwhile the valid-bit of the
current unit in the Key Buffer is reset and the pointer is
incremented by 1 in a cyclical fashion. Since the S/N for a
packet in a specific TCAM is assigned cyclically by the
Distributor, the pointer is guaranteed to always point to the unit
in the Key Buffer that corresponds to the head unit in the RM
FIFO.

D. The Mapper

The function of this component is to manage the result
returning process of the TCAM chips. According to the
processing flow of a PC operation, the mapper has to handle
three types of results, i.e., the KE Phase-I results (for the
SPORT sub-field), the KE-Phase-II results (for the DPORT
sub-field), and the RM results. The type of the result is encoded
in the result itself.
 If the result from any TCAM is a RM result (which is decoded
from the result itself), the mapper returns it to the NPU directly.
If it is a KE-Phase-I result, the mapper stores it in a latch and
waits for the Phase II result which will come in the next cycle.
If it is a KE-Phase II result, the mapper uses the tag information
from the Tag FIFO to determine: 1) which Key Buffer
(according to the CAMID segment) should this result be
returned to, and 2) which unit in the Key Buffer (according to
the S/N segment) should this result be written into. Finally the
mapper combines the 2 results (of Phase I and II) into one and
returns it.

E. An Example of the PC Processing Flow

Suppose that the ID-bit selection is based on Rule database
#5, and the four ID-bits are PROT(4), DIP(1), DIP(21), and
SIP(4). The distributed rule table is given in Table II (in Section
III.B). Given a packet P0 with 5-tuple: <166.111.140.1,
202.205.4.3, 15335, 80, 6>, the processing flow is the
following (also shown in Fig. 5):
①: The 4-bit Key-ID “0010” is extracted by Distributor.
②: According to the distributed rule table given by TABLE II,
Key-ID group “0010” is stored in TCAM#1. Suppose that the
current S/N value of TCAM#1 is “5”, then the CAMID “001”
and S/N are combined into the Tag with value “00110(5+1)”.
Then the 5-tuple together with the Tag is pushed into the RM
FIFO of TCAM#1.
③: Suppose that, the current queue sizes of the 5 KE FIFOs are
2,0,1,1, and 1, respectively. According to the FA algorithm, the
KE operation of packet P0 is to be performed in TCAM#2.
Then the two range sub-fields <15535, 80>, together with the
Tag, are pushed into the KE FIFO associated with TCAM#2.
④: Suppose that now it is KE’s turn or no RM task is ready for
execution, PU#2 pops out the head unit (<15535,
80>+Tag<00100110>) from the KE FIFO, and sends them to
TCAM#2 to perform the two range encodings successively.
Meanwhile, the corresponding tag is pushed into the Tag FIFO.

⑤: When both results are received by Mapper, it combines
them into one, and pops the head unit from the Tag FIFO.
⑥: The CAMID field “001” in the Tag indicates the result
should be sent back to the Key Buffer of TCAM#1, while the
S/N field “00110” indicates that it should be stored in the 6th
unit of the Key Buffer. Meanwhile, the corresponding valid bit
is set.
⑦: Suppose that all the packets before packet P0 have been
processed, and P0 is now the head unit in the RM FIFO of
TCAM#1. Note that packet P0 has S/N “00110”. Hence, when
it is the RM’s turn, PU#1 probes the valid bit of the 6th unit in
the Key Buffer.
⑧:When PU#1 finds that the bit is set, it pops the head unit
from the RM FIFO (the 5-tuple) and reads the contents out from
the 6th unit of the Key Buffer (the encoded key of the two
ranges), and then launches a RM operation in TCAM#1.
Meanwhile, the valid bit of the 6th unit in the Key Buffer is reset
and the pointer of PU#1 is incremented by one and points to the
7th unit.
⑨: When Mapper receives the RM result, it returns it back to
the NPU, completing the whole PC process cycle for packet P0.

V. EXPERIMENTAL RESULTS

A. Simulation Results
Simulation Setup: Traffic Pattern: Poisson Arrival process;
Buffer Size: RM FIFO=8; Key Buffer=8, KE FIFO=4,
Round-Robin-Ratio=3; Traffic Load Distribution among
Key-ID groups: given in Fig 2.

Fig. 7 Simulation results (Throughput).

Throughput Performance: The simulation results are given in
Fig. 7. One can see that at K=5, the OC-768 throughput is
guaranteed even when the system is heavily loaded (traffic
intensity tends to 100%), whether FA or SRR algorithm is
adopted. This is mainly because the theoretic throughput upper
bound at K=5 (5*100M/4=125Mpps) is 1.25 times of the
OC768 maximum packet rate (100Mpps). In contrast, at K=4,
the throughput falls short of the wire-speed when SRR is used,
while FA performs fairly well, indicating that FA has better
load-balancing capability than SRR.

Delay Performance: According to the processing flow of the
DPPC-RE scheme, the minimum delay for each PC is 10
TCAM cycles (5 for RM and 5 for KE). In general, however,
additional cycles are needed for a PC because of the queuing
effect. We focus on the performance when the system is heavily
loaded. Fig. 8 shows the delay distribution for the back-to-back

mode, i.e., when packets arrive back-to-back (Traffic intensity
=100%).

We note that the average delay are reasonably small except
for the case at K=4 and when SRR is adopted (avg.delay>20
TCAM cycles). In this case, when the offered load reaches the
theoretical limit (i.e., 100 Mpps), a large number of packets are
dropped due to SRR's inability to effectively balance the load.

The delay distributions for the cases using FA (K=4 or 5) are
much more concentrated than those using SRR, suggesting that
FA offer much smaller and more deterministic delay
performance than SRR. Note that more deterministic delay
performance results in less buffer/cache requirements and
lower implementation complexity for the TCAM Classifier as
well as other components in the fast data path.

Fig. 8. Delay Distributions of the four simulations.

Change of Traffic Pattern: In order to measure the stability
and adaptability of the DPPC-RE scheme when the traffic
pattern changes over time, we run the following simulations at
the Back-to-Back mode (traffic intensity=100%).

The traffic pattern depicted in Fig. 2 is denoted as Pattern I
(uneven distribution), and the uniform distribution is denoted as
Pattern II. We first construct the distributed table according to
one of the patterns and measure the throughput performance
under this traffic pattern. Then we change the traffic to the other
pattern and get the throughput performance again without
reconstructing the distributed table. The associated simulation
setups are given in Table IV.

TABLE IV Simulation setups.
Case Number of

TCAM
FA/SRR Table

constructed from
Traffic

change to
I 5 FA Pattern I Pattern II
II 5 FA Pattern II Pattern I
III 4 FA Pattern I Pattern II
IV 4 FA Pattern II Pattern I
V 4 SRR Pattern II Pattern I
VI 4 SRR Pattern I Pattern II

The results are given in Table V. We find that although the
traffic pattern changes significantly, the throughput
performance just decreases slightlyv (<1%) in all the cases

v In Case I, the throughput even increase, which indicates that the change of the

when FA are adopted. This means that FA excels in adapting to
traffic pattern changes. The performance of SRR is a bit worse
(>4% in Case V). Overall, we may conclude that the DPPC-RE
scheme copes with the changes of traffic pattern well.

TABLE V Throughput ratios in the presence of traffic pattern changes.

Case Before (%) After (%)
I 99.76 99.96
II 100 99.63
III 99.24 98.68
IV 98.99 98.07
V 92.76 88.39
VI 93.38 91.71

B. Comparison with other schemes

 Since each PC operation needs at least 2 TCAM accesses, as
mentioned in Section III, a single 100MHz TCAM chip cannot
provide OC768 wire-speed (100Mpps) PC. So CLP must be
adopted to achieve this goal. Depending on the method of
achieving CLP (to use distributed storage or to duplicate the
table), and adopting Key Encoding or not, there would be four
different possible schemes. They are:
1) Duplicate Table + No Key Encoding: Two 100MHz TCAM
chips should be used in parallel to achieve 100Mpps, with each
containing a full, un-encoded rule table (with N entries). A total
number of NK × TCAM entries are required. It is the simplest
to implement and offers deterministic performance (Zero loss
rate and fixed processing delay);
2) Duplicate Table + Key Encoding: Four 100MHz TCAM
chips should be used in parallel to achieve 100Mpps, with each
containing an encoded rule table (with Ne entries). A total
number of eNK × TCAM entries are required. It also offers
lossly, deterministic performance;
3) Distributed Storage + Key Encoding (DPPC-RE): Four or
five 100MHz TCAM chips should be used in parallel. The total
number of TCAM entries required is Ne DER× (which is not
linearly proportional to K). It may incur slight loss when
heavily loaded;
 4) Distributed Storage + No Key Encoding: Two 100MHz
TCAM chips should be used in parallel. The total number of
TCAM entries required is DERN × . Without a dynamic
load-balancing mechanism (which can only be employed when
adopting Key encoding), its performance is un-deterministic
and massive loss may occur when the system is heavily loaded
or traffic pattern changes.
 The TCAM Expansion Ratio ERs (defined as the ratio of the
total number of TCAM entries required to the total number of
rules in the rule database) are calculated for all five real-world
databases based on these four schemes. The results are given in
TABLE VI.

Apparently Distributed+KE, or DPPC-RE significantly
outperforms all the other three schemes in terms of the TCAM
storage efficiency. Moreover, with only a slight increase of ER
for K=5, compared with K=4, OC-768 wire-speed PC
throughput performance can be guaranteed for Distributed +KE

pattern even has a positive effect on the performance. This may be caused by
the use of the greedy (i.e. not optimum) algorithm for table construction

(K=5) case.

TABLE VI Comparison of the Expansion Ratio.

Database #1 #2 #3 #4 #5
Original Rules (N0) 279 183 158 264 1550
Expanded Rules (N) 949 553 415 1638 2180

After KE (Ne) 279 183 158 264 1550

Expansion Ratio when paralleled to Support OC768
Duplicate+NoKE(K=2) 6.80 6.04 5.98 12.40 2.82

Duplicate+KE(K=4) 4.06 4.09 4.08 4.11 4.02
Distributed+KE (K=5) 1.59 1.70 1.82 2.19 1.53
Distributed+KE (K=4) 1.44 1.66 1.76 2.14 1.51

Distributed+NoKE(K=2) 5.18 4.46 3.43 7.81 1.69

Obviously, DPPC-RE exploits the tradeoff between
deterministic performance and high statistical throughput
performance, while the schemes with table duplication gains
high, deterministic performance at significant memory cost.
Because the combination of Distributed Storage and Range
Encoding (i.e., the DPPC-RE scheme) provides a very good
balance in terms of the worst case performance guarantee and
low memory cost, it is an attractive solution.

VI. DISCUSSION AND CONCLUSION

 Insufficient memory bandwidth for a single TCAM chip and
large expansion ratio caused by the range matching problem are
the two important issues that have to be solved when adopting
TCAM to build high performance and low cost packet classifier
for next generation multi-gigabit router interfaces.

In this paper, a distributed parallel packet classification
scheme with range encoding (DPPC-RE) is proposed to
achieve OC768 (40 Gbps) wire-speed packet classification with
minimum TCAM cost. DPPC-RE includes a rule partition
algorithm to distribute rules into different TCAM chips with
minimum redundancy, and a heuristic algorithm to balance the
traffic load and storage demand among all TCAMs. The
implementation details and a comprehensive performance
evaluation are also presented.

A key issue that has not been addressed in this paper is how
to update the rule and range tables with minimum impact on the
packet classification process. The consistent policy table update
algorithm (CoPTUA) [19] proposed by two of the authors
allows the TCAM policy rule and range table to be updated
without impacting the packet classification process. CoPTUA
can be easily incorporated into the proposed scheme to
eliminate the performance impact of rule and range table update.
However, this issue is not discussed in this paper, due to space
limitation.

VII. ACKNOWLEDGEMENT

The authors would like to express their gratitude to Professor
Jonathan Turner and Mr. David Taylor from Washington University in
St. Louis for kindly sharing their real-world databases and the related
statistics with them.

VIII. REFERENCE
[1] V. Srinivasan, George Varghese, Subhash Suri, and Marcel Waldvogel,

"Fast and Scalable Layer Four Switching", Proc. of ACM SIGCOMM ,
1998.

[2] T.V. Lakshman, and Dimitrios Stiliadis, "High-Speed Policy-based Packet
Forwarding Using Efficient Multi-dimensional Range Matching", Proc. of
ACM SIGCOMM ,1998.

[3] M. Buddhikot, S. Suri, and M. Waldvogel, "Space Decomposition
Techniques For Fast Layer-4 Switching", Protocols for High Speed
Networks IV (Proceedings of PfHSN '99).

[4] A. Feldmann, and S. Muthukrishnan, "Tradeoffs for Packet Classification",
Proc. of IEEE INFOCOM, 2000.

[5] F.Baboescu, S.Singh, G.Varghese, "Packet Classification for Core Routers:
Is there an alternative to CAMs?", Proc. of IEEE INFOCOM, San Francisco
USA, 2003.

[6] Pankaj Gupta, and Nick McKeown, "Packet Classification on Multiple
Fields", Proc. of ACM SIGCOMM, 1999.

[7] Pankaj Gupta, and Nick McKeown, "Packet Classification using
Hierarchical Intelligent Cuttings", IEEE Micro Magazine, Vol. 20, No. 1,
pp 34-41, January- February 2000.

[8] V. Srinivasan, S. Suri, and G. Varghese, " Packet Classification using Tuple
Space Search", Proc. of ACM SIGCOMM ,1999.

[9] S.Singh, F.Baboescu, G.Varghese, and J.Wang, "Packet Classification
Using Multidimensional Cutting", Proc. Of ACM SIGCOMM, 2003.

[10] E. Spitznagel, D. Taylor, J. Turner, “Packet Classification Using Extended
TCAMs”, In Proceedings of International Conference of Network Protocol
(ICNP), September 2003.

[11] T. Lakshman and D. Stiliadis, “High-speed policy-based packet forwarding
using ef_cient multi-dimensional range matching,” ACM SIGCOMM
Computer Communication Review, Vol. 28, No. 4, pp. 203-214, October
1998.

[12] H. Liu, “Efcient Mapping of Range Classier into Ternary CAM”, Proc. of
the 10th Symposium on High Performance Interconnects (hoti'02), August,
2002.

[13] J. van Lunteren and A.P.J. Engbersen, “Dynamic multi-field packet
classication”, Proc. of the IEEE Global Telecommunications Conference
Globecom'02, pp. 2215 -2219, November 2002.

[14] J. van Lunteren and A.P.J. Engbersen, “Fast and Scalable Packet
Classication”, IEEE Journal of Selected Areas in Communications, Vol. 21,
No. 4, pp560-571, May 2003.

[15] H. Che, Z. Wang, K. Zheng, and B. Liu, “DRES: Dynamic Range Encoding
Scheme for TCAM Coprocessors,” submitted to IEEE Transactions on
Computers. It is also available online at:
http://crewman.uta.edu/~zwang/dres.pdf.

[16] K. Zheng, C.C.Hu, H.B.Lu, and B.Liu, "An Ultra High Throughput and
Power Efficient TCAM-Based IP Lookup Engine", Proc. of IEEE
INFOCOM, April, 2004.

[17] John L. Hennessy, and David A. Patterson, Computer Architecture: A
Quantitative Approach, The China Machine Press, ISBN 7-111-10921-X,
pp. 12 and pp.390-391.

[18] Please see Acknowledgement.
[19] Z, Wang, H. Che, M. Kumar and S. K Das, CoPTUA: Consistent Policy

Table Update Algorithm for TCAM without Locking, IEEE Transactions
on Computers, 53(12) 1602-1614, 2004.

