
0-7803-7016-3/01/$10.00 ©2001 IEEE

Analysis and Design of Hierarchical Web Caching
Systems

Hao Che, Zhijung Wang, and Ye Tung
Department of Electrical Engineering

Pennsylvania State University
State College, PA 16802

Abstract—This paper aims at finding fundamental design
principles for hierarchical web caching. An analytical mod-
eling technique is developed to characterize an uncooper-
ative two-level hierarchical caching system where the least
recently used (LRU) algorithm is locally run at each cache.
With this modeling technique, we are able to identify a char-
acteristic time for each cache, which plays a fundamental
role in understanding the caching processes. In particular,
a cache can be viewed roughly as a lowpass filter with its
cutoff frequency equal to the inverse of the characteristic
time. Documents with access frequencies lower than this
cutoff frequency will have good chances to pass through the
cache without cache hits. This viewpoint enables us to take
any branch of the cache tree as a tandem of lowpass filters
at different cutoff frequencies, which further results in the
finding of two fundamental design principles. Finally, to
demonstrate how to use the principles to guide the caching
algorithm design, we propose a cooperative hierarchical web
caching architecture based on these principles. The simula-
tion study shows that the proposed cooperative architecture
results in 50% saving of the cache resource compared with
the traditional uncooperative hierarchical caching architec-
ture.

Keywords—Web caching, Hierarchical caching, Cache re-
placement algorithm

I. Introduction

One of the important means to improve the perfor-
mance of web service is to employ caching mechanisms. By
caching web documents at proxy servers or servers close to
end users, user requests can be fulfilled by fetching the re-
quested document from a nearby web cache, instead of the
original server, reducing the request response time, network
bandwidth consumption, as well as server load. However, a
cache miss causes long response time and extra processing
overhead. Hence, a careful design of cache replacement al-
gorithms which achieve high cache hit ratio is crucial for the
success of caching mechanisms. In this paper, we explore
the fundamental design principles associated with the cache
replacement algorithm design when caches are arranged in
a hierarchical structure.

Web caches need to be arranged intrinsically in a hier-
archical structure due to the hierarchical nature of the In-
ternet. An example is the four level cache hierarchy which
matches with the hierarchical structure of the Internet [8],
i.e., bottom, institutional, regional, and backbone. One
of the key design issues for web caching is concerned with
cache replacement algorithm design. Hence, it is of funda-
mental importance to explore the design principles of cache
replacement algorithms for hierarchical caching.

Most of the research papers on cache replacement algo-
rithm design, to date, have focused on a single cache, e.g.,
[5], [9], [2], [7], [13]. However, when caches are arranged in
a hierarchical structure, running a cache replacement algo-
rithm which is optimized for an isolated cache may not lead
to overall good performance. Although results on the opti-
mal hierarchical caching exists, e.g., [10], they are obtained
based on the assumption that global caching information is
known to every cache in the cache hierarchy, which is gener-
ally unavailable in practice. Moreover, most of the research
papers heavily rely on the empirical performance compar-
isons for various cache replacement algorithms, such as the
least recently used (LRU) algorithm, the least frequently
used (LFU) algorithm, and the SIZE. Very little research
effort has been made on the study of fundamental design
principles. For example, the LFU algorithm based on a
measurement time window for collecting the document ac-
cess frequencies was proposed to reduce the table size for
keeping document access frequencies. However, to the best
of our knowledge, no design principles have ever been given
as to how to properly select the time window size.

This paper aims at finding fundamental design princi-
ples in the context of hierarchical caching algorithm de-
sign. Some of the results of this study are also applicable
to other caching architectures, such as distributed and hy-
brid caching architectures [11], [4].

There are three major contributions of this paper. First,
unlike the previous analytic work on web caching which
is based on statistic analysis, e.g. [1], [2], this paper pro-
poses a stochastic model, which allows us to characterize
the caching processes for individual documents in a two-
level hierarchical caching system. In this model, the LRU
algorithm runs at individual caches in an uncooperative
manner. A mean field approximation is employed to solve
the problem and the results are found to accurately match
with the exact results within 2% error. The modeling tech-
nique enables us to study the caching performance for indi-
vidual document requests under arbitrary access frequency
distribution.The second contribution of this paper is the
identification of a characteristic time associated with each
cache and the finding of two design principles for hierarchi-
cal caching. The third contribution is the application of the
design principles to the design of a cooperative hierarchical
caching architecture. The proposed architecture is found
to provide about 50% cache resource saving compared with
the traditional uncooperative hierarchical caching architec-

1416 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

C1

C0

CMCk.

.

k1λ
kiλ kNλ

k1λ λ k2 kNλ. ..{ }

Server

Server
Server

INTERNET

Level 1

0 0 0

Users

Level 2

Fig. 1. Two level hierarchical web caching structure

ture.
The remainder of this paper is organized as follows. In

Section 2, the model is described and analytical results
derived. In Section 3, the performance results are presented
and the design principles proposed. Based on the principles
proposed in Section 3, Section 4 introduces a cooperative
hierarchical caching architecture and the performance of
the proposed architecture is compared with the traditional
uncooperative one by simulation. Finally, conclusions and
future work are given in Section 5.

II. A Hierarchical Web Caching Model

The traditional hierarchical web caching is to build web
caches into a tree structure with the leaf nodes correspond-
ing to the lowest caches closest to the end users and the
root nodes the highest caches. User requests travel from a
given leaf node towards the root node, until the requested
document is found. If the requested document cannot be
found even at the root level, the request is redirected to
the web server containing the document. The requested
document is then sent back via the reversed path, leav-
ing a copy of the requested document in each intermedi-
ate cache it traverses. The hierarchical caching is called
uncooperative hierarchical caching if caching decisions are
made locally at each cache throughout the cache hierarchy.
In the following subsections, we propose a modeling tech-
nique to characterize the caching processes for a traditional
uncooperative hierarchical caching architecture.

A. Model Description and Notations: Consider a
two-level web cache hierarchy with a single cache of size C0

at the root level and M caches of sizes Ck (k = 1, 2, ...,M)
at the leaf level. The network architecture of our model is
presented in Fig. 1. We study uncooperative caching with
the LRU algorithm locally running for any caches in the
cache hierarchy.The following three assumptions are made:
1. The aggregate request arrival process at leaf cache k
(k = 1, 2, ...,M) is Poisson with mean arrival rate λk.
2. The arrivals of the request for individual document i
(i = 1, 2, ..., N) at cache k is independently sampled from

the aggregate arrival process based on the probability set
{pki}, where pki is the access probability for document i at

cache k and
∑N

i=1 pki = 1. Here N is the document sample
space size.
3. All the documents have the same size.
Assumption 1 and 2 implies that the request arrival process
for document i (i = 1, 2, ..., N) is Poisson with mean arrival
rate λki [15], where

λki = pkiλk. (1)

Assumption 3 is a pretty strong one but it will not af-
fect the correctness of the qualitative results, as we shall
explain later. With this assumption, cache sizes Ci (i =
0, 1, 2, ...,M) are measured in the unit of document size.
Since Zipf-like distribution has been widely tested

against the distributions collected from the real traces, e.g.
[9], [2], [6], we model pki by Zipf-like distributions,

pki = Kk
1

Rk(i)zk
, for k = 1, ...,M , and i = 1, ..., N, (2)

where Kk is the normalization factor, Rk(i) is the popular-
ity rank of document i at cache k, and zk is a parameter
taking values in [0.6, 1].
Cache miss ratios are widely used as performance mea-

sures of cache replacement algorithms. Let the average ar-
rival rate of document i from leaf cache k (k = 1, 2, ...,M)
to the root cache be λ0ki and the average miss rate of doc-
ument i at the root cache be λ0i, as shown in Fig. 1. Note
that λ0ki is simply the average cache miss rate of document
i at cache k. Then the following cache miss ratios can be
defined in terms of λki, λ

0
ki and λ0i as,

ηki =
λ0
ki

λki
,

ηi =
λ0
iP

M
k=1 λki

,

η0k =
PN

i=1 λ0
kiP

N
i=1 λki

,

η =
PN

i=1 λ0iP
M
k=1

P
N
i=1 λki

,

(3)

where ηki is the cache miss ratio of document i at cache
k, ηi is the cache miss ratio of document i for the whole
hierarchical caching system, η0k is the total cache miss ratio
at cache k, and η is the total cache miss ratio for the whole
hierarchical caching system. As we shall see that λ0ki and
λ0i themselves are, in fact, more insightful performance
measures than the cache miss ratios defined above.

B. Model Analysis: Now, the focal point is to de-
rive λ0ki and λ0i, or equivalently, the average miss intervals

Tki = λ0ki
−1

and T0i = λ−1
0i for document i (i = 1, 2, ..., N)

at leaf cache k and the root cache, respectively.
Calculation of Tki: To find Tki for document i, one notes
that the inter-arrival time between two successive cache
misses for document i at cache k is composed of a sequence
of i.i.d. (i.e., independent identically distributed) random

1417 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

variables {t1, t2, ..., tn−1} plus an independent random vari-
able tn. Each epoch ti (i = 1, 2, ..., n− 1) corresponds to a
period between two successive cache hit of document i. The
last epoch tn is the time interval between the last cache hit
and the next cache miss. The process is shown in Fig. 2.
Let’s take a look at the first epoch t1. The cache miss at
the beginning of the epoch results in the caching of the re-
quested document to the head of the LRU list. Here we ne-
glect the delay between cache miss and document caching.
As time goes, the cached document moves towards the tail
of the list until there is a hit of the document at the end of
the epoch, when the document is moved back to the head
of the list. The movement of the document towards the
tail is due to the caching or hits of other documents, which
according to the LRU algorithm, will cause the caching or
moving of those documents to the head of the list.

Let’s first calculate the distribution density function
f0
ki(t) for the cache miss interval t at leaf cache k or the
request interval of document i from cache k to the root
cache. We have

t =
n−1∑
i=1

ti + tn. (4)

The exact distribution of an epoch ti can be formally writ-
ten in terms of the distributions of the constituent Poisson
processes for individual document requests. However, the
computation complexity is extremely high even when Ck

and N are moderately small. In what follows, we propose
a “mean field” approximation to make the problem track-
able.

Mean field approximations were successfully employed
in solving many-object problems in complex systems such
as many-body systems in statistical physics [12] and loss
networks [14]. The basic idea is to take the interaction of all
other objects with the designated object as a mean field and
the designated object interacts with this field instead of the
other objects. The mean field approximation approaches
exact solution asymptotically as the number of objects goes
to infinity.

In applying the mean field approximation concept to the
problem at hand, the idea is to summarize the effect of the
other N − 1 constituent Poisson processes as a mean field
τki acting upon the designated document request i. Here
τki is defined as the maximum inter-arrival time between
two adjacent requests for document i without a cache miss
as shown in Fig. 2. In essence, τki is a random variable.
However, in our mean field approximation, τki is assumed
to be a constant. Our simulation studies showed that the
variance of τki is very small even for small N , say, N =
10, 000 and τki is very insensitive to i. With the mean field
approximation, the problem is greatly simplified because
the interaction between the caching process of document i
and all other processes is mediated by τki only through the
conditions: tj ≤ τki (j = 1, 2, ..., n − 1) and tn > τki. τki

t1 t2 tn-1 tn
τki

.
.

.

. . .

.

tail of cache

head of cache

.

t

 cache miss
 cache hit

Fig. 2. Arrival processes of a given document at both level caches

can be easily calculated by solving the following equation:

N∑
j=1,j �=i

Pkj(t < τki) = Ck (5)

where Pki(t < τ) is the cumulative distribution of the re-
quest interarrival time for document i at leaf cache k. This
equation simply states that within τki time units since the
last cache hit of document i, there are exactly Ck distinct
documents being hit or cached, given that there is no more
request for document i during this period of time. Since
the cache hit time for document i can occur at anytime, (5)
does not hold in general except for the current case where
the individual processes are Poisson processes. A general
expression is given in (16).
Now, f0

ki(t) can be formally expressed as follows,

f0
ki(t) =

∞∑
n=1

fki(t|n)Pki(t < τki)
n−1(1− Pki(t < τki)),

(6)

where

Pki(t < τki) = 1− e−λkiτki . (7)

Next, take the Laplace transform of f0
ki(t). We have (See

Appendix A),

φki(s) =
λkie

(−s−λki)τki

λkie(−s−λki)τki + s
(8)

Then, Tki is readily obtained as,

Tki = −dφki(s)

ds
|s=0 = λ−1

ki e
λkiτki (9)

and

λ0ki = T−1
ki = λkie

−λkiτki (10)

Calculation of T0i: With the mean field approximation,
one takes away the complex correlation among the request
arrival processes for different documents to the root cache.
This makes the calculation of T0i possible. The key is to:
(1) construct the distribution function f0

ki(t) or the corre-
sponding cumulative distribution function P 0

ki(t < τ); (2)
construct the aggregate cumulative distribution function

1418 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

P0i(t < τ) for the interarrival time of document i to the
root cache; (3) again, apply the mean field approximation
to obtain T0i.
To construct f0

ki(t), one needs to find the inverse trans-
form of φki(s) in (8). However, there is no compact solution
for f0

ki(t). In Appendix B, we derived an exact solution
with infinitely many terms as follows,

f0
ki(t) =

∞∑
n=1

(−1)n+1λ−1
ki

(t− nτki)
n−1

(n− 1)!
u(t− nτki) (11)

where u(t) is a step function with u(t) = 0 when t < 0
and u(t) = 1, otherwise. Note that f0

ki(t) = 0 when t <
τki, a consequence of the mean field approximation. With
alternate sign changes between any two successive terms
and with factorial decaying factors, this series converges
very fast. One also note that due to the step function
in each term, for any finite t, f0

ki(t) is exactly described
by finitely many terms. Despite all these nice features of
the above expression, we still find it cumbersome when
explicit expressions for T0i is to be sought. Hence, instead
of using (11), we use the following approximate expression
for further development,

f0
ki(t) ≈

{
σ0
kie

−σ0
ki(t−τki) τki < t <∞

0 t < τki
(12)

This is a truncated exponential distribution with

σki =
1

λ−1
ki − τki

. (13)

Here σki is chosen in such a way that Tki derived from (12)
gives the exact result in (9). Numerical studies showed
(not presented in this paper) that the expression in (12)
closely matches with the exact solution in (11). From (12),
we have,

P 0
ki(t < τ) ≈

{
1− e−σ0

ki(τ−τki) τki < τ <∞
0 τ < τki

(14)

From Theorem 10.4.5 in [16], it is easy to show that, in
general,

P0i(t < τ) = 1−
∑N

i=1 λ
0
ki

−1 ∑M
k=1 λ

0
ki

(1− P 0
ki(t < τ))

∏M
k=1,k �=k′∫∞

τ λk′i(1− P 0
k′i(t < x))dx

(15)

In parallel to the mean field approximation at the leaf
cache, the mean field approximation is also employed at
the root cache. Define τ0i as the maximum inter-arrival
time of the two adjacent requests for document i at the
root cache without a cache miss. The average τ0i can be
solved from (again, applying Theorem 10.4.5 in [16]),

N∑
i=1,i�=j

Fi(t < τ0j) = C0 (16)

where

Fi(t < τ0j) = 1− (
M∑
k=1

λ0ki)
−1

∫ τ0j

0

(1− P0i(t < τ))dτ.

(17)

Finally, with reference to Fig. 2, one can calculate T0i

as,

T0i =
∑∞

n=0[(n− 1)t̄0i|t<τ0i + t̄0i|t>τ0i]
P0i(t < τ0i)

n−1(1− P0i(t < τ0i)),
(18)

or

T0i = t̄0i|t<τ0i

P0i(t < τ0i)

1− P0i(t < τ0i)
+ t̄0i|t>τ0i , (19)

t̄0i|t<τ0i (t̄0i|t>τ0i) is the average epoch duration provided
that the duration is smaller (larger) than τ0i.
The analytical expression for T0i in (19) can be derived

based on (15). However, due to the peculiar dependency of
P 0
ki(t < τ) with respect to τki in (14), the general expres-

sion is lengthy and cumbersome. In this paper, we consider
a special case. We assume that λk, Ck, and zk in (2) are the
same for all k (k = 1, 2, ...,M). Also assume that τki = τk,
i.e., τki is independent of i (a highly accurate approxima-
tion). Then τk = τ1 for k = 2, 3, ...,M . This is true simply
because τk is completely determined by λk, Ck, and zk.
Substituting (14) into (15), we then have,

P0i(t < τ) =




1−
∑M

k=1,k′=1 σkiλ
0−1
k′i∏M

k=1 λkiσ
−1
ki e

−σki(τ−τ1) for τ > τ1
1−

∑M
k=1,k′=1 λ

0
k′i(τ1 − τ + σ−1

ki)
−1∏M

k=1 λ
0
ki(τ1 − τ + σ−1

ki) for τ < τ1
(20)

With a straightforward but tedious calculation based on
(20), we arrived at the following expressions,

t̄0i|t<τ0i = τ1 − P0i(t < τ0i)
−1[τoi

+(
∑M

k=1 λ
0
ki)

−1 ∑M
k=1

∫ τ1
0 λki

∏M
k′=1,k′ �=k

(τ − τ1 − σ−1
ki)dτ +

∏M
k=1 λ

0
kiσ

−1
ki

(
∑M

k=1 λ
0
ki)

−1
(e−
PM

k=1 σki(τ0i−τ1) − 1)]

(21)

and

t̄0i|t>τ0i = τ0i − (1− P0i(t < τ0i))
−1∏M

k=1 λ
0
kiσ

−1
ki (

∑M
k=1 λ

0
ki)

−1

e−
PM

k=1 σki(τ0i−τ1)

(22)

T0i is obtained by substituting (21), (22), and (20) into
(19). This solution is tested against simulation results,
which shows that the solution is highly accurate with a
maximum error less than 2%.

III. Performance Analysis and Design
Principles

A. Performance Analysis: In this subsection, we
present the numerical results for the two-level hierarchi-
cal caching model proposed in the previous section. Un-
like most of the existing papers on web cache replacement

1419 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

0 200 400 600 800 1000 1200 1400 1600
0

0.002

0.004

0.006

0.008

0.01

Document Number (i)

M
is

s
R

at
io

0 200 400 600 800 1000 1200 1400 1600
0

0.005

0.01

0.015

Document Number (i)

M
is

s
R

at
io

(a)

(b)

1

2
3

4 5

1
2

3

4 5

Fig. 3. Cache miss ratios for individual documents– homogeneous
case. (a) zk = 1, (b) zk = 0.6. curve 1: cache miss ratio at leaf
level cache, curves 2,3,4,5: cache miss ratios at the root cache for
C0 = 800, 1200, 1600, 2000

which focus on the analysis of aggregate cache hit/miss per-
formance, our study focuses on the performance analysis
of cache hit/miss performance for individual documents.
This study is important because it provides much better
insight on how the cache replacement algorithm should be
designed to optimize the overall performance.

For all the case studies in this paper, we set M = 4,
N = 20, 000, λk = 2 and Ck = 200 for k = 1, 2, 3, 4.
We study two extreme cases of Zipf-like distributions, i.e.,
zk = 0.6 and 1 for k = 1, 2, 3, 4. We also consider both
homogeneous and inhomogeneous cases. Here homoge-
neous refers to pki = pk′i for ∀ k, k′ = 1, 2, 3, 4 and in-
homogeneous, otherwise. For the inhomogeneous case, the
document popularity rank Rk(i) is shifted by 300 docu-
ments from one leaf cache to another. In other words,
Rk(i) = [N + i − 300 ∗ (k − 1)]%N + 1, for k = 1, 2, 3, 4.
Now, we present the numerical results for the miss rates
λ0i =

∑4
k=1 λ

0
ik =

∑4
k=1 T

−1
ki and λ0i = T−1

0i at the two
level caches. Four cases of λ0i are studied corresponding
to C0 = 800, 1, 200, 1, 600, 2, 000, respectively. Given that
N = 20, 000, C0 = 2, 000 should be considered sufficiently
large.

We first focus on the homogeneous case. Fig. 3 presents
the miss rates at both level caches versus document number
or rank (up to 1600). Subplot (a) and (b) correspond to
zk = 1 and 0.6, respectively. In each subplot, curve 1
represents λ0i . Curves 2,3,4, and 5 correspond to λ0i for
C0 = 800, 1, 200, 1, 600, 2, 000, respectively. As expected,
the cache miss rates at both level caches in subplot (b)
are higher than that in subplot (a). Both subplots show
that increasing root cache size C0 helps to reduce the miss
rates for the first 1000 popular documents but it helps very
little to reduce the cache miss rates for the rest of the
documents. Also note that after certain size, say, 1,200,
further increasing C0 does not significantly improve cache
miss performance, especially for the case in subplot (b)
where unpopular documents constitute a large portion of

0 200 400 600 800 1000 1200 1400 1600
0

1

2

3

4
x 10

−3

Document Number

M
is

s
R

at
io

0 200 400 600 800 1000 1200 1400 1600
0

1

2

3

4

5
x 10

−3

Document Number

M
is

s
R

at
io

(a)

(b)

1

2
3

4 5

1
2

3

4 5

Fig. 4. Cache miss ratios for individual documents–inhomogeneous
case. (a) zk = 1, (b) zk = 0.6. curve 1: cache miss ratio at leaf
level cache, curves 2,3,4,5: cache miss ratios at the root cache for
C0 = 800, 1200, 1600, 2000

the overall misses.
Interesting enough, both subplots show that the curves

are peaked at documents of certain ranks and then the
curves drop exponentially. Besides, curves in subplot (b)
drop more sharply than that in subplot (a). To explain this
phenomena, we note that the analytical expression for the
aggregate miss rate at the leaf caches is available. From
(10), we have,

λ0i =
4∑

k=1

λ0ki = 4λ1ie
−λ1iτ1 . (23)

Here we have taken τki = τ1. (23) explains the exponential
behaviors for the cache miss rates at the leaf caches. Since
τ1 for z1 = 1 is larger than that for z1 = 0.6, it explains
why z1 = 0.6 has a faster exponential dropping rate. λ0i is
maximized when λ1i = τ1

−1 and it is equal to 4e−1τ1
−1.

Since τ1 = 151 and 102.6 at z1 = 1 and 0.6, respectively, it
is easy to verify that the peaks of λ0i in subplot (a) and (b)
do occur at these values. Temptated by this observation,
we further use e−1τ−1

0i to estimate the peak miss rates at
the root cache for curves 2,3,4, and 5. Amazingly, it turns
out that the calculated peak rates match with the actual
peak rates almost perfectly.
Next, we further examine the above phenomena for the

inhomogeneous case. Fig. 4 depicts the results for the in-
homogeneous case with the settings and the other param-
eters the same as the homogeneous one. In the inhomoge-
neous case, four miss rate peaks are identified due to the
shifted document popularities from one leaf cache to an-
other. Again, the miss rate at the root cache is almost
leveled at C0 = 2, 000 for both cases, indicating that there
will be little performance gain by further increasing C0.
Again, we use e−1τ−1

0i to estimate the peak miss rates at
the root cache and find they are within 15% differences
from the actual peak values in Fig 4.
The above studies indicate that there is a cutoff fre-

quency at e−1τ−1 ≈ 0.368τ−1, where τ is defined as the av-

1420 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

erage maximum document access interval without a cache
miss. Here we identify τ as a characteristic time for a
given cache and it is a function of the request processes,
the cache size, as well as the request pattern. The miss rate
or miss frequency λi of any given document i with respect
this cache will be very likely to be smaller than this cutoff
frequency. More conservatively, one can set the cutoff fre-
quency at τ−1, which guarantees that no document miss
frequency can exceed this cutoff frequency. In fact, only
document requests with constant interarrival time slightly
larger than τ will have a miss rate close to τ−1. To see why
τ−1 can be viewed as a cutoff frequency more clearly. We
calculate the miss ratio ηki in (3). From (10), we have,

ηki = e−λkiτk . (24)

One observes that the cache miss ratio for document i at
cache k quickly approaches 1 as λki falls below τ−1

k .

B. Design Principles: The performance analyses in the
previous subsection immediately lead to the following con-
clusions. A cache can be viewed conceptually as a low-
pass filter with a cutoff frequency upper bounded by τ−1,
where τ is the characteristic time for the cache. Requests
of a document with access frequency lower than τ−1 will
have good chances to pass through the cache, causing cache
misses. With respect to this cache, all the documents with
access frequencies much lower than τ−1, say, smaller than
e−1τ−1, are effectively one-time access documents and will
surely pass through the cache without a hit.
The above conceptual view is particularly helpful when

it is used to identify design principles for a hierarchical
cache structure. Consider a branch of an L-level hierarchi-
cal cache tree from a given leaf cache at level 1 to the root
cache at level L. Denote the characteristic time for the ith
level cache as τi (i = 1, 2, ..., L). Then if we view these
caches as a tandem of lowpass filters with cutoff frequen-
cies τ−1

i (i = 1, 2, ..., L), we can immediately identify two
design principles:
1. For higher level cache l to be effective with respect to a
lower level cache l′, we must have, τl > τl′ for l > l′, l, l′ =
1, 2, ..., L. Since τl is directly related to the cache size (see
(5) and (16)), these conditions can be readily used for cache
dimensioning.
2. Given the conditions in 1. hold, a document with ac-
cess frequency lower than e−1τ−1

L is effectively an one-time
access document with respect to the entire cache hierar-
chy. This document should not be cached in any caches
throughout the cache hierarchy.
The assertion in Principle 2 can be readily verified from
Fig. 3 and Fig. 4. Note that for all the case studies,
τ−1
0i > 0.001. One observes that the tail portions of the
cache miss curves at both cache levels converges together,
meaning that the requests corresponding to the tail por-
tions pass through the cache hierarchy without a hit. They
are effectively one-time access documents with access fre-
quencies smaller than 0.001.
Here a comment is in order. Although the above prin-

ciples are drawn from the analytical results under the as-
sumption that document sizes are the same, the principles

generally hold when document sizes are different. This is
because the principles are derived from the concept of a
characteristic time which exists regardless of whether doc-
uments have the same size or not.

IV. A Cooperative Hierarchical Caching
Architecture

To demonstrate the power of the design principles ob-
tained in the previous section, we propose in this subsec-
tion a cooperative hierarchical caching architecture based
on these design principles.

A. Architecture Overview: Our cooperative hierar-
chical caching architecture can be described as follows:
Like the traditional uncooperative hierarchical caching ar-
chitecture, such as Harvest [3], the LRU algorithm is used
locally at individual caches throughout the cache hierarchy
and a request is search upward starting from the lowest
level cache.
However, our architecture involves two major changes

to the traditional architecture. First, in our architecture, a
cache hit of document i at level l (l = 2, 3, ..., L, L+1. Here
L+1 refers to the original server) does not result in docu-
ment caching in all the lower level caches along the request
path. Instead, the document will be cached only in level m
cache if m < l, where τ−1

m < λki < τ−1
m−1. Here λki is the

access frequency for document i at the leaf cache k. This
is based on the observation that document i has a good
chance to pass through all the caches at levels lower than
m. Caching document i in those caches is largely a waste
of cache resources. This change to the traditional architec-
ture ensures that when the access frequency of document i
increases, it will have better chance to be found in a cache
closer to the user (i.e., m instead of l). However, it does
not take care of the situation when the access frequency
of document i decreases. The second change takes care of
this situation.
The second change to the traditional architecture is the

following. A replaced document from level m cache is fur-
ther cached at its upper level cache (i.e., level m+1 cache)
if the document is not in that cache. Otherwise the doc-
ument is considered to be the most recently used and is
moved to the head of the list in level m + 1th cache. In
this way, a document cached at level m cache will have
an effective minimum life-time equal to

∑L
k=m τk. This en-

sures that subsequent accesses of the document which incur
misses at level m will still have good chance to have cache
hits at higher level caches, although with possibly longer
response time.
Note that the proposed architecture requires that leaf

cache k estimates λki (i = 1, 2, ..., N) and each level cache
estimates its own characteristic time. Also note that the
proposed architecture is cooperative in the sense that es-
timation of λki requires the knowledge of the characteris-
tic time of the root level cache, as we shall see shortly.
A final note is that caching based on the measured τl
(l = 1, 2, ..., L) lends us a natural adaptive caching mech-
anism which takes into account of the cache size, request

1421 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

arrival rate, as well as request pattern. In the following
subsection, a measurement scheme is proposed to enable
the estimate of τl and λki.

B. Measurement Schemes: Characteristic Time:
In our architecture, the characteristic time τl at any cache
l in the cache hierarchy needs to be measured periodically.
This can be easily done by inserting a timestamp in each
cached document and the timestamp is updated to the cur-
rent time whenever the document receives a hit. The in-
stantaneous τl value can then be obtained whenever a doc-
ument is being replaced, simply by taking the difference
between the time of replacement and the timestamp of the
document.
Note that the computation complexity for updating a

timestamp is much lower than the computation complexity
for the matching of the request with the cached document
and for the shuffling of the document who gets a hit to the
head of the list (this involves the exchange of six pointers).
When the request process is quite stationary, computation
complexity can be reduced by updating τl at relatively large
time intervals, say, every 5 minutes. Adaptive algorithms
can also be designed to fine tune the measurement intervals.
For our simulation study based on time invariant Poisson
arrival processes, τl is found to fluctuate very little around
its mean value. In practice, to reduced the effect of possible
large fluctuations, τl can be updated as follows,

τl(n∆t) = (1− α)τl((n− 1)∆t) + ατ ′l (25)

where ∆t is the update interval, τ ′l is the instantaneous
measured characteristic time, and α is a parameter taking
values between 0 and 1. To reduce the effect of fluctuation,
a relatively small α value can be chosen.
Access frequency: In our architecture, the access fre-
quency of each document needs to be estimated at leaf
caches for the purpose of making caching decisions at any
cache in the cache hierarchy. In this sense, our approach is
like a combination of the LRU algorithm and the LFU algo-
rithm, except that here the LFU algorithm is not used for
a single cache but for all the caches in the cache hierarchy.
A fundamental difficulty in using LFU algorithm is the

need to keep track of the access frequencies for all the doc-
uments that have been requested. A practical solution is
to keep track of the access frequencies for documents which
have been seen in the past ∆T time window. However, an
open issue is how to set ∆T value. On the basis of our de-
sign principles, we can readily solve this problem. Accord-
ing to Principle 1, a document with access frequency lower
than e−1τ−1

L is effectively an one-time access document and
it makes no sense to keep track of the access frequencies of
any documents with access interval much larger than τL.
On the other hand, documents with access interval smaller
than τL are worth caching and hence should be tracked.
Therefore ∆T should be set at ∆T ≈ τL. This requires
that the root cache periodically broadcasts its measured
τL value to all the leaf caches. This can be done by piggy-
backing τL to the requested documents sending back from
the root cache to the leaf cache.

In our implementation, a leaf cache keeps a table of ac-
cess frequencies for individual documents. A document is
deleted from the table if the elapsed time since the last ac-
cess exceeds ∆T . To further reduce the computation com-
plexity, in our implementation, only a timestamp of the
last access time is kept and updated for each document.

The algorithm works as follows. Upon the arrival of a
request at leaf cache k, the cache is searched first. If there
is a cache hit, the document is sent back to the requesting
user. Otherwise the table is searched for a match. If a
match is found, the difference between the request time
and the timestamp in the table entry is calculated. The
inverse of the difference is then used as the access frequency
λki, which is then attached to the request and sent to the
higher level cache for further search. If a match is not
found, an entry is then allocated to this request and λki
is set to zero before it is attached to the request which is
sent to the higher level cache. The number of table entries
can be further reduced by deleting the entries with the
corresponding documents being cached in the leaf cache.
This will not affect the performance because a document
will stay in the leaf cache for at least τk time units and the
next request time of the same document at the table will
be longer than τk.

C. Performance Evaluation: A comparative perfor-
mance analysis is performed for the proposed hierarchical
caching architecture with the uncooperative caching archi-
tecture described at the beginning of Section 2. Since the
focal point of this study is to demonstrate the effectiveness
of the design principles, the parameters used in this study
are not fine tuned to achieve optimal performance, which
is subject to future study.

Again, consider a two-level hierarchical caching system
with M = 4 leaf caches and one root cache. We set ∆T =
1.2τ0, where τ0 is the characteristic time for the root cache.
With all the other parameter settings the same as the ones
used in the previous section and zk = 1, the cache miss
rates at the root level cache are calculated for the proposed
architecture at C0 = 1, 200 based on simulation and the
uncooperative architecture at C0 = 1, 200 and 2, 400 based
on numerical analysis.

Fig. 5 presents the results. The subplots (a) and (b)
give the results for the homogeneous and inhomogeneous
cases, respectively. For both cases, the overall cache miss
ratio η, as defined in (3), for the proposed architecture at
C0 = 1, 200 are found to be very close to the cache miss
ratio for the uncooperative architecture at C0 = 2, 400.
This means the proposed architecture can offer comparable
performance as the uncooperative architecture with about
50% saving of the root cache resource. More importantly,
from Fig. 5, we see that the proposed architecture suc-
cessfully reduces the miss rates for the popular documents.
Comparing the two curves at C0 = 1, 200 for both sub-
plots and focusing on the first 1300 popular documents,
one observes that on average several times of performance
gain is achieved by using our proposed architecture. The
proposed architecture leads to a small loss of performance

1422 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5
x 10

−3

Document Number (i)

M
is

s
R

at
io

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5
x 10

−3

Document Number (i)

M
is

s
R

at
io

(a)

(b)

1

2

3

1

2

3

Fig. 5. Cache miss ratios for individual documents at the root cache
for cooperative (curve 3) and uncooperative (curves 1 and 2)
architectures. (a) homogeneous case, (b) inhomogeneous case.
Curves 1 and 3: cache miss ratios at C0 = 1200, and curve 2:
cache miss ratio at C0 = 2400

for unpopular documents at the tail portions of the curves
due to the exclusion of these documents from being cached.
However, this loss of performance is well compensated by
the performance gain for the popular documents.

In essence, with the removal of the unpopular documents
from being cached, we, in effect, increase the characteristic
times at both level caches, resulting in tremendous overall
performance gain. For instance, at C0 = 1, 200, τ0 = 332.4
for uncooperative case and τ0 = 1875 for cooperative case,
increasing by about six times.

V. Conclusions and Future Work

In this paper, a modeling technique is proposed to ana-
lyze the caching performance of a two-level uncooperative
hierarchical web caching architecture. On the basis of this
analysis, an important characteristic time is identified for
a cache, which is a function of request arrival processes,
the cache size, as well as the request pattern. Two hier-
archical caching design principles are identified based on
the concept of filtering defined by the characteristic time.
The design principles is then used to guide the design of
a cooperative hierarchical caching architecture. The per-
formance of this architecture is found to be superior to the
traditional uncooperative hierarchical caching architecture.

We believe that the characteristic time and the associ-
ated filtering concept can be easily generalized to apply to a
cache which runs some other cache replacement algorithm,
such as LRU-size or LFU. Also, on the basis of the char-
acteristic time and the filtering concept, design principles
can be developed to guide the design of high performance
hybrid or distributed caching architectures. We shall look
into these issues in the future.

Appendix A

We have,

φki(s) =
∑∞

n=1 Pki(n)
∫
e−stfki(t|n)dt

=
∑∞

n=1[(1− qki)M1(s)]
n−1qkiM2(s)

= qkiM2(s)
1−(1−qki)M1(s)

,
(26)

where

M1(s) =
∫ τki

0 e−st λkie
−λkit

1−e−λkiτki
dt

= λki(e
(−s−λki)τki−1)

(−s−λki)(1−e−λkiτki)

(27)

and

M2(s) =
∫∞
τki

e−st λkie
−λkit

e−λkiτki
dt

= λkie
(−s−λki)τki

(λki+s)e−λkiτki

(28)

Substituting (27) and (28) into (26), we get (8).

Appendix B

From (8) and (10), we have,

φki(s) = 1
1+(λ0

kis)
−1e−sτki

=
∑∞

n=1(−1)n+1(λ0ki)
−ns−ne−nsτki

(29)

Making use of the inverse Laplace transform,

eks

sµ
⇔ (t− k)µ−1

η(µ)
u(t− k), µ > 0, (30)

the inverse Laplace transform of φki(s) gives fki(t) in (11).

References
[1] K. Ross, “Hash Routing for Collections of Shared Web Caches,”

IEEE Network Mag., pp. 37, Nov. 1997.
[2] J. Zhang, R. Izmailov, D. Reininger, and M. Ott, “Web Caching

Framework: Analytical Models and Beyond,” IEEE Workshop
on Internet Applications 1999, pp. 132-141, 1999.

[3] R. P. Wooster and M. Abrams, “Proxy Caching that Es-
timates Page Load Delays,” http://vtopus.cs.vt.edu/∼ chi-
tra/docs/96trNEW/

[4] S. G. Dykes, C. L. Jeffery, and S. Das, “Taxonomy and Design
Analysis for Distributed Web Caching,” Proceedings of HICSS-
32, pp. 10, 1999.

[5] P. Cao and S. Irani, “Cost-Aware WWW Proxy Caching Algo-
rithms,” Proceedings of the 1997 USENIX Symposium on Inter-
net Technology and Systems, pp. 193-206, Dec 1997.

[6] C. R. Cunha, A. Bestavros, and M. E. Crovella, “Characteristics
of WWW Client-based Traces,” Technical Report BUCS-TR-
1995-010, Boston University, CS Dept, Boston, MA 02215, April
1995.

[7] A. Belloum and L. O. Hertzberger, “Dealing with One-Timer-
Documents in Web Caching,” Proceedings of the 24th Euromicro
Conference, Vol. 2, pp. 544-550, 1998.

[8] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz,
and K. J. Worrell “A Hierarchical Internet Object Cache,”
http://netweb.usc.edu/danzig/cache/cache.html.

[9] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web
Caching and Zipf-like Distributions: Evidence and Implica-
tions,” Proceedings of IEEE INFOCOM’99, Vol. 1, pp. 126-134,
1999.

[10] M. R. Korupolu and M. Dahlin, “Coordinated Placement and
Replacement for Large-Scale Distributed Caches,” IEEE Work-
shop on Internet Applications, pp. 62-71, 1999.

[11] J. Wang, “A Survey of Web Caching Schemes for the Internet,”
ACM Computer Communication Review, vol. 29, No. 5, Oct
1999.

1423 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

[12] H. Che, Y. Xia, H. M. Wang, and X. M. Qiu, “Model for
Magnetic Phase Transitions of RBa2Cu3O6+x Compounds,”
Physics Letters A, Vol. 146, No. 6, pp.343-346, June 1990.

[13] M. Abrams, C. R. Standridge, G. Abdulla, S. Williams, and E.
A. Fox, “Caching Proxies: Limitations and Potentials,” Proc. 4th
Inter. World-Wide Web Conference, Boston, MA, Dec. 1995.

[14] F. P. Kelly, “The Clifford Paterson Lecture, 1995: Modeling
Communication Networks, Present and Future,” Proceeding of
Royal Society, London A, Vol. 444, pp. 1-20, 1995.

[15] D. Bertsekas and R. Gallager, “Data Networks,” Prentice-Hall,
1987.

[16] G. R. Grimmett and D. R. Stirzaker, “Probability and Random
Processes,” Oxford Science Publications, 1992.

1424 IEEE INFOCOM 2001

