SES-Dedup: a Case for Low-Cost ECC-based SSD
Deduplication

Zhichao Yan*™, Hong Jiang*, Song Jiang*, Yujuan Tan?™, Hao Luo®
*Department of Computer Science & Engineering University of Texas-Arlington, Arlington, USA
THewlett Packard Enterprise, USA
tSchool of Computer Science Chongqging University, Chongqing, China
$Twitter, USA

™Corresponding Author: zhichao.yan@mavs.uta.edu, tanyujuan@ gmail.com

Abstract

Integrating the data deduplication function into Solid State
Drives (SSDs) helps avoid writing duplicate contents to NAND
flash chips, which will not only effectively reduce the number
of Program/Erase (P/E) operations to extend the device’s
lifespan but also proportionally enlarge the logical capacity
of SSD to improve the performance of its behind-the-scenes
maintenance jobs such as wear-leveling (WL) and garbage-
collection (GC). However, these benefits of deduplication
come at a non-trivial computational cost incurred by the
embedded SSD controller to compute cryptographic hashes.
To address this overhead problem, some researchers have
suggested replacing cryptographic hashes with error correction
codes (ECCs) already embedded in the SSD chips to detect the
duplicate contents. However, all existing attempts have ignored
the impact of the data randomization (scrambler) module that
is widely used in modern SSDs, thus making it impractical to
directly integrate ECC-based deduplication into commercial
SSDs. In this work, we revisit SSD’s internal structure and
propose the first deduplicatable SSD that can bypass the data
scrambler module to enable the low-cost ECC-based data
deduplication. Specifically, we propose two design solutions,
one on the host side and the other on the device side, to
enable ECC-based deduplication. Based on our approach, we
can effectively exploit SSD’s built-in ECC module to calculate
the hash values of stored data for data deduplication. We have
evaluated our SES-Dedup approach by feeding data traces
to the SSD simulator and found that it can remove up to
30.8% redundant data with up to 17.0% write performance
improvement over the baseline SSD.

I. INTRODUCTION

How to manage the explosive growth of data is a top-priority
problem in the big data era. There exists a significant amount
of redundant data in the fast expanding digital universe [1],
which makes data deduplication (dedup), a space and compute
efficient solution for storage capacity optimization, a standard
feature for a lot of storage products and installations such as
backup systems, file systems, all-flash arrays, cloud storage
systems and so on.

Several studies have proposed integrating data deduplication
into SSDs to leverage their internal processing capability to

achieve such single-instance storage within the SSD. These
deduplication-enabled SSDs can not only exploit the benefits
of reducing the Program/Erase (P/E) operations to increase SS-
D’s lifespan but also proportionally enlarge its logical capacity
to improve the performance of its behind-the-scenes tasks such
as wear-leveling (WL) and garbage-collection (GC) [2, 3].
Moreover, deduplication will further improve SSD’s reliability
because the raw bit error rate will increase sharply with the
number of P/E operations [4, 5] increasing. However, dedupli-
cation will incur notable computation and space overheads [6].
As aresult, designers must balance the potential overheads and
benefits of deduplication to make the right design choice.

Different from traditional data deduplication systems run-
ning on general-purpose computer systems or servers, dedupli-
cation within SSDs is usually constrained by the very limited
resources within the SSDs (such as embedded processor and
DRAM). In traditional deduplication systems, data streams
will be dynamically divided into either variable-length or
fixed-size chunks, where a cryptographic hash (such as SHA-
256) is calculated per chunk as the fingerprint to uniquely
represent the chunk’s content, and chunks detected to share
the same fingerprint with an already stored unique chunk
are considered duplicates and eliminated by replacing them
with a pointer each to the unique chunk. Unfortunately,
dynamically chunking and computing cryptographic hashes
will incur a great deal of computational overhead to SSD’s
embedded controller, which will affect its frontend I/O per-
formance, thereby offsetting deduplication’s advantages. For
example, even for some mid-range all-flash array products
with the server-level processors, their performance is CPU-
bound, which is mainly caused by the data reduction tasks of
deduplication and compression [7, 8]. Therefore, we believe
that removing substantial compute overhead of fingerprint
generation is able to significantly improve the performance
of these systems, especially for the smart SSD devices with
the built-in deduplication function running on the embedded
SSD controller.

Recent studies have proposed some low-overhead approach-
es such as fixed-size chunking (at page size) and using
a page’s ECC instead of SHA-256 as the fingerprints to
help detect the duplicate chunks, which leverages the SSD’s
internal page mapping mechanism and the page-level ECC

without incurring extra computation cost and at a smaller
space cost than that required to maintain the hash table
for data deduplication [2, 3]. Unfortunately, on SLC, MLC,
TLC or QLC flash chips, different data patterns written have
been proven to exhibit different raw bit error rates because
of various electronic interference effects [9]. To reduce the
raw bit error rates induced by these similar data pattern’s
disturbances, modern SSDs have integrated a data scrambler
module to randomize the incoming data before storing it to
the NAND flash chips. As a consequence, ECCs for duplicate
data blocks with different LBAs will be rendered completely
different, which makes it impossible to leverage this built-in
ECC function as a content identification function to detect the
duplicate data on flash chips.

In this work, we propose a Scrambler-resistant ECC-based
SSD deduplication, called SES-Dedup, which can be imple-
mented in either the host or device side to break through the
data scrambler module so as to enable low-cost ECC-based
deduplication on modern SSDs. Through extensive evaluations
on an simulated SES-Dedup system, SES-Dedup is shown to
effectively exploit SSD’s built-in ECC module to calculate the
hash values of stored data for data deduplication. Specifically,
our SES-Dedup approach can remove up to 30.8% redundant
data with up to 17.0% performance improvement by feeding
our collected data traces to the SSD simulator.

The rest of the paper is organized as follows. Section II
describes the background and motivation of this work. Sec-
tion III elaborates on the design of SES-Dedup. Other imple-
mentation issues are described in Section IV. We present the
evaluation and analysis in Section V and conclude the paper
in Section VL.

II. MOTIVATION

Continued capacity growth and lower unit prices have made
SSDs a mainstream storage device. However, future increases
in density will result in a significant drop of their performance
and reliability. As a result, SSD manufacturers and users
will carefully weigh the tradeoff among cost, performance,
capacity, and reliability. In this work, we propose to integrate
deduplication in SSD to enable an SSD that can run this
data reduction technology by itself to avoid writing duplicate
contents and enlarge the logical capacity.

Redundant data are prevalent in the digital universe, which
makes data deduplication and compression viable and prof-
itable. Given the minimum chunking cost of fixed-size chunk-
ing in deduplication and hence its wide use in flash-based
consumer electronics, we want to know the most effective
fixed-size chunking granularity to help detect the duplicate
data in these consumer electronics such as laptops and desk-
tops. As such, we have collected data from two laptops and
four desktops that have applied different fixed chunking sizes
to the data, and analyze their data redundancy ratios through a
data deduplication engine. As illustrated by Figure 1, we have
obtained two important observations: one is that there exists a
lot of redundant data in these laptops and desktops, which is
up to 37.0% on desktop 4; the other is that most redundant data

40% 7 4KB B $KB 57 16KB I 32KB

35% - -

30% -

10

25% -

Redundancy Rat
—)
w (4
N R
1 1

10% —

5%

0% -

laptopl laptop2 desktopl desktop2 desktop3 desktop4

Fig. 1: Data redundancy rates of fixed-size chunking

TABLE I: Page-level operation latencies on different flash chips

NAND Type [[Read [[Write [[SHA-256
SLC 23.4 us || 262.6 us

MLC-1 33.5 us || 390.0 us 226.5 us
MLC-2 433 us || 1084.4 us

can be found in 8§ KB chunks comparing to 4 KB chunking,
whose size is close to modern SSD’s page size. This study
affirms that using SSD’s page size as the fixed chunking size
can detect most redundant data, which in part motivates this
work.

Table I lists the page-level read and write operation latencies
on several typical NAND flash chips, and the latency of
calculating one SHA-256 hash of an 8KB page on ARM
Contex processor running at 400 MHz. Obviously, this hashing
operation will add non-trivial latency to the write latency if we
adopt traditional SHA-256 as the fingerprint for SSD dedup.
Moreover, the longer write operation may also increase the
read latency, which will degrade both the read and write oper-
ations if SHA-256 is used as the fingerprint for SSD deduplica-
tion. As shown in Figure 2, the SSD performance drops after
enabling SHA-256 based deduplication on different NAND
flash chips, because the SHA-256 hashing overhead is incurred
on the critical path of every write operation, besides the extra
memory overheads on maintaining deduplication metadata.
These mixed read-and-write workloads are generated by the
FIO tool to process the input data without any deduplicatable
pages to learn its deduplication overheads mainly caused by
calculating SHA-256. When we feed our collected datasets
with up to 30.7% redundant pages at our selected 8 KB page
size, this SHA-256 deduplicaiton-enabled SSD can slightly
improve the baseline SSD’s write performance, by up to 5.8%.
By this test, we find that SHA-256 based dedup in SSDs incurs
non-trivial overheads (up to 17.3%), that will significantly
offset most benefits of deduplication and make it unattractive
to be integrated within the SSDs.

Meanwhile, NAND flash chips usually face much more

18%-

16% -

14%

12%

10%

8%

6%+

4%

2%

Dedup-induced SSD Performance Degradation

7

0% T T T T T T T T T T T T

o ‘“Zla*““io|s“"‘l|o*“'“Zxﬁ“"‘;a“"“;ﬁ““;ﬂ“‘f;’lf“iinﬁ“"‘lﬂ"“e

PO B g8 T S T AB° BT 18 T S

AN L N A e R AN L 0w

Fig. 2: SSD performance degradation after adding SHA-256

based deduplication on different types of NAND flash chips

with different mixed random read-and-write workloads on fixed
chunking of size 8 KB

a°

transient failures caused by program disturb, read disturb,
over-programming or charge loss due to their inherent device-
level characteristics. As a result, ECC has become a manda-
tory feature integrated into SSDs to detect and correct these
transient failures to make SSDs useable. The SSD controller
will first divide a page into one or more blocks when a host
writes a page of data to SSD. Then, its encoding module will
generate a codeword consisting of the block and ECC for each
block by its generator matrix. A page’s ECC can be treated
as the concatenation of all block ECCs within that page.

In this work, we argue that this kind of ECC information
sealed within SSD can be leveraged as the content identifica-
tion of the stored data in lieu of the costly cryptographic hash
computation of the stored data for the purpose of redundancy
detection. In general, the computation overhead of calculating
ECC is much lower than SHA-256, which motivates us to
reuse this ECC as the first-round fingerprint for SSD dedu-
plication that is backed up by a byte-to-byte comparison [10]
to verify the duplicate contents for possible false positives
(due hash collisions). This can help filter out most distinct
contents in an efficient way since there is no false negative in
ECC value comparisons. For those contents that might have a
duplicate counterpart in the SSD, we need to further compare
their contents. As shown in Table I, SES-Dedup’s byte-to-byte
comparison operation will exploit the asymmetric latencies of
read and write operations to read the potential duplicate page
and compare it with the contents to be written. As a result,
besides removing the high computation cost of SHA-256 on
the embedded SSD controller, our SES-Dedup can use low-
cost read operation to replace the high-cost write operation
for those duplicate pages, thus significantly reducing the P/E
operations that will increase SSD’s lifespan and reliability.

HOST _— DEVICE
DRAM hl—
enable Chip
deduplication o 5 £
:«: DRAM N = 3
data 5 [Manager 5 =
e S U
<L = 2 Q
, 72} =
Software | §
Scrambler =
,,,,,,,,,,,,,,,,,,,,,,,,,,, Channel i "
+ Processors Processor ti
Module View —

Dataflow View
Without SES—DeduQ@ data*

With SES-Dedup

HOST DEVICE

data** = data

Fig. 3: Architecture of host-side SES-Dedup system

III. SES-DEDUP SYSTEM DESIGN

In this Section, we show the basic design of SES-Dedup,
which can be implemented at either host-side or device-side
plus some necessary modifications in device’s FTL. More
implementation issues are discussed in Section IV.

We observe that the scrambler module usually adopts a Lin-
ear Feedback Shift Register (LFSR) to generate a scrambling
vector by using the LBA of the scrambled data block as the
randomization seed [11, 12]. This scrambling vector will then
be XORed with the origin data to generate the scrambled data.
Upon a read request, the scrambled data will be descrambled
by the same logic because the XOR operation is reversible.
Therefore, we can break through this scrambler module by
generating the scrambled data at the host-side, so as to perform
the on-demand deduplication on SSDs by exploiting their
built-in ECCs, whose dataflow overview is shown in the lower
part of Figure 3.

Figure 3 shows a high-level architectural view of host-
side SES-Dedup design. Its right upper part shows the major
functional components (i.e., Scrambler next to ECC Engine)
integrated within a typical SSD controller. In particular, the
incoming data will be scrambled before calculating their
ECCs, and then written to the chips. This makes ECC-based
deduplication impossible because the ECC values of duplicate
data blocks with different LBAs will be completely different
after passing through the scrambler module. In this case, a
deduplication-enabled SSD must keep extra information, such
as the fingerprints of data blocks before scrambling, to help
deduplication, which will incur both computation and space
overheads. As shown in the left upper part of Figure 3, we
add a software scrambler module at the host side to help SSD
reverse the randomized data to the original data written by the
host and store them on the flash chips.

For a specific SSD controller, we can easily recreate the
scrambler in software by writing some predefined data patterns
(like all ‘0’) to the SSD. In this case, we know the content of
the input data and its LBA, and we can dump the chip’s image
to obtain the scrambled version of the input data so as to infer

and recover the scrambler function of the embedded scrambler
module inside the device and recreate the software scramble
module at the host-side. By this approach, we can perform
the on-demand deduplication on SSD by enabling the host-
side software scramble module to randomize the data before
writing to the SSD, then it will be scrambled again in SSD,
and finally storing the origin data on NAND flash chips. Thus
its ECC is leveraged to detect the duplicate content to perform
the fix-sized chunk data deduplication algorithm on SSD.
Host-side SES-Dedup system can selectively bypass the
embedded scramble module in SSD, but it will store the data
without scrambling on the NAND flash chips, which might
increase the raw data error rates, although we can modify FTL
to help redirect writing the original data to different physical
units to avoid/limit writing similar patterns in the same block.
In order to overcome this problem, we propose a device-
side SES-Dedup system, which is based on the distributive
property of matrix multiplication. In particular, as shown in
Equation 1, ECC vector is usually calculated by a generator
matrix multiplication operation, whose input is a scrambled
data vector obtained by the origin data XORing the scramble
vector. Based on Equation 2, we can obtain the original
data’s ECC as its content identification because the generator
matrix and all scramble vectors are known, which can be
integrated within the firmware to support deduplication in
SSD. Therefore, we can implement the device-side SES-Dedup
system without storing the origin data on NAND flash chips.
Once the device-side SES-Dedup system reads the ECC from
NAND flash chips, the SSD controller can further calculate
its original data’s ECC and use it as the fingerprint to detect
the duplicate data. As a result, this device-side design might
incur a little latency for calculating its original data’s ECC.

([VDn,ta} S [VScramblerD X [MEncoding] = [ECO] (1)

[VData] X [MEncoding] = [ECC} 52 [VScrambler] X [MEncoding]
2)

IV. OTHER IMPLEMENTATION ISSUES

There are two types of deduplication performed on SES-
Dedup, in-line deduplication and post-processing deduplica-
tion. While the former will not only reduce the P/E operations
but also enlarge an SSD’s logical capacity, the latter can only
enlarge an SSD’s logical capacity because it has written the
contents to the flash chips before performing deduplication.

In the SES-Dedup system, an ECC-based fingerprint is used
as the first-level filter to identify a potential duplicate page
with a matched ECC value, which will then be processed by
a byte-to-byte comparison with the other page’s contents to
verify the redundancy. Such byte-to-byte operations will help
replace high-cost write operations with low-cost read opera-
tions to exploit the asymmetric latencies of read and write
operations. Because the FTL has a lot of other functions (e.g.,
logical block mapping, wear leveling, garbage collection, write

amplification, bad block management, etc.) to perform, there
is very limited computation power and memory space left in
the SDD controller that can be used for in-line deduplication.
As a result, we believe that post-processing deduplication will
be a must-have option for SSDs to deduplicate the redundant
contents. That is, periodically scanning the SSD to identify and
remove the redundant data in the background or during idle
periods by leveraging the ECC information as its fingerprint,
which saves a lot of costs associated with computing SHA-256
to support deduplication on SSDs.

The integration of the data deduplication feature in FTL will
change SSD’s logical-to-physical mapping from 1-to-1 to n-to-
1. Multiple LBAs will be mapped to a single Physical Block
Address (PBA), which is fine for normal read/write operations.
However, this will not work for the garbage-collection (GC)
task, because it must notify all associated LBAs that their
corresponding PBA’s content will be moved to another PBA.
As a result, SES-Dedup adds a reverse lookup mechanism to
check all LBAs associated with a specific PBA for garbage
collection.

Host-side and device-side SES-Dedup systems are designed
for different application scenarios. The host-side design is
suitable for personal usage that provides a flexible on-demand
interface to enable the deduplication feature on SSDs. There
are two main reasons for this application scenario. First, dif-
ferent data generated by different applications have shown to
exhibit significantly different data redundancy characteristics,
i.e., very little redundancy exists among data generated by
different applications [13], making it unnecessary to dedupli-
cate data generated by fundamentally different applications.
Second, applications or file systems may write the same
metadata to multiple logical blocks to avoid potential data
loss due to single-block failures, which means that devices
should not eliminate such intentional data redundancy by
the deduplication feature to reduce the risk of data loss.
On the other hand, the device-side design is more suitable
for large-scale data center, which contains a lot of different
SSDs, whose host may not have sufficient computation power
to run the software scramble module to support a lot of
SSDs simultaneously. Moreover, it can seal the deduplication
function within the device that provides better compatibility.

Some SSD controllers may integrate a data compression
engine to compress the incoming data before writing it to
the flash chips. If the compression is performed after SSD’s
data scrambler module, there is no impact on our host-side
SES-Dedup design although it will hurt the compression ratio
because the data has been randomized. When the compression
module is placed before the scrambler module, we should dis-
able the software scrambler module at the host side and write
some extra ECC data, leveraging the compression algorithm’s
ECC as the content’s fingerprints rather than the NAND flash’s
ECC [14], to the Out-of-Band space to help perform data
deduplication on SSDs. On the other hand, in our device-side
SES-Dedup design, compression will not impact its function
because all necessary work can be processed within the device.

A page has several codewords, which can provide a finer

TABLE II: Configurations of SSD simulator

Description || Configuration
Flash Page Size 8 KB
Pages per Block 256
Block per Plane 256
Plane per Package 8
Number of Packages 8
Garbage Collection Threshold 5%
Flash Erase Latency 1.8 ms

deduplication granularity at an ECC codeword rather than a
whole page. It will be especially useful for large page size
because we find that the most predominate fixed-size chunking
granularity that can detect most duplicate data is around 8 KB.
We will explore this part as our future work.

V. EVALUATION

A. Experimental Environment

We evaluate SES-Dedup on GEMS5 full system simula-
tor [15], whose SSD model is ported from the extended
FlashSim simulator [16] and integrates with ECC-based dedu-
plication functions. We set the major parameters of the host
as a 1.6 GHz X86 CPU plus an eight-bank 8 GB DDR3-1600
DRAM. The SSD configurations are listed in Table II, while
the read and write latencies on different flash chips are listed
in Table I. We shrink stimulated SSD size to 32 GB with
64 MB DRAM to make our collected data easily saturate its
capacity. Each codeword of 1 KB is protected by a code rate
of 32/33 LDPC code (i.e., the coding redundancy is 256 B
per 8 KB data page). In particular, calculating SHA-256 hash
will take 226.5 us, host-side SES-Dedup will not incur extra
hashing computation cost on the SSD device and recalculating
LDPC ECC will be 14.5 us on a 400 MHz ARM processor
for device-side SES-Dedup system.

Our data sets are collected from two laptops and four
desktops, which contain the typical office workloads, such as
coding, file editing, Internet surfing, emailing, file sharing,
running virtual machine, etc. These data sets have normal
redundancy ratios, which vary from 12.3% to 30.8% at 8KB
fixed chunking size. We use the FIO tool [17] to create the
synthetic data access traces based on these data sets to evaluate
the performance of SES-Dedup system.

B. ECC-based Fingerprint Filter

First of all, we must design a Fingerprint Filter to help
reduce the size of the in-memory fingerprint table because
SSD’s embedded DRAM capacity is limited and cannot hold
all fingerprints. In SES-Dedup design, we truncate each code-
word’s ECC from 32 B to 4 B to form a page’s ECC
fingerprint, which has the total length of 32 B (256-bit). We
do not observe any hash false positives by replacing SHA-256
with this 256-bit ECC because an SSD’s capacity is small.
Specifically, for a 32 GB capacity SSD with 8 KB page
size, it only contains 4 M pages, and the 256-bit fingerprint

TABLE III: Skew-distributed duplicated pages

|| Hot Fingerprint Ratios

laptop1 17.6% 74.1%
laptop2 13.8% 86.3%
desktopl 15.8% 79.8%
desktop2 14.9% 81.1%
desktop3 18.8% 72.1%
desktop4 12.7% 89.3%
I 25% Write 50% Write BB 75% Write == 100% Write
0.18 4

Write Performance Improvement Ratios
o
[=}
[}
1

$\@Q\°§Q\?-,*‘°?-,*‘°‘;V~‘°QV~‘°Q ?\o? ?\o\’*\:?*\(:?*\o?*\o?&\o? 9“;"’\?‘;*:;’?*‘&*“’9 Q\OQ Q\o?*\oQ*\oQ“oQ“oQ

AT AST golo q\°”°\ %\ \‘:‘ \‘:‘,\s' Y sle Vsl 'L“' m“'o“’qpl ,:el Ssletyse 'L"'a\ .fﬂ .,_6‘ .,_6‘
Fingerprint Table Size and Input Data

Fig. 4: Study of write performance improvements on different
fingerprint table size

length has provided enough hash space to avoid any collisions,
which can even fully meet 8 TB SSD’s requirement. However,
4 M 256-bit ECC fingerprints will occupy 128 MB memory,
which is larger than the total simulated SSD’s DRAM capacity
(64 MB).

As shown in Table III, the distribution of duplicated pages is
highly skewed in these data sets. We have observed that 12.7%
to 18.8% hot duplicated pages, whose reference count is larger
than 2, have occupied about 72.1% to 89.3% of total redundant
data. In other words, it provides an opportunity to optimize the
fingerprint table, thus making it small enough while containing
most duplicated fingerprints. In order to achieve this goal, we
have designed a fingerprint table that can store 15.0% of SSD’s
total number of fingerprints. By this approach, the fingerprint
table shrinks from 128 MB to 19.2 MB, but still occupying
a lot of DRAM capacity because most DRAM is used to
store FTL’s mapping table. We further reduce each fingerprint
entry’s length to shrink the fingerprint table’s size. In this
design, we sample a quarter of the ECC-based fingerprints,
which reduce fingerprint table size to 4.8 MB that can be fit
within the limited DRAM (around 7.5% space overhead).

Figure 4 shows various random write performance im-
provements on simulated SLC SSD with different fingerprint
table size ratio, where 10% means this fingerprint table can

Ratios in Redundant Data

TABLE 1V: In-line and off-line deduplication processing redundancy data ratios on the host-side SES-Dedup system with 100%
random write workload

In-line Dedup Off-line Dedup . .
Data Set | g7 TMLC-1 | MLC2 || SLC | MLC-T | MLC2 || Duplicate Ratio
laptop1 7.1% 6.5% 5.4% 5.5% 6.1% 7.2% 12.6%
laptop2 174% | 16.1% | 129% || 12.5% | 13.8% | 17.0% 29.9%
desktopl || 11.0% | 9.9% 8.1% 7.7% 8.8% 10.6% 18.7%
desktop2 || 13.7% | 12.1% 9.9% 92% | 10.8% | 13.0% 22.9%
desktop3 || 6.5% 6.1% 5.2% 5.8% 6.2% 7.1% 12.3%
desktop4 || 182% | 16.9% | 13.6% || 12.6% | 13.9% | 17.2% 30.8%
store 10% of all possible fingerprints (0.4 M in this test), 0.80 . —a— SHA256 based Fingerptint
the MLC results with the same trend are omitted due to 1 ‘\\.\\ e ECC-based Fingerprint
the space limit. From this test, we find that different data 0.75 .
sets exhibit different random write performance improvements 0_70_- .\\
due to their different duplicated data distributions. When this 1 ’
table size ratio increases from 15% to 20%, the performance 0.65 +
gains are diminishing, thus indicating that 15% of max table % 0. 60—
size can obtain the best price/performance ratio, which is
mainly determined by the skew distribution of duplicated _§' 0-55-
pages. Specifically, SES-Dedup system can improve up to A& 0_50_'
17.0% random write performance under this setting. e |
Z 0.45
C. Effectiveness of Deduplication 0_40_-
SES-Dedup can in-line deduplicate every redundant page 0_35_-
(up to 30.8% duplicate data at 8 KB fixed chunking size) 1
without considering the limited computation power of em- 0.30 -
bedded SSD controller. In order to reduce the performance T ree e e
interferences caused by the in-line deduplication processing, € O 0 1 (8P 8 1 8 8 e e e

both host-side and device-side SES-Dedup systems try their
best to process deduplication in-line while leaving the other
pages to be processed off-line. As a result, we want to know
how much redundant data can be detected by in-line dedupli-
cation because it inform us of several important metrics, such
as how many P/E operations are saved, how much space can
be reclaimed by post-processing deduplication, and so on.
The host-side SES-Dedup system is controlled by the host-
side module, which will limit the contents to be deduplicated
on SSDs. It adds negligible overheads to check the fingerprint
table for deduplication. We have collected the in-line and oft-
line deduplication processing ratios in Table IV. For example,
52.9% to 59.8% duplicated data is processed by in-line d-
eduplication under SLC SSD. In other words, it can directly
reduce 6.5% to 18.2% of the data written to SLC chips, which
will reduce the corresponding P/E operations. Meanwhile,
those remaining duplicated pages to be processed by off-
line (post-processing) deduplication will further increase about
5.5% to 12.6% storage capacity on SLC SSD. In this case, we
will not compare it with SHA-256 based deduplication because
the device is not changed by adding extra hardware/software
module to calculate SHA-256 except for some necessary
deduplication changes, such as adding the fingerprint table and
modifying FTL’s mapping table. From this test, the MLC SSDs
process less in-line deduplication data because its inherent

G{Lgﬂo 1‘;|o¢¢60|o ‘.>°°|° o|o 6““‘0 o|o 1f!>°|°¢16°l° 00o|r.: 00t:|o QQo|o
M \We” %0 “\p BN “‘\p N 6\,0“\\’0\“\9%

Fig. 5: In-line deduplication ratios of device-side SES-Dedup with
different hash fingerprints

access latency is higher than SLC device, which prolongs its
write latency.

Different from the host-side approach, the device-side SES-
Dedup system will add the ECC processing latency to support
its deduplication function. As shown in Figure 5, we plot the
geometric means of in-line deduplication ratios of different
data sets under different mixed read-and-write workloads. We
find that the majority of duplicated pages can be detected and
removed inline while leaving some pages to be processed off-
line in ECC-based SES-Dedup approach, which means that it
will reduce the corresponding duplicate writes to the NAND
flash chips. Specifically, it can process 19.9% to 42.8% more
duplicated data in-line than SHA256-based approach, which
means that a lot of P/E operations can be saved by this ECC-
based approach.

VI. CONCLUSION

In this work, we propose the SES-Dedup system to help
bypass the data scrambler module within SSD to enable
the low-cost ECC-based data deduplication on SSD. Our
experimental results show that it can extend the flash space by

a factor of up to 30.8% with up to 17.0% write performance
improvement over the baseline SSD with our collected real-
world data sets.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
valuable feedback and constructive suggestions. This research
is partially supported by research grant from NetApp, the U.S.
National Science Foundation (NSF) under Grant Nos. CCF-
1704504 and CCF-1629625, Chongqing High-Tech Research
Program (cstc2016jcyjA0274), National Natural Science Foun-
dation of China(61402061), and Fundamental Research Funds
for the Central Universities (2018CDXYJSJ0026). Any opin-
ions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily
reflect the views of the funding agencies.

REFERENCES

[1] J. Gantz and D. Reinsel, “The digital universe in 2020:
Big data, bigger digital shadows, and biggest growth
in the far east,” https://www.emc.com/collateral/analyst-
reports/idc-the-digital-universe-in-2020.pdf, 2012.

[2] J. Kim, C. Lee, and et.al, “Deduplication in ssds: Model
and quantitative analysis,” in Proceedings of the 28th
IEEE Symposium on Mass Storage Systems and Tech-
nologies, 2012, pp. 1-12.

[3] F. Chen, T. Luo, and X. Zhang, “Caftl: A content-
aware flash translation layer enhancing the lifespan of
flash memory based solid state drives,” in Proceedings
of the 9th USENIX Conference on File and Stroage
Technologies, 2011, pp. 6-6.

[4] S. Boboila and P. Desnoyers, “Write endurance in flash
drives: Measurements and analysis,” in Proceedings of
the 8th USENIX Conference on File and Storage Tech-
nologies, 2010, pp. 9-9.

[5] L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson,
E. Yaakobi, P. H. Siegel, and J. K. Wolf, “Characterizing
flash memory: Anomalies, observations, and application-
s,” in 42nd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2009, pp. 24-33.

[6] . Guo and P. Efstathopoulos, “Building a high-
performance deduplication system,” in Proceedings of the
2011 USENIX Conference on USENIX Annual Technical
Conference, 2011, pp. 25-25.

[7] “Performance and tuning considerationsfor sas on pure
storage fa-420 flash array,” 2014, SAS Institute Inc.

[8] Y. T. Jin, S. Ahn, and S. Lee, “Performance analysis of
nvme ssd-based all-flash array systems,” in 2018 IEEE
International Symposium on Performance Analysis of
Systems and Software (ISPASS), 2018, pp. 12-21.

[9] Y. Cai, S. Ghose, and et.al, “Error characterization,
mitigation, and recovery in flash-memory-based solid-
state drives,” Proceedings of the IEEE, pp. 1666—1704,
2017.

[10] B. Hong, D. Plantenberg, D. D. E. Long, and M. Sivan-
Zimet, “Duplicate data elimination in a san file system,”
in Proceedings of the 21st IEEE Symposium on Mass
Storage Systems and Technologies (MSST), 2004.

J. Cha and S. Kang, “Data randomization scheme for
endurance enhancement and interference mitigation of
multilevel flash memory devices,” ETRI Journal, vol. 35,
no. 1, pp. 166-169, 2013.

C. Chang, M. Bekerman, I. Swarbrick, and C. Hanson,
“Xor-based scrambler/descrambler for ssd communica-
tion protocols,” 2016, patent: US20160328567A1.

Y. Fu, H. Jiang, and et.al, “Aa-dedupe: An application-
aware source deduplication approach for cloud backup
services in the personal computing environment,” in 201/
IEEE International Conference on Cluster Computing,
2011, pp. 112-120.

Z. Yan, H. Jiang, and et.al, “Deduplicating compressed
contents in cloud storage environment,” in Proceedings
of the 8th USENIX Conference on Hot Topics in Storage
and File Systems, 2016.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt,
A. Saidi, A. Basu, J. Hestness, D. R. Hower,
T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib,
N. Vaish, M. D. Hill, and D. A. Wood, “The gem5
simulator,” SIGARCH Comput. Archit. News, vol. 39,

no. 2, pp. 1-7, Aug. 2011. [Online]. Available:
http://doi.acm.org/10.1145/2024716.2024718
[16] M. Bjgrling, “Extended flashsim,” 2011. [Online].

Auvailable: https://github.com/MatiasBjorling/flashsim

J. Axboe, “Flexible i/o tester.” [Online]. Available:
https://github.com/axboe/fio

