
SUBMITTED TO THE IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, NOV. 2003 – MAY 2004 1

Decentralized Optimal Traffic Engineering in
Connectionless Networks

Bernardo A. Movsichoff, Student Member, IEEE, Constantino M. Lagoa, Member, IEEE, and Hao Che

Abstract— This paper addresses the problem of optimal traffic
engineering in a connectionless autonomous system. Based on
Nonlinear Control Theory, the approach taken in this paper pro-
vides a family of optimal adaptation laws. These laws enable each
node in the network to independently distribute traffic among any
given set of next-hops in an optimal way, as measured by a given
global utility function of a general form. This optimal traffic
distribution is achieved with minimum information exchange
between neighboring nodes. Furthermore, this approach not only
allows for optimal multiple forwarding paths but also enables
multiple Classes of Service; e.g., classes of service defined in
the DiffServ architecture. Moreover, the proposed decentralized
control scheme enables optimal traffic redistribution in the case
of link failures. Suboptimal control laws are also presented in an
effort to reduce the computational burden imposed on the nodes
of the network. Finally, an implementation of these laws with
currently available technology is discussed.

Index Terms— Traffic Engineering, Sliding Mode Control,
Mathematical Programming, Optimization

I. INTRODUCTION

IN current autonomous systems, Traffic Engineering (TE)
has been an important means to optimize utilization of

network resources and to avoid congestion resulting from the
adoption of the shortest path routing paradigm. The most
elementary form of TE is known as Equal Cost Multi-Path
(ECMP), which is widely deployed in current routers. ECMP
allows traffic to be evenly distributed among multiple next-
hops lying in the equal-cost shortest paths, hence reducing the
chance of congestion. On the other hand, more sophisticated
TE strategies have mainly relied on a connection-oriented
model, such as Multi-Protocol Label Switching (MPLS). The
basic idea of these strategies is to use tunneled paths, not
necessarily those found by a shortest path routing protocol, to
forward packets. By steering traffic away from the congested
shortest paths and redirecting it to the established tunnels,
higher network resource utilization can be achieved. The math-
ematical foundation for this type of TE has been established
to allow optimal distributed load balancing and rate adaptation
in the presence of multiple paths and multiple CoSs; e.g., [7],
[8], [9].

Manuscript received . . .
. . .
. . . . This work was supported by the National Science Foundation under grants
ECS-9984260 and ANI-0125653.

Bernardo A. Movsichoff and Constantino M. Lagoa are with the Depart-
ment of Electrical Engineering, The Pennsylvania State University. Email:
bernardo@gandalf.ee.psu.edu; lagoa@engr.ee.psu.edu

Hao Che is with the Department of Computer Science and Engineering,
University of Texas at Arlington. Email: hche@cse.uta.edu

Digital Object Identifier xx.xxxx/JSAC.2005.xxxxxx

Recently, a different line of research [3], [11], [14] argued
that sophisticated TE does not necessarily have to rely on a
connection-oriented model. In particular, Y. Wang, et al. [14]
showed that by properly assigning link weight values based
on a given traffic demand matrix, Non-equal distribution of
traffic among Equal Cost Multiple shortest Paths (NECMP)
can lead to a globally optimal TE solution, equivalent to the
one obtained with a connection oriented solution; e.g., the
MPLS based TE. Sridharam, et al. [11] further demonstrated
how this idea can be implemented in an Open Shortest Path
First (OSPF) domain.

The potential benefit of using the above approach as com-
pared with the connection-oriented approach can be signifi-
cant. Using this approach to allow optimal TE, there is no need
for introducing new protocol stacks (such as MPLS) into the
connectionless IP networks and, hence, no egress rooted O(N)
trees or fully meshed O(N2) connections among edge nodes
need to be provisioned and maintained, where N is the number
of edge nodes. This simplification significantly reduces the
software upgrading, operational and management costs.

Although encouraging, the above solution has three crit-
ical weaknesses. First, the approach taken is intrinsically a
centralized one. The optimal link weight assignment is based
on the availability of a global traffic demand matrix. This has
two important implications: (1) the approach can only respond
to slow traffic demand changes [3]; (2) the approach cannot
deal with link/node failures [11]. Second, this solution fails if
the traffic demand matrix is not available. Third, this solution
only works for the best-effort traffic. To provide optimal TE
for multiple Classes of Service (CoSs), a connection-oriented
approach (e.g., application of [7], [8] and [9] to a DiffServ
enabled MPLS network) is still the only viable solution. The
ability to provide CoS-based TE is critical simply because a
key for revenue generation is the ability to provide value-added
services.

In this paper, a theoretical framework to solve the above
mentioned issues is proposed. Specifically, the proposed so-
lution allows CoS and per hop based optimal load balancing
and rate adaptation among any given set of multiple paths
and, in particular, among a set of equal cost multiple shortest
paths. A large family of distributed control laws is obtained,
which converges to the maximum of a general concave utility
function. Due to the distributed nature of control, this approach
can optimally redistribute traffic among multiple shortest paths
and react to small time-scale traffic demand variations and
link/node failures. The proposed algorithms allow for globally
optimal, multiple CoS based TE, that closely mimics the opti-

0000–0000/00$00.00 c© 2005 IEEE

2 SUBMITTED TO THE IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, NOV. 2003 – MAY 2004

mal TE offered by a connection-oriented approach where the
traffic demand matrix is known. Even without the knowledge
of the traffic demand matrix, the proposed approach allows
globally optimal, multiple CoS based NECMP under any
given link weight assignment. Moreover, unlike a connection-
oriented approach for which an additional set of mechanisms
need to be implemented to provide high availability (such as
fast re-routing and path protection for MPLS label switched
paths) the intrinsic fast re-routing capability of the proposed
approach provides high availability to a connectionless IP
network by design, eliminating the need to design another set
of protocols. The advantage of using local control for link
failure recovery over path protection has also been shown
in [10], where an algorithm to determine the set of available
next hops is presented. However, the proposed method for load
balancing among the nodes in these sets is either ECMP or
round-robin and no algorithm for optimal redistribution of the
traffic is provided.

This paper also addresses a challenging implementation
issue; i.e., how to enable NECMP. Most of the existing routers
only support ECMP, not NECMP. A general perception is that
directly modifying data path functions to allow NECMP is
costly. This leads to the proposal of an alternative approach
presented in [11], which allows effectively NECMP without
changing the existing ECMP load balancing paradigm. How-
ever, this approach involves nontrivial control plane function
changes and substantial configuration overhead. In this paper,
it is shown that, to allow NECMP, directly modifying the data
plane functions can actually be much easier than modifying
the control plane functions. This is based on the observation
that more and more currently available routers employ fully
programmable network processors in their network interface
cards to perform data path functions. Furthermore, it is shown
how NECMP can be programmed in a network processor by
adding just a small number of instructions and two possible
implementations are discussed.

The remainder of the paper is as follows: Section II presents
notation and assumptions used throughout this paper. Sec-
tion III provides a precise statement of the problem at hand,
while Section IV presents the proposed optimal algorithms to
tackle it. Section V provides an alternative algorithm that is
simpler to implement. Finally, in Section VI, implementation
of NECMP using currently available hardware is discussed,
while Sections VII and VIII present simulation examples and
final remarks respectively.

II. PRELIMINARIES

Throughout this paper, traffic flows are assumed to be
described by a fluid flow model, where the only resource
taken into account is link bandwidth. In what follows, call and
flow will be used interchangeably. Now, consider a network
where several calls of different types are present; calls of
different types will be understood as flows with different
pairs of edge nodes (or equivalently source/destination nodes)
and/or different CoSs. The concept of “flow/call” is defined
to facilitate the design of the control laws. As it is seen
in Section V-B, while call level control is required at the

PSfrag replacements

l1

l2

l3

l4

l5

l6
l7
l8
l9

b1 b2

b3

b4

b5

xi x in
i,b2,l1

x out
i,b2,l2

x in
i,b3,l2

x out
i,b2,l3

x in
i,b4,l3

x out
i,b4,l4

x in
i,d(b4,l4),l4

x out
i,b3,l5 x in

i,d(b3,l5),l5

r out
i

r in
i,b2

r out
i,b2,l3

r out
i,b2,l2

r out
i,b3,l5

r in
i,b3 r in

i,d(b3,l5)

r in
i,d(b4,l4)r in

i,b4

r out
i,b4,l4

Fig. 1. Notation

domain edge nodes, in the core nodes the control is performed
solely based on the per hop information and no per call state
information is required.

Assume that several paths connecting each destination node
with its source node are available. The objective is to allocate
resources to maximize the network’s utility as measured by a
given utility function, assuming that each node uses only per
hop information for packet forwarding.

More precisely, consider a computer network consisting of
a set of nodes B and a set of interconnecting links L and
let cl be the capacity of link l ∈ L . Moreover, let Lb denote
the set of links connected to node b∈B and Lb,i ⊆Lb denote
the set of outgoing links for calls of type i. Also, let n be the
number of types of calls utilizing the network and let Ib be
the set of types of calls visiting node b. Given calls of type i,
the quantity xi denotes the data rate allocated to that type and
vector

x .
= [x1,x2, . . . ,xn]

T ∈ Rn

contains the data rates allocated to all the calls sharing the
network. Furthermore, given node b∈B, x in

i,b,l denotes the data
rate of calls of type i arriving to node b through link l ∈Lb. In
a similar fashion, x out

i,b,l denotes the data rate of calls of type i
departing node b through link l ∈ Lb. Also, the vectors xin
and xout stand for the vectors containing all such arriving and
departing data rates respectively. This notation is exemplified
in Fig. 1 for the simple case of a single ingress (source) node;
i.e., node b1, together with some additional quantities that are
later used in the control laws.

Now, given any node b ∈ B and any link l ∈ Lb, let
d(b, l) denote the downstream node; i.e., the node connected
to node b through link l. Note that given any two nodes and
their (lossless) connecting link, it holds that

x out
i,b,l = x in

i,d(b,l),l .

Also, note that xi = x in
i,b̃,l for some b̃ ∈ B and some l ∈ Lb̃.

For example in Fig. 1, the set of links connected to node b2
is Lb2 = {l1, l2, l3} while b4 = d(b2, l3) is the downstream node
of node b2 through link l3. Furthermore, x in

i,b4,l3
= x out

i,b2,l3
; i.e.,

x out
i,b2,l3 = x in

i,d(b2,l3),l3
.

Now, given calls of type i, the corresponding data rate xi
is determined at source i and multiple paths are available at

MOVSICHOFF et al. DECENTRALIZED OPTIMAL TRAFFIC ENGINEERING IN CONNECTIONLESS NETWORKS 3

each node of the network. More precisely, each node partitions
incoming traffic into the available links by striving to conserve
the flow for each call type (i.e., aims at no losses) and to avoid
link congestion. In Fig. 1, for example, node b2 tries to satisfy

x in
i,b2,l1 = x out

i,b2,l2 + x out
i,b2,l3 .

Satisfaction of this type of constraints is indicated by the
quantity rin

i,b, computed at each node b ∈ B. In this example,
rin

i,b2
will be assigned a value of 1 if the incoming data rate is

greater than the allocated outgoing rate and −1 if it is less.
Moreover, given the lossless property of the links, each node

also pursues satisfaction of flow conservation constraints at
each one of the downstream nodes; e.g., in Fig. 1 node b2
tries to enforce the following flow constraints

x in
i,b3,l2 = x out

i,b3,l5 and x in
i,b4,l3 = x out

i,b4,l4 .
1

To enforce these constraints, nodes b3 and b4 use the computed
quantities rin

i,b3
and rin

i,b4
as explained above. This is the same

information needed at b2 to satisfy the very same constraints.
For this reason, the quantities rout

i,b,l , for each b ∈ B, and each
l ∈ Lb,i, are equal to the quantities rin

i,d(b,l) fed back from the
downstream nodes. In the present example this amounts to
take

rout
i,b2,l2 = rin

i,b3
and rout

i,b2,l3 = rin
i,b4

.

Finally, let cgl denotes the congestion information about
link l ∈ L ; i.e.,

cgl
.
=

{
0 if link l is congested
1 otherwise

III. PROBLEM STATEMENT

The objective of this paper is to solve the problem of
maximizing utility functions of the form

U(x)
.
=

n

∑
i=i

fi(xi)

subject to link capacity constraints, CoS requirements and
flow conservation constraints, both through nodes and links.
The functions fi(·) are assumed to be differentiable concave
functions increasing in their arguments; i.e., with non-negative
partial derivatives. The reason for using concave utility func-
tions is twofold: First, from a mathematical point of view, any
local minimum of the utility function is a global minimum
which implies that one will not get “trapped” at a non-optimal
traffic allocation. Second, a concave utility function will result
in a “fair” traffic allocation in the sense that one will not starve
any of the calls. In fact, one will get a larger “reward” by
increasing the data rate of calls with lower data rates.

Two different but similar approaches are proposed. The
first one admits an optimal solution at the cost of significant
complexity, while the second one is much simpler but, in
general, only quasi-optimal.

Calls of type i = 1,2, . . . ,s are assumed, without loss of
generality, to be of the assured forwarding CoS category (AF);

1Both b3 and b4 might have more than just one outgoing link for call of
type i. For simplicity this is not the case in Fig. 1.

calls of this CoS category are assigned a target rate that has to
be achieved in an average sense; i.e., xi = Λi for a given Λi. On
the other hand, calls of type i = s+1,s+2, . . . ,n are assumed
to be of the best effort CoS category (BE); i.e., calls of this
CoS category utilize whatever resources are left. Other more
general CoS categories with lower and/or upper bounds on the
desired data rates can be addressed (see, for example, [8]),
but due to space constraints only AF and BE categories are
considered here.

Here, AF refers to traffic flows that have a long term
average target rate similar to the ones defined in the DiffServ
architecture. However, as it will shortly become apparent, it is
of a more general nature since the control on the target rate for
AF is performed only at the edge nodes and is transparent to
the core nodes. This salient feature of the approach presented
in this paper allows for the implementation of the control laws
along with the DiffServ compliant CoSs. Namely, while edge
nodes implement DiffServ Code Point (DSCP) marking, rate
control and other DiffServ traffic conditioning mechanisms,
core routers simply map packets with different DSCPs to
different output queues, where some queue management algo-
rithm and CoS-based scheduling discipline are implemented.

More precisely, given the assumptions and requirements
above, the problem of optimal resource allocation can be
formulated as the following optimization problem

max
x, xin, xout

U(x)

subject to link capacity constraints2

n

∑
i=1

x in
i,b,l + x out

i,b,l − cl ≤ 0 ∀l ∈ Lb and each b ∈ B

flow conservation constraints at each node

∑
l∈Lb

x out
i,b,l − ∑

l∈Lb

x in
i,b,l = 0 ∀b ∈ B, i ∈ Ib

flow conservation constraints for each link3

x out
i,b,l − x in

i,d(b,l),l = 0 ∀l ∈ L ; l ∈ Lb

the AF requirements

xi −Λi = 0 i = 1,2, . . . ,s

and non-negativity of all the data rates, xi ≥ 0, x in
i,b,l ≥ 0 and

x out
i,b,l ≥ 0 for all i, all l ∈ L and all b ∈ B. The optimization

problem above constitutes a convex problem and can be easily
solved if global information is available. However, global
information on fast timescale events, as required in the above
formulation, is not generally available. This paper aims at
providing decentralized adaptation laws that converge to the
solution of this problem.

IV. A FIRST FAMILY OF DECENTRALIZED LAWS

This section presents a family of adaptation laws that
converge to the optimal of the convex problem posed above.
Also, an alternative set of simpler control laws is presented
that is optimal for a large subset of operating conditions.

2Note that the formulation presented in this paper allows for the existence
of bidirectional links.

3Since lossless links are assumed, this constraints will be automatically
satisfied.

4 SUBMITTED TO THE IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, NOV. 2003 – MAY 2004

A. Data Rate Adaptation

Consider the following adaptation law to be used at each
source node bsi ∈ B: For i = 1,2, . . . ,s; i.e., AF calls, let

ẋi = zi
(
t,cgl(t),r

out
i (t)

)
×

×
[

∂ fi

∂xi

∣∣∣∣
xi

−αcgl(t)−βiri(t)−β out
i r out

i (t)

]
,

where

ri(t) =

{
1 if xi > Λi

−1 if xi < Λi

and

r out
i (t) =

1 if xi > ∑
l∈Ld(bsi,l)

x out
i,d(bsi,l),l

−1 if xi < ∑
l∈Ld(bsi,l)

x out
i,d(bsi,l),l

,

where d(bsi, l) is the only node connected to the corresponding
source node bsi; i.e., Lbsi = {l}. For i = s+1,s+2, . . . ,n; i.e.,
BE calls, let

ẋi = zi
(
t,cgl(t),r

out
i (t)

)
[

∂ fi

∂xi

∣∣∣∣
xi

−αcgl(t)−β out
i r out

i (t)

]
,

where r out
i is defined as above. Also, for each node b ∈B, all

i ∈ Ib, and all l ∈ Lb let

ẋ out
i,b,l = zi,b

(
t,cgl(t),r

in
i,b(t),r

out
i (t)

)
×

×
[
β in

i,br in
i,b(t)−β out

i,b,lr
out

i,b,l(t)−αcgl(t)
]
,

where

r in
i,b(t) =

1 if ∑
l∈Lb

x in
i,b,l > ∑

l∈Lb

x out
i,b,l

−1 if ∑
l∈Lb

x in
i,b,l < ∑

l∈Lb

x out
i,b,l

(1)

and

r out
i,b,l(t) =

1 if ∑
l∈Ld(b,l)

x in
i,d(b,l),l > ∑

l∈Ld(b,l)

x out
i,d(b,l),l

−1 if ∑
l∈Ld(b,l)

x in
i,d(b,l),l < ∑

l∈Ld(b,l)

x out
i,d(b,l),l

, (2)

where d(b, l) is the node connected to node b through link l.
That is, r out

i,b,l consists of the quantity r in
i,d(b,l) fed back from

d(b, l) to b, as shown in Fig. 1. Recall also that x out
i,b,l = x in

i,d(b,l),l
as explained in Section II. Note that this control law is CoS
agnostic and the CoS dependent control is performed only at
the ingress nodes.

Given the adaptation laws above, the data rates are then
forced to be greater than or equal to zero. More precisely, if
any of the data rates above is zero, then the corresponding
derivative is taken as the maximum between zero and the
expression given above.

Note in the adaptation laws above, the terms r in
i,b are used

to enforce flow conservation at node b, while the quantities
r out

i and r out
i,b,l are used to enforce flow conservation at the

downstream nodes d(b, l).

All the functions z and the scalars α and β are design
parameters that have to be determined to achieve convergence
and provide an acceptable transient behavior. The following
theorem establishes conditions for these choices and provides
the main result of this paper; i.e., the control laws above are
optimal.

Theorem 1: Let ζ > 0 and γ > 0 be given (arbi-
trarily small) constants. Also, let zi

(
t,cgl(t),r

out
i (t)

)
and

zi,b
(
t,cgl(t),r

in
i,b(t),r

out
i (t)

)
be scalar functions continuous in t

for any functions cgl(t) ∈ [0,1], r in
i,b(t) ∈ [−1,1] and r out

i (t) ∈
[−1,1], satisfying

zi
(
t,cgl(t),r

out
i (t)

)
> ζ

zi,b
(
t,cgl(t),r

in
i,b(t),r

out
i (t)

)
> ζ

for all t > 0.
Furthermore, let βi > 0, β = β out

i = β out
i,b,l = β in

i,b > 0 and
α > 0, be constants satisfying the following inequalities

α >

∣∣∣∣
∂ fi

∂xi

∣∣∣∣
xi=0

βi >

∣∣∣∣
∂ fi

∂xi

∣∣∣∣
xi=0

β >

∣∣∣∣
∂ fi

∂xi

∣∣∣∣
xi=0

for all l ∈ L , all b ∈ B and all i = 1,2, . . . ,n.
Then the control laws presented above converge to the

maximum of the utility function

U(x)
.
=

n

∑
i=1

fi(xi),

subject to the network’s link capacity constraints, CoS require-
ments, flow conservation constraints and non-negativity of all
the data rates.

Proof: See Appendix I

V. PERCENTAGE ADAPTATION

The control laws provided in Section IV require each node
to measure both incoming and outgoing data rates for each
visiting type of calls. In light of this issue, this section
provides an alternative set of control laws that require much
less information than the previous ones. Instead of adapting
the data rate being sent through each link, the adaptation is
performed on the percentage of incoming traffic that has to be
allocated to each outgoing link.

Define pi,b,l as the percentage of incoming traffic of type i
at node b that is routed along each available outgoing link l;
i.e.,

x out
i,b,l(t) = pi,b,l(t) ∑

l̃∈Lb
l̃ /∈Lb,i

x in
i,b,l̃(t) b ∈ B; l ∈ Lb,i,

Now, let the percentage of incoming traffic routed along link
l ∈ Lb,i be governed by the adaptation law

ṗi,b,l = zi,b
(
t,cgl(t),r

in
i,b(t),r

out
i (t)

)
×

×
(

ẋ out
i,b,l ∑

l̃∈Lb,i; l̃ 6=l

pi,b,l̃ − pi,b,l ∑
l̃∈Lb,i; l̃ 6=l

ẋ out
i,b,l̃

)
,

for all b ∈ B, l ∈ Lb,i, where

ẋ out
i,b,l =

[
β in

i,br in
i,b(t)−β out

i,b,lr
out

i,b,l(t)−αcgl(t)
]
,

MOVSICHOFF et al. DECENTRALIZED OPTIMAL TRAFFIC ENGINEERING IN CONNECTIONLESS NETWORKS 5

cgl is the bottleneck information as defined in Section II and
rin

i,b, rout
i,b,l are given by (1) and (2) respectively. These laws

are derived directly from the control laws for the data rates
presented in Section IV. Note that the laws above do not
require the measurement of data rates if the values of rin

i,b and
rout

i,b,l are available by some other means.
The following proposition shows that under some conditions

these laws are indeed optimal.
Proposition 2: Assume that all data rates are always strictly

positive; i.e., there exists ε > 0 such that xi(t) > ε , x in
i,b,l(t) > ε

and x out
i,b,l(t) > ε for all i, t ≥ 0, all l ∈ L and all b ∈ B.

Then the percentage adaptation laws above converge to this
optimal solution.

Proof: See Appendix II

A. Practical Computation of r in
i,b and r out

i,b,l .

Although optimal, the laws above require access to data
rate information for the computation of r in

i,b and r out
i,b,l . Hence,

an alternative (empirical) way to compute this information is
presented.

Note that when implementing percentage adaptation, the
aggregate incoming data rate is always larger than or equal
to the aggregate outgoing rate; i.e.,

∑
l∈Lb

x in
i,b,l ≥ ∑

l∈Lb,i

x out
i,b,l . (3)

Hence, it is not necessary for r in
i,b in (1) to assume the value −1;

i.e., in this case only r in
i,b = 0,1 is needed. Note also, that

r in
i,b = 1 when there is some type of congestion, either in the

connected links or further downstream. That is, (3) is a strict
inequality. This prompts the following computation for r in

i,b

r in
i,b = ∧l∈Lb,i

{
∨{cgl ,r

out
i,b,l}

}
,

where the symbols ∧ and ∨ stand for logical AND and OR
operations respectively and the quantity r out

i,b,l is received from
the downstream node d(b, l); i.e.,

r out
i,b,l = r in

i,d(b,l)

for each link l ∈ Lb,i. With this expression, r in
i,b will only

be 1 if all the available paths are congested and 0 otherwise.
Intuitively, for each available downstream node d(b, l), the OR
operation yields 1 (congestion) if either link l is congested
or there is congestion further downstream d(b, l). The AND
operation on the other hand, takes all downstream nodes
d(b, l), for l ∈ Lb,i, and indicates congestion only if node b
sees congestion in all downstream paths.

In the general case, if any optimal data rate is zero, the
percentages obtained by these means might exceed one or
become negative, although they will always add up to one.
This issue is addressed by means of a normalization procedure
that is explained in Section VII along with the problem of
discretization of the continuous-time adaptation laws. These
optimal adaptation laws, together with the empirical expres-
sion for the computation of r in

i,b and r out
i,b,l lead to a tractable

control law that will approximately mimic the behavior of the
optimal ones.

B. Routing as a Function of the Destination Node

By carefully looking at the way of computing r in
i,b and r out

i,b,l
presented in the previous section, it can be seen that the
computational burden at each of the nodes can be further
reduced.

Indeed, consider a node b, and two types of calls i and j
arriving at b which have the same destination node and
share the same resources. Now, the formulas proposed in the
previous section imply that

r in
i,b = r in

j,b and r out
i,b,l = r out

j,b,l .

Hence, if the initial conditions are the same then

pi,b,l(t) = p j,b,l(t)

and, hence, there is no need to independently adapt the
percentages for these two call types.

Therefore, if several call types have the same destination
address and share the same downstream resources, it is not
necessary to independently adapt the percentages. The same
percentages can then be used for all of them. More precisely,
given a node b let the set of next hops for calls with
destination D, L D

b , replace the set of next hops per type Lb,i.
Similarly, let per destination percentages pD

b,l take the place
of per type percentages pi,b,l . Then, node b needs only to
adapt per destination percentages pD

b,l , l ∈ L D
b ; i.e., per type

information no longer needs to be maintained. This implies
that although the number of control laws is N2, where N is
the number of edge nodes, the distinct control laws a core
router has to run is N. This scaling property allows the current
solution to scale to very large autonomous systems. As it shall
be seen in the following section, this property will also allow
efficient implementation of the associated data plane functions.

C. Robustness With Respect to Failures

A salient feature of the laws proposed is that, once imple-
mented, the resulting network will be robust with respect to
link/node failures. In other words, after a small modification
discussed below, these laws will automatically reroute traffic
away from the nodes/links that have failed. The decentralized
nature of the laws allows for traffic rerouting to be done by
the nodes adjacent to the failure and without any change of
the control law parameters.

Indeed, this can be accomplished by the following proce-
dure: Upon detection of a link or node failure in an adjacent
node or a connected link, each node performs an update of
the set L D

b ; i.e., it updates the set of available next-hops
for calls with destination D. Once the update is performed,
same adaptation laws are used with the new routing table.
Given the decentralized nature of the laws, it can be seen that
they are optimal for the “new” network configuration and will
provide the desired traffic allocation; i.e., traffic is rerouted
away from the failed components and a new optimal steady
state allocation will be achieved.

6 SUBMITTED TO THE IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, NOV. 2003 – MAY 2004

VI. IMPLEMENTING THE ADAPTIVE ROUTING
ALGORITHM

As explained in the previous section, the practical imple-
mentation of the adaptation laws involves an adaptation law
running at each core router for each egress node. The control
law dynamically assigns a percentage pD

b,l of traffic of calls
with destination D to be routed to the equal-cost next-hop
d(b, l). Since the existing routing protocol software already
enables the binding between equal-cost shortest paths and the
corresponding next-hops in the forwarding table, no change to
the existing control plane functions is required, except for the
addition of the software to implement the percentage adap-
tation laws, a mechanism to exchange congestion information
with the neighboring routers, and a mechanism to hook up the
software for the percentage adaptation laws with any link/node
failure detection mechanism that is available in the router.
Therefore, the remaining key issue is how to enable NECMP
in the data plane.

Upon each update, pD
b,l is downloaded from the control plane

to the data plane to facilitate NECMP. This can be easily done
by sending an applet from the control plane to the network
processor in the network interface card. Two possible schemes
for implementing NECMP are discussed. Depending on the
actual approach in use, the network processor caches pD

b,l in
an off-chip dual port memory or a Ternary CAM (TCAM)
coprocessor. In what follows, a brief review of the existing
approaches to implement ECMP is presented, followed by the
two proposed approaches to implement NECMP.

As explained in [4], there are two types of ECMP algorithms
by design; i.e., disruptive and non-disruptive. For a non-
disruptive algorithm, if no change to the set of next-hops
occurs, the path a flow takes remains the same. On the other
hand, for a disruptive algorithm, even if no change to the set
of next-hops occurs, the path a flow takes may still change
over time. An example of disruptive algorithms is to send
packets to different equal-cost next-hops in a round robin
fashion. Obviously, using disruptive algorithms for ECMP can
result in out-of-order packet forwarding which is undesirable.
Non-disruptive algorithms include hash-threshold and modulo-
N algorithms (see [4]), and highest random weight algorithm
(see [12]). Among these three algorithms, only hash-threshold
algorithm generally applies to both ECMP and NECMP.
Hence, in the sequel only this algorithm is considered.

The hash-threshold algorithm works as follows: The router
first selects a key by performing a hash (e.g., CRC16) over the
packet header fields that identify a flow; e.g., IP source and
destination address pair. The M next-hops d(b, l), l ∈L D

b , are
assigned non-overlapping regions in the key space, with the
sum of the regions covering the entire key space. Here, M
denotes the cardinality of the set L D

b ⊆ Lb and L D
b denotes

the set of links connecting node b with the next-hops d(b, l)
available for calls with destination D. The router uses the
key to determine which region and thus which next-hop to
use. Assuming the output of the hash function is uniformly
distributed, the size of region corresponding to the next-hop
d(b, l) divided by the size of the key space is then equal to
pD

b,l , l ∈L D
b . As a special case, for ECMP, all the regions have

the same size, which is one M-th of the size of the key space.
Programming a network processor for hash key generation

is common in support of both layer 2 switching and layer 3
address to layer 2 address mapping. For example, a 48-bit
destination MAC address to an output port mapping requires
that a hash key be generated from the 48-bit destination
MAC address. A RISC-core (i.e., a micro-engine in a net-
work processor, such as INTEL IXP series) needs about
five instructions to generate such a hash key. Moreover, the
newest generation network processors generally offer an on-
chip unit which provides for CRC operations for popular
industry standard polynomial values, such as, CRC8, CRC16
and CRC32. This further reduces the number of instructions
to just one. Therefore, the hash key generation should not be
a concern.

Now the only question left is how to map a hash key to a
region and then to an equal-cost next-hop. To this end, two
approaches are proposed. The first approach involves using
an off-chip SRAM or DRAM and allocating a memory block
with address space equal to the hash key space size, with each
memory address location containing a next-hop value (more
precisely, an output port value) corresponding to the region
into which the memory address falls. With this solution, a
direct hash key indexing will return the equal-cost next-hop,
resulting in deterministic, single memory access performance.

As an example of the above solution consider the following:
Suppose CRC8 is used to generate a 8-bit hash key from the
IP source and destination addresses. This allows 256 different
values in the key space. Consequently, 256 memory entries
need to be allocated for call types destined to each egress
node. Further assume there are N = 256 edge nodes in the
routing domain (a reasonably large number given that an OSPF
domain generally contains no more than a thousand nodes).
So a total number of 256 × 256 = 65536 memory entries
need to be allocated. Now if the memory width is 32 bits,
which is large enough to hold an output port value, the total
memory space required is 0.26MB, which is very small. A
legitimate concern is that upon an pD

b,l update, theoretically, all
65536 entries may need to be updated in the very worst-case.
This will have implication on the lookup performance. So for
this solution, a dual-port memory is preferred. With a dual-
port memory, database update and lookup can be performed
simultaneously, although with a small chance of incorrect
return of the next-hop values. Another concern is that the key
space size directly affects the granularity of control. Assume
there are five next-hops on average, each region then has
256/5 = 50 levels.

If the performance is highly sensitive to the granularity of
control, the following approach is preferred. Here, a TCAM
coprocessor is employed to do the hash key to next-hop or
output port mapping. The regions are stored in the TCAM and
the corresponding next-hop values are stored in an associated
memory. A region matched by a hash key will result in the
corresponding output port values in the associated memory to
be returned to the network processor. This approach is possible
since most of today’s network processors are fully integrated
with TCAM coprocessors for fast packet classification. Since
each TCAM memory cell can take on three states; i.e., 0, 1,

MOVSICHOFF et al. DECENTRALIZED OPTIMAL TRAFFIC ENGINEERING IN CONNECTIONLESS NETWORKS 7

and X (i.e., “don’t care”), a region can be expressed in TCAM
memory using just several memory slots (for details on how
a range/region is expressed in a TCAM, please refer to [1]).
For example, in a 16-bit key space, region [256,512] can be
expressed using just two TCAM entries; i.e.,

0000 0001 XXXX XXXX

0000 0010 0000 0000,

and region [6000,6063] can be expressed in just three TCAM
entries; i.e.,

0001 0111 0111 XXXX

0001 0111 100X XXXX

0001 0111 1010 XXXX.

Now, assume five TCAM entries are required on average to
express a region, and that each TCAM memory width is 64
bits. Also assume the other parameters are the same as the
previous example. Then the total TCAM memory required is

5(TCAM entries)×5(regions)×
×8(bytes of TCAM width)×256(edge nodes) = 0.4Mb.

This generally constitutes only a small fraction of the total
TCAM memory, given that the maximum TCAM memory size
for today’s TCAM coprocessors has reached 18Mb. In general,
a TCAM coprocessor can only be configured to support a
dozen or so number of tables. Hence, it is impractical to
allocate 256 tables in the TCAM coprocessor for all the egress
nodes. A solution to this is to allocate a single TCAM table
for all the egress nodes. To distinguish regions for different
egress nodes, 8 bits out of a 64 bits TCAM table entry
can be used to encode/identify egress nodes. This allows
up to 56-bit hash key size and hence highly fine granular
control. Deterministic, single clock cycle lookup performance
is guaranteed. Moreover, since all the TCAM coprocessors
have a CPU interface, the database update can be performed
in parallel with the lookup process. Based on [15], database
update algorithms can be developed such that the update
process poses zero negative impact on the region matching
process.

For both external dual-port memory and TCAM based
solutions, each memory access or per next-hop lookup takes
only two or three instructions to pass a search key composed
of a hash key and an encoded egress node number to the
memory and read the returned output port value. Note that
the egress node number can be obtained as part of the IP
forwarding table lookup, meaning that each prefix in the
forwarding table is mapped to an egress node number, in
addition to a next-hop. In summary, the NECMP costs about
four to ten instructions. Given that the total instruction budget
for a network processor supporting multi-gigabit line rate is
on the order of 102 to 103, the added overhead is quite small.
Therefore, it can be concluded that the modification of the
data plane functions to enable NECMP is a viable solution.
The required effort to do so is much smaller than modifying
the control plane functions as proposed in [11]. Moreover, the
present solution is more straightforward.

VII. SIMULATION EXAMPLES

In this section, some simulations exemplifying the behavior
of the proposed algorithms are presented. In particular, it is
shown, that in the presence of multiple CoSs, the algorithms
succeed at distributing traffic in such a way as to maximize
a given utility function. These simulations also test the be-
havior under discretization of the control laws, delays in the
propagation of congestion information and link failures.

A. Discretization and Adaptive Oscillation Reduction

In a real network, the adaptation laws provided in this paper
can not be utilized as they were presented. Instead, a discrete-
time version has to be implemented. Following the work in
[8], [9] this is accomplished through the following forward
rule approximations

xd
i
[
(k +1)td

]
= xd

i [ktd]+ td ẋi(ktd)

xd out

i,b,l
[
(k +1)td

]
= xd out

i,b,l [ktd]+ td ẋ out
i,b,l(ktd)

where k ∈ Z0+ and td is the integration step.
The following proposition establishes under what conditions

this approach will lead to a successful realization of the
discrete-time version of the adaptation laws.

Proposition 3: Let x(t) and xout(t) be the trajectories ob-
tained using the control laws in Section IV and let xd(t) and
xd

out(t) be the corresponding discrete-time trajectories obtained
using the discretization algorithm above.

Given any time interval [t0, t1] assume that the vector
XT (t) .

=
[
xT (t) xT

out(t)
]

is bounded in infinity norm for
each t in this interval. Then, given any constant ε > 0,
there exists δ > 0 such that, if tdzi

(
t,cgl(t),r

out
i (t)

)
< δ and

tdzi,b
(
t,cgl(t),r

in
i,b(t),r

out
i (t)

)
< δ , for all t > 0,

∥∥X(t)−Xd(t)
∥∥< ε ∀t ∈ [t0, t1],

where Xd(t) is the discrete-time counterpart of X(t).
Proof: Direct application of result 2 in Filippov ([2],

chapter 2, page 95).
That is, provided that the values of the discretization step td
and/or the functions zi(·) and zi,b(·) are chosen to be suffi-
ciently small, the discretization above will provide a family
of discrete-time control laws that will closely resemble their
continuous-time counterpart.

Now, based on this result, the discretization for the percent-
age adaptation laws is performed in a similar way; i.e.,

p̂d
i,b,l

[
(k +1)td

]
= p̂d

i,b,l [ktd]+ td
d p̂i,b,l(ktd)

dt
.

Moreover, the following normalization forces all the percent-
ages to add up to one and to lie in [0,1]

p̂i,b,l = max
{

min{p̂d
i,b,l ,1},0

}
; p̂i,b,l =

p̂i,b,l

∑
l∈Lb

p̂d
i,b,l

.

The above discretization and the existence of delays in the
propagation of congestion information perturb the behavior
of the system away from the ideal one. Due to this fact
the adaptation reduction scheme presented in [8] is used to
mitigate this phenomenon.

8 SUBMITTED TO THE IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, NOV. 2003 – MAY 2004

PSfrag replacements
Optimum

Utility Function

time – s
Call examples (Mbps)

Type 2
Type 3
Type 5

6
5

4
3

2
1
0

−1
−2
−3
−4
−5
−6

0
60

120
180
240
0.5
1.5

congestion
no

congestion
zi(·) , zi,b(·)

TTT

0

k

Fig. 2. Example of a scaling function zi(·)

TABLE I
ROUTING DECISIONS BY DESTINATION NODE

b1 b2 b3 b4 b5 b6 b7 b8
e2 b2,b7 e2 — — — — b2,b8 b2
e4 b2,b7 b7,b8 b4 e4 — — b8 b3,b4
e5 b2,b7 b7,b8 — — e5 — b5 b5,b7
e6 b7 b1,b7,b8 b4,b8 b8 b7 e6 b6 b5,b7

More precisely, let T > 0 and k > 0 be given, such that

zi
(
0,cgl(t),r

out
i (t)

)
= zi,b

(
0,cgl(t),r

in
i,b(t),r

out
i (t)

)
= k.

Then if at time t = t0 congestion is detected on link l for some
call i let

zi
(
0,cgl(t),r

out
i (t)

)
= zi,b

(
0,cgl(t),r

in
i,b(t),r

out
i (t)

)
= ω(t − t0),

where ω : [0,T] → [ζ ,k] is some decreasing function. This
procedure is repeated again at t ≥ t0 +T . Figure 2 depicts the
desired behavior. The trade-off, however, is that convergence
time will be increased. Applying this procedure enables one to
mitigate oscillations while maintaining the ability to respond
to sudden changes in the network; e.g., link failures.

B. Simulation Setup

The simulations presented in this section use the network
topology shown in Fig. 3. The delays, link capacities as well
as source-destination pairs are indicated therein. This is the
same network used in previous papers (e.g., [8], [9]) and was
originally used in [6].

Multiple paths are allowed between the n = 8 pairs of source
and destination nodes (Si/Di) considered in these simulations,
but as mentioned before, each node only uses a per hop
knowledge of the paths available. In particular, as far as the
sending nodes are concerned there is only one data rate, xi,
to be determined in order to maximize the network’s utility.
Furthermore, these routing decisions are made solely based
on the final destination of the incoming calls, without regard
to their source, as shown in Table I. Note that the routing
decisions in the table do not include all possible paths towards
the destination node. For example, b7 routes traffic with
destination e2 through nodes b2 and b8 but it does not use
node b5 to get to b8. In other words, only a subset of all
possible paths is used in this example and the ones chosen are
not necessarily the shortest ones. The choice in these examples
was made in order to highlight the features of the control laws,
specially robustness with respect to link failures.

PSfrag replacements
Optimum

Utility Function

time – s
Call examples (Mbps)

Type 2
Type 3
Type 5

6
5

4
3

2
1
0

−1
−2
−3
−4
−5
−6

0
60

120
180
240
0.5
1.5

10Mbps 10Mbps

10Mbps

10Mbps10Mbps

10Mbps

1.5Mbps

1.5Mbps 1.2Mbps 2.8Mbps

1.5Mbps

1.5Mbps

3Mbps1.5Mbps

1.5Mbps

1.5Mbps 2.5Mbps

2ms
2ms

2ms

2ms2ms

2ms

10ms

7.2ms 6.5ms 2.3ms

23ms

2.5ms

1.5ms8.2ms

9.2ms

13.1ms 3.4ms

e1
e2

e3

e4e5

e6

b1 b2

b3

b4b5

b6 b7 b8

S1

S2

S3

S4

S5

S6

S7

S8

D1

D2

D3D4

D5

D6

D7

D8

Fig. 3. Topology of the network

The objective throughout these simulations is to maximize
the utility function U(x) given by

U(x) =
8

∑
i=1

fi(xi),

where
fi(xi) = log(xi +0.5) i = 1, . . . ,8,

shown to provide proportional fairness; e.g., see [5].
The following choice for the oscillation reducing func-

tion was found to provide a good tradeoff between speed
of convergence and oscillation reduction: ω(t) : [0,15] →
[0.625,0.1316], where

ω(t) = 0.5(0.25+0.75t).

The idea behind this choice is to avoid large discontinuities
at the resetting instants, since they produce undesired spikes.
On the other hand, the separation of these instants determines
how fast a response to changing networks conditions will be
obtained and also affects the speed of convergence.

Call types i = 3 and i = 5 were assumed to be of the
AF class with target rates Λ3 = 1Mbps and Λ5 = 1.15Mbps
respectively, while all the other types of calls are assumed to
belong to BE traffic. A particular version of the AF adaptation
law was utilized: the data rates x3 and x5 were held constant at
the desired Λi value; this is equivalent to taking β3 = β5 → ∞.
Finally, the step size was chosen as td = 5ms and in order
to test the robustness to events such as link failures, the link
connecting nodes b7 and b8 was opened at time t = 120s.

C. Data Rate Adaptation

For this example, the adaptation laws in Section IV were
implemented. The values of the parameters not specified above
were chosen to satisfy Theorem 1 as α = 6 and β out

i = β in
i,b =

β out
i,b,l = 4. Finally, recall that routing is performed as stated

in Table I so that comparison with percentage adaptation is
meaningful.

MOVSICHOFF et al. DECENTRALIZED OPTIMAL TRAFFIC ENGINEERING IN CONNECTIONLESS NETWORKS 9

PSfrag replacements

OptimumOptimum
Utility Function

time – s

Call examples (Mbps)

Type 2

Type 3

Type 5

6

5

4

3

2

2

1

0

0

−1

−2

−3

−4
−5

−6

0

0

60

60

120

120

180

180

240

240

0.5

1.5

time – s

Fig. 4. Data rate adaptation

PSfrag replacements

Optimum
Optimum

Utility Function

time – s

Call examples (Mbps)

Type 2

Type 3

Type 5

6

5

4

3

2

2

1

0

0

−1

−2
−3

−4−5−6

0

0

60

60

120

120

180

180

240

240

0.5

1.5

Fig. 5. Data rate adaptation without oscillation reduction

Figure 4 shows the obtained utility function together with
a representative data rate trajectory for BE calls of type i = 2,
and the AF calls types i = 3 and i = 5. It can be seen that the
utility function converges in average to a value close to the
optimal one. Furthermore, it exhibits milder oscillations when
compared to the case of no oscillation reduction; i.e., constant
z(·) (shown in Fig. 5). Note also, that convergence is somewhat
faster without oscillation reduction. A more thorough empiri-
cal study of this behavior can be found in [8]. Although the
control laws used there differ from those presented in this
paper, the general observed behavior is similar.

Finally, it can be seen that these control laws excel at the
task of dealing with link failures. Indeed, upon failure of the
link connecting nodes b7 and b8 at time t = 120, the network
rapidly reacts by appropriately re-routing traffic away from the
failure and in this way steering the network towards its new
optimal point of operation.

D. Percentage Adaptation

Now, the control laws in Section V are considered, where
the adaptation is performed on the percentage of traffic to
be carried by each link. The parameters of the adaptation
laws were chosen as α = 4 and β out

i = β in
i,b = β out

i,b,l = 6, also
satisfying the conditions set forth in Theorem 1.

PSfrag replacements

Optimum
Optimum

Utility Function

time – s

Call examples (Mbps)

Type 2

Type 3

Type 5

6

5

4

3

2

2

1

0

0

−1

−2
−3

−4−5−6

0

0

60

60

120

120

180

180

240

240

0.5

1.5

Fig. 6. Percentage Adaptation

It can be observed in Fig. 6 that although not optimal,
the network achieves an utilization close to the optimal one.
Moreover, the utility function is barely distinguishable from
that of data rate adaptation (Fig. 4), which in the ideal case
is known to be optimal. This is the case even after the link
connecting nodes b7 and b8 fails, where convergence to a value
close to the new optimum is obtained.

Overall, the behavior of these adaptation laws is comparable
to that of the discrete-time version of the laws in Section IV,
although much less information is used.

E. On The Choice of Parameters

To conclude these examples, some remarks on the choice
of the “free” parameters of the control laws are presented.

The only requirement for the values of α , β in, and β out

is that they satisfy the conditions set forth in Theorem 1.
However, increasing the value of these parameters introduces
undesired oscillation in the data rates. Hence, a small value for
these parameters is preferable. Also, our simulations showed
that, for the percentage adaptation laws, a value of β in and β out

greater than α helps in the satisfaction of the AF constraints.
The overall behavior of the data rate trajectories for the

control laws presented in this paper is very similar to the ones
in [8], where a thorough empirical analysis of the effect of the
parameters on the behavior of this type of adaptation laws is
presented. The reader is referred to it for more details.

VIII. CONCLUSION

In this paper, a “large” family of adaptation laws for optimal
rate adaptation and load sharing in a connectionless network
was presented. Although these laws achieve optimal network
utilization, the computational burden could be high. Therefore,
additional empirical laws were presented to cope with this
problem. Simulations show that their behavior mimics the
optimal and optimality is proven for the case where all data
rates are strictly positive.

The results presented in this paper are just a first step in the
implementation of a completely decentralized mechanism for
traffic engineering. There are several issues that need further
study. In particular, effort should be put in the development

10 SUBMITTED TO THE IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, NOV. 2003 – MAY 2004

of procedures for “optimal” design of the parameters of the
control laws provided in this paper.

APPENDIX I
PROOF OF THEOREM 1

In this Appendix, the main steps of the proof of Theorem 1
are presented. The proof closely follows the one in [13]. Note
that, given the form of the constraints, the adaptation laws
presented in Section IV can be represented in the following
form

Ẋ = Z(t,X)
[
∇U(X)−H(X)v(X)

]
,

where ∇U(·) denotes the gradient of the function U(·), H(·)
is the following matrix

H(·) .
= ∇h(·) .

=
[
∇h1(·) ∇h2(·) · · · ∇hL(·)

]
,

Z(t,X) is a positive definite matrix with the individual z
functions in the diagonal, hi are the constraints of the op-
timization problem, L is the number of such constraints and
v(·) =

[
v1(·),v2(·), . . . ,vL(·)

]T is a L-dimensional vector. Also,
define the modified utility function as

Û(X)
.
= U(X)−Ξ(X),

where
Ξ(X)

.
=
[
h1(X),h2(X), . . . ,hL(X)

]
v(X).

Lemma 4: The function Û(X) does not decrease along the
trajectories.

Proof: If during the motion of the system, a sliding mode
does not occur

dÛ
dt

=
[
∇U −H(X)v(X)

]T Ẋ

=
[
∇U −H(X)v(X)

]T Z(t,X)
[
∇U −H(X)v(X)

]
≥ 0,

since the matrix Z(t,X) is positive definite.
Now, assume that a sliding mode occurs in the intersection

of some surfaces hk(X); i.e., hk(X) = 0, k ∈I . Let H1(X) be
the matrix whose columns consist on ∇hk(X) for k ∈ I (in
the same order as in H(X)). Furthermore, let H2(X) be the
matrix whose columns are ∇hk(X) for k /∈ I (again in the
same order as in H(X)) and partition vector v into v1 and v2
accordingly. Then, it holds that

dH1

dt
= HT

1 Ẋ = 0.

Solving this equation for v1 the following equivalent control
is obtained

v1,eq =
(

H1
T ZH1

)−1(
H1

T Z∇U −H1
T ZH2v2

)

and the sliding motion satisfies the following differential
equation

ẋ =
√

ZP
√

Z
(
∇U −H2v2

)
,

where P is the projection matrix

P .
= I −

√
ZH1

(
H1

T
√

Z
√

ZH1

)−1
H1

T
√

Z.

Hence,

dÛ
dt

=
(
∇U −H2v2

)T√ZP
√

Z
(
∇U −H2v2

)

=
∥∥∥P

√
Z(∇U −H2v2)

∥∥∥
2
≥ 0.

Therefore, Û(X) does not decrease along the trajectories.
Lemma 5: The time derivative of Û(t) is zero only when

Ẋ = 0.
Proof: If a sliding mode does not occur it holds that

dÛ
dt

=
[
∇U −Hv

]T Z
[
∇U −Hv

]

and since Z is positive definite

dÛ
dt

= 0 ⇔ ∇U −Hv = 0 ⇔ Z
[
∇U −Hv

]
= 0 ⇔ Ẋ = 0.

Now, assume that a sliding mode occurs in the intersection
of the surfaces hk(X) = 0, for k ∈ I . In this case,

dÛ
dt

=
∥∥∥P

√
Z
(
∇U −H2v2

)∥∥∥
2
= 0 ⇔ P

√
Z
(
∇U −H2v2

)
= 0

⇔
√

ZP
√

Z
(
∇U −H2v2

)
= 0 ⇔ Ẋ = 0.

Therefore, dÛ
/

dt = 0 if and only if Ẋ = 0.
Theorem 6 (Utkin,1992 [13]): The maximum of Û coin-

cides with the maximum of U ; i.e., U(X∗) if and only if

∇U(X∗) = Hveq

at least in one point X∗ and veq belongs to the convex hull of
all vectors v.

Lemma 7: The set of stationary points of Û coincide with
the set of maximum points of Û .

Proof: Let X0 be stationary point of Û . Then,

Û(X0)

dt
= 0 ⇔ Ẋ|X0 = 0 ⇔ ∇U(X0)−H(X0)v(X0) = 0

⇔ X0 is a KKT point ⇔ X0 = argmaxU = argmaxÛ

Proof of Theorem 1

Given the conditions on α , βi and β and the fact that the
functions fi are increasing concave functions, it holds that at
the solution of the optimization problem the KKT conditions
are satisfied; i.e.,

∇U(X∗)−Hveq = 0

and veq belongs to the convex hull of all possible values
of vector v, so that Theorem 6 applies. Then, according to
[13](Theorem 2, page 231) the control laws in Section IV
converge to the maximum of the utility function U(X).

MOVSICHOFF et al. DECENTRALIZED OPTIMAL TRAFFIC ENGINEERING IN CONNECTIONLESS NETWORKS 11

APPENDIX II
SKETCH OF THE PROOF OF PROPOSITION 2

Let pi,b,l be defined as

pi,b,l(t) =
x out

i,b,l(t)

∑
l̃∈Lb,i

x out
i,b,l̃

(t)
l ∈ Lb,i

Straightforward computation of the time derivative of
pi,b,l(t,xout

)
yields

d pi,b,l(t)
dt

=

ẋ out
i,b,l(t) ∑

l̃∈Lb,i; l̃ 6=l

pi,b,l̃(t) − pi,b,l(t) ∑
l̃∈Lb,i; l̃ 6=l

ẋ out
i,b,l̃(t)

∑
l∈Lb,i

x out
i,b,l(t)

,

where the derivatives ẋ out
i,b,l̃

is computed according to the
optimal control laws given in Section IV. Now, if all data
rates are strictly positive, the following positive multiplication
factor can be introduced

zi,b
(
t,cgl(t),r

in
i,b(t),r

out
i (t)

)
∑

l∈Lb,i

x out
i,b,l(t).

This factor has as only effect to change the adaptation speed
but it does not affect the steady state behavior of these laws,
since it is strictly positive.

Proceeding in this way and dropping function arguments
for notational convenience, the proposed percentage adaptation
laws are obtained

ṗi,b,l = zi,b

(
ẋ out

i,b,l ∑
l̃∈Lb,i; l̃ 6=l

pi,b,l̃ − pi,b,l ∑
l̃∈Lb,i; l̃ 6=l

ẋ out
i,b,l̃

)
.

Therefore, these laws are equivalent to the convergent data
rate adaptation laws, for the case of strictly positive data rates
and thus they also converge to the optimal data rate of the
optimization problem at hand.

REFERENCES

[1] H. Che, “Encoded range matching for a TCAM coprocessor.”
[Online]. Available: http://crystal.uta.edu/∼hche/PUBLICATIONS/
publication.htm

[2] V. V. Filippov, Basic Topological Structures of Ordinary Differential
Equations, ser. Mathematics and Its Applications. Dordrecht, The
Netherlands: Kluwer Academic Publishers, 1998, vol. 432.

[3] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing
OSPF weights,” in Proc. IEEE INFOCOM’2000, vol. 2, Tel Aviv, Israel,
Mar. 2000, pp. 519–528.

[4] C. Hoops, “Analysis of an equal-cost multi-path algorithm,” IETF RFC
2992, Nov. 2000.

[5] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate control in commu-
nication networks: Shadow prices, proportional fairness and stability,”
J. Oper. Res. Soc., vol. 49, no. 3, pp. 237–252, Mar. 1998.

[6] R. J. La and V. Anantharam, “Charge-sensitive TCP and rate control in
the Internet,” in Proc. IEEE INFOCOM’2000, vol. 3, Tel Aviv, Israel,
Mar. 2000, pp. 1166–1175.

[7] C. M. Lagoa and H. Che, “Decentralized optimal traffic engineering in
the Internet,” SIGCOMM Comput. Commun. Rev., Oct. 2000.

[8] C. M. Lagoa, H. Che, and B. A. Movsichoff, “Adaptive control
algorithms for decentralized optimal traffic engineering in the Internet,”
2004, to appear in IEEE/ACM Trans. Networking. [Online]. Available:
http://eeilserv.ee.psu.edu/lagoa/papers/lcm2004.pdf

[9] B. A. Movsichoff, C. M. Lagoa, and H. Che, “A sliding mode approach
to traffic engineering in computer networks,” in Advances in Communi-
cation Control Networks, ser. Lecture Notes in Control and Information
Sciences (LCNCIS), C. T. Abdallah, J. N. Chiasson, and S. Tarbouriech,
Eds. Springer-Verlag, 2004, to be published.

[10] G. Schollmeier, J. Charzinsky, A. Kirstadter, C. Reichert, K. J. Schrodi,
Y. Glickman, and C. Winkler, “Improving the resilience in IP networks,”
in Proc. IEEE Workshop on High Performance Swithching and Routing,
Jun. 2003, pp. 91–96.

[11] A. Sridharam, R. Guérin, and C. Diot, “Achieving near optimal traffic
engineering solutions for current OSPF/IS-IS networks,” in Proc. IEEE
INFOCOM’2003, vol. 2, San Francisco, CA, USA, Mar./Apr. 2003, pp.
1167–1177.

[12] D. G. Thaler and C. V. Ravishankar, “Using name-based mappings to
increase hit rates,” IEEE/ACM Trans. Networking, vol. 6, pp. 1–14, Feb.
1998.

[13] V. I. Utkin, Sliding Modes in Control and Optimization, ser. Communi-
cations and Control Engineering Series. Berlin, Heidelberg: Spriger-
Verlag, 1992, vol. 66, no. 1.

[14] Y. Wang, Z. Wang, and L. Zhang, “Internet traffic engineering without
full mesh overlaying,” in Proc. IEEE INFOCOM’2001, vol. 1, Anchor-
age, AK, USA, Apr. 2001, pp. 565–571.

[15] Z. Wang, H. Che, M. Kumar, and S. Das, “CoPTUA: Consistent
TCAM policy table update with zero impact on data path
processing,” IEEE Trans. Comput., conditionally accepted with
minor revisions. [Online]. Available: http://crystal.uta.edu/∼hche/
PUBLICATIONS/publication.htm

PLACE
PHOTO
HERE

Bernardo A. Movsichoff (SM ’04) obtained his In-
geniero Electrónico degree from the Universidad de
Buenos Aires, Argentina in December 1996. Since
Fall 1999 he is at The Pennsylvania State University,
where he is a Research Assistant working towards a
Ph.D. degree in Electrical Engineering. His research
interests include control and identification of uncer-
tain systems and the application of control theory
and optimization to computer networks.

PLACE
PHOTO
HERE

Constantino M. Lagoa (M ’98) got his B.S. and
M.Sc. degrees from the Instituto Superior Técnico,
Technical University of Lisbon, Portugal in 1991
and 1994 respectively and his Ph.D. degree from
the University of Wisconsin at Madison in 1998.
He joined the Electrical Engineering Department of
The Pennsylvania State University in August 1998,
where he currently holds the position of Associate
Professor. He has a wide range of research interests
including robust control, controller design under risk
specifications, control of computer networks and

discrete event dynamical systems. In 2000 he received the NSF CAREER
award for his proposal on system design under risk constraints.

PLACE
PHOTO
HERE

Hao Che received the B.S. degree from Nanjing
University, Nanjing, China, the M.S. degree in
physics from the University of Texas at Arlington,
TX, in 1994, and Ph.D. degree in electrical engineer-
ing from the University of Texas at Austin, TX, in
1998. He was an Assistant Professor of Electrical
Engineering at the Pennsylvania State University,
University Park, PA, from 1998 to 2001, and a
System Architect with Santera Systems, Inc., Plano,
TX, from 2000 to 2002. Since September 2002, he
has been an Assistant Professor of Computer Science

and Engineering at the University of Texas at Arlington, TX. His current
research interests include network architecture and design, network resource
management, multiservice switching architecture, and network processor
design.

