
IEEE INTERNET COMPUTING 1089-7801/06/$20.00 © 2006 IEEE Published by the IEEE Computer Society SEPTEMBER • OCTOBER 2006 61

Se
rv

ic
e

A
da

pt
at

io
n

Yongjie Zheng
University of Florida

Alvin T.S. Chan
and Grace Ngai
The Hong Kong Polytechnic
University

Applying Coordination
for Service Adaptation
in Mobile Computing
Mobile computing devices vary in terms of display, memory, and battery life, and

current network protocols aren’t necessarily suited to the mobile computing

environment. As computer networks’ complexity increases,communication-related

software must be able to adapt to mobile computing’s constraints. This study aims

to develop a software system that adapts data flows over dynamic wireless network

conditions and various mobile devices. With their MobiGATE system,the authors

adopt the principle of separation of concerns to support the system’s service

composition and reconfiguration.This approach can support ease of dynamic

reconfiguration and the reusability of adaptation services across applications.

Computer networks are increasingly
complex and variable, with mobili-
ty dramatically exacerbating the

issue. This complexity carries over to
mobile computing devices, which often
vary in terms of display characteristics,
memory size, and battery lifetimes.
Moreover, the existing network protocols
that have enabled the Internet revolution
aren’t well suited to the mobile comput-
ing environment. TCP, for example, does-
n’t work well on many wireless links and
often behaves poorly over satellite links
due to long latencies.1

For mobile applications to operate
effectively and optimally, communica-
tion-related software at the application
level must be able to adapt to mobile con-
straints at runtime. One general solution

is to allow adaptation of network traffic,
which lets augmented network services
perform aggressive computation and stor-
age to alter protocols or the data content
being transmitted, and to improve quali-
ty of service for users. Recently, resear-
chers have built, tested, and in some cases
validated systems embodying this idea,2–5

demonstrating software-supported adap-
tation’s benefits. Existing systems often
implement service composition as static
interactions of service entities by explic-
itly invoking procedures on named inter-
faces. As a result, the system-integration
code becomes entangled with the appli-
cation-specific code. Replacing or modi-
fying a service entity requires updating to
integrate not only the code for the new
service entity but also the code of entities

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on April 24,2010 at 22:39:25 UTC from IEEE Xplore. Restrictions apply.

directly related to the old one. This tight coupling
of service entities in terms of a strong communi-
cation dependency translates into the need for
manual modifications when we deploy transport
service entities into new environments. In wireless
networks, which exhibit highly dynamic network
conditions, adapting service entities in the form of
dynamic composition and reconfiguration should
be the norm rather than the exception.

At the Hong Kong Polytechnic University, we
developed the Mobile Gateway for the Active
Deployment of Transport Entities (MobiGATE) archi-
tecture, a service-based system that adapts data
flows over dynamic wireless network conditions and
various mobile devices. A major goal of MobiGATE
is to provide an environment in which programmers
can develop new mobile applications by combining
some adaptation services, while keeping the appli-
cation’s configuration structure completely separate
from individual services’ computational activities.
Such functionality is particularly important for facil-
itating the dynamic reconfiguration and reuse of
adaptation services. To achieve this functionality,
we’ve adopted the coordination concept6 for Mobi-
GATE, which is composed of a series of streamlets —
functional services that different applications can
reuse or dynamically reconfigure at runtime with-
out recompilation or redefinition. After developing
the MobiGATE architecture, we conducted a case
study to test its adaptation performance.

Background
We based our research study on concepts from the
fields of coordination theory and service adapta-
tion. Given that our study’s main objective was to
develop an adaptive software system, we focused
more on service adaptation.

Coordination: Separation of Concerns
Coordination theory6 is an emerging research area
that focuses on the interdisciplinary study of coor-
dination. Research in this area uses and extends
ideas about coordination from disciplines such as
computer science, organization theory, operations
research, economics, linguistics, and psychology.
Coordination theory defines coordination as the
process of managing dependencies among activi-
ties. Its research agenda includes characterizing dif-
ferent kinds of dependencies and identifying the
coordination processes we can use to manage them.

The greatest advantage of applying coordina-
tion theory to service adaptation is that it com-
pletely separates coordination from computational

concerns — known as a separation of concerns —
usually by defining a new coordination language
to describe the composition’s architecture. In par-
ticular, the coordination system generally consists
of two kinds of processes: computational and coor-
dination. Computational processes are treated as
black boxes whose internal service logic is invisi-
ble to the external environment; the processes
communicate with their environment via clearly
defined interfaces, usually referred to as input or
output ports. Coordination processes form
producer–consumer relationships by setting up
channel connections between the producer output
ports and the consumer input ports.

Our research study is directly related to coor-
dination theory, in that it views the process of
developing mobile applications in MobiGATE as
one of specifying architectures in which patterns
of dependencies among adaptation services
(streamlets) are eventually managed by coordi-
nation processes composed in the MobiGATE
Coordination Language (MCL), which we defined
to describe the composition of streamlets run-
ning in the MobiGATE system. (A detailed dis-
cussion of MCL is beyond this article’s scope, but
more information appears elsewhere.7) Stream-
lets in MobiGATE represent applications’ main
functional elements: they work as coordination
units but don’t require explicit knowledge about
the coordination patterns in the application. Sep-
arating and externalizing the streamlets’ inter-
connections greatly promotes their independence
and reusability.

Service Adaptation
Because characteristics of mobile computing envi-
ronments vary dramatically, doing service adapta-
tion at the application level is necessary to
optimize overlying mobile applications. We can
adapt data flows over networks in many ways to
shield clients from the effects of poor networks.
The service entities involved include transforma-
tion (such as filtering or format conversion),
aggregation (collecting and collating data from
various sources), caching (both original and trans-
formed content), and customization (maintaining
a per-user preferences database).

Adaptive solutions to network problems have
many interesting variations, including the Univer-
sity of California, Berkeley’s TranSend,3 the
Odyssey system,4 and the RAPIDware project.5

Although these systems differ significantly in some
respects, all offer ways to change the contents of

62 SEPTEMBER • OCTOBER 2006 www.computer.org/internet/ IEEE INTERNET COMPUTING

Service Adaptation

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on April 24,2010 at 22:39:25 UTC from IEEE Xplore. Restrictions apply.

transmitted data or the methods used to send that
data. All adapt to changing conditions specific to
the data transmission requested, prevailing net-
work conditions, or users’ needs. However, they
differ from the MobiGATE system in some impor-
tant aspects, ranging from the mechanism of ser-
vice compositions to the resultant capability of
dynamic reconfigurations and adaptation modes.

Table 1 compares the MobiGATE system with
the three other systems. (For a more detailed dis-
cussion of the differences, see the “Related Work
in Service Adaptation” sidebar.) Differences can
occur in various areas:

• Adaptation location describes where the adap-
tation machinery resides — in the client, in the
server, in one or more intermediate proxies, or
in all of these.

• Application awareness in these systems can be
application-aware or application-transparent,
depending on whether the application knows
that an adaptation is occurring and is perhaps
expected to provide a response, or whether the
system attempts to completely shield the appli-
cation from this fact.

• Dynamic reconfiguration describes the system’s
ability to dynamically change its composition
structure and create or destroy service instances
at runtime.

• Adaptation composition refers to the possi-
bility of composing adaptations in the adap-
tation machinery — in other words, it points
out whether the adaptation can occur at mul-
tiple levels.

• The mechanism is the primary technology the
adaptation uses. As far as the MobiGATE sys-
tem is concerned, the notion of separation of
concerns forms the underlying principle adopt-
ed in the adaptive system’s design.

• The description summarizes the adaptive system.

This comparison with existing systems gives us
a general idea about how MobiGATE works. To
characterize the system to a much deeper extent,
however, we must look at its architecture and eval-
uate its performance.

The MobiGATE Architecture
As we stated earlier, our main objective with the
MobiGATE system is to adapt data flows over
dynamic wireless network conditions and various
mobile devices at the application level. Here, we
focus on MobiGATE’s design.

Working Paradigms
The MobiGATE system consists of two parts: a
server and a client. The MobiGATE server, in which
the system composes dataflow adaptations, resides
in the intermediate proxy between the data sender
and data receiver. The MobiGATE client, in most
cases, acts as the data receiver and is responsible
for reverse-processing received messages.

Figure 1 shows a simple data flow with a sin-
gle sender (S) and receiver (R) — the data flows
across various links and network nodes. The thick
line represents the wired network and the dashed
line suggests the wireless part. The access point

IEEE INTERNET COMPUTING www.computer.org/internet/ SEPTEMBER • OCTOBER 2006 63

Applying Coordination

Table 1. A comparison of adaptive systems.

TranSend Odyssey RAPIDware MobiGATE
Adaptation location Proxy Client and server Proxy and client Proxy and client
Application awareness Application-transparent Application-aware Application-transparent Application-transparent
Dynamic reconfiguration Yes No Yes Yes
Adaptation compositions Yes No Partial Yes
Mechanism Data-type-specific distillation Resource management Detachable stream objects Separation of concerns
Description Web acceleration through Application-aware adaptation Web-based collaboration in Applying coordination theory

data-type-specific lossy by multiple applications in heterogeneous wireless in service composition and
compression using diverse data types environments system reconfigurations

Figure 1. The MobiGATE system’s working paradigm. The thick line
represents the wired network and the dashed line suggests the
wireless network. The access point (AP) at the wired network’s edge
supports communication between the fixed sender and its mobile
receiver. At some point in the network, the MobiGATE server (MS)
imposes various adaptation services on the data flow, which the
MobiGATE client (MC) then reverse-processes at the receiver side.

AP
Receiver

MC
Sender MS

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on April 24,2010 at 22:39:25 UTC from IEEE Xplore. Restrictions apply.

(AP) is located at the wired network’s edge and
supports communication between the fixed sender
and its mobile receiver. At some point in the net-
work, the MobiGATE server (MS in the figure)
imposes various adaptation services on the data
flow, which the MobiGATE client (MC in the fig-
ure) then reverse-processes at the receiver side.

Figure 1 is, of course, a simplification of the
real world — it shows a simple data flow and
doesn’t illustrate problems, such as delivery
deadlines or security concerns. It also fails to
suggest the level of complexity possible in even
a single network flow. However, the figure does
capture the root of the problem — a stream of
data flows from a source to a destination across
a network, using links of different conditions.
Altering the data flows in various ways could
lead to better overall results in terms of lowering
bandwidth requirements, alleviating error con-
ditions, encoding secured data, generic compres-
sion, and transcoding. However, MobiGATE
doesn’t aim to provide specific services or con-
figurations of services, but rather a general plat-
form to facilitate ease of deploying services
across the wireless links by providing core mech-
anisms and system services.

The Server
There’s a clear distinction in MobiGATE between
coordination and computation. Figure 2 shows the
MobiGATE server’s architecture, which is organized
into two executing planes: the streamlet execution
plane schedules streamlet instances for computa-
tion, whereas the stream coordination plane main-
tains the interaction and relationship between the
coordinated streamlets. The coordination manager
maintains a configuration table for each instance
of streamlet composition that contains meta-
information on the initial composition of streamlets
and reconfiguration actions in response to different
events. All this information comes from the corre-
sponding compiled MCL script that enforces those
high-level policies. Based on the derived table, the
coordination manager initializes and reconfigures
related applications appropriately.

On another plane, the streamlet manager
controls the execution of streamlet instances. Dur-
ing setup, the manager must locate classes of
streamlets and allocate necessary computational
resources for their execution. The event manager
generates system events in reaction to different
conditions; we discuss this component in more
detail later. Finally, in the streamlet directory,

64 SEPTEMBER • OCTOBER 2006 www.computer.org/internet/ IEEE INTERNET COMPUTING

Service Adaptation

Related Work in Service Adaptation

The Mobile Gateway for the Active
Deployment of Transport Entities

(MobiGATE) is not the first system to
examine service adaptation.UC Berkeley’s
TranSend Web accelerator proxy was one
of the earliest projects to explore adapta-
tion proxies aggressively.1 TranSend inter-
cepts HTTP requests from standard Web
clients and applies data-type-specific lossy
compression when possible. Unlike Mobi-
GATE, however,TranSend doesn’t have a
client-side system to reverse-process data
flows from the server, such as decompres-
sion and decryption.Thus,TranSend can’t
support applications that need client-side
processing for adaptation.

Odyssey was built at Carnegie Mellon
University to support challenging net-
work applications on portable comput-
ers.2 One interesting aspect of Odyssey
with regard to the adaptation framework
is that the applications interacting with
the system do much of the adaptation.

Odyssey itself doesn’t decide to convert
color video frames to black-and-white, for
example; rather, it instructs the applica-
tion that some action is required. This
aspect highlights a big difference between
Odyssey and MobiGATE, which com-
pletely shields applications from the adap-
tation work via a specially designed
event-propagation mechanism (which we
discuss in more detail in the main text).
Significantly, Odyssey’s approach to adap-
tation is to adjust the quality of individual
services to match available resources. It
doesn’t support dynamic reconfigurations
in the form of inserting or removing adap-
tation services at runtime.

Finally, the Michigan State University
RAPIDware project addresses the design
and implementation of middleware services
for dynamic,heterogeneous environments.3

RAPIDware is similar to MobiGATE in that
both use the concept of filters and streams,
have a lightweight client system, and can

dynamically reconfigure service composi-
tion structures.However,RAPIDware can’t
fully support branch and multilevel com-
positions of adaptation services. Based on
the MobiGATE Coordination Language
descriptions, MobiGATE can enforce an
analysis function to verify composition
activities’ correctness, which isn’t possible
in any of the other three projects.

References
1. A.Fox et al.,“Adapting to Network and Client Vari-

ability via On-Demand Dynamic Distillation,” Proc.

7th Internet Conf.Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS-

VII), 1996, pp. 160–170.

2. B. Noble et al.,“Agile Application-Aware Adapta-

tion for Mobility,” Proc. 16th ACM Symp. Operating

System Principles, ACM Press, 1997, pp. 276–287.

3. P.K. McKinley et al.,“Composable Proxy Services

to Support Collaboration on the Mobile Internet,”

IEEE Trans. Computers, vol. 52, no. 6, 2003, pp.

713–726.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on April 24,2010 at 22:39:25 UTC from IEEE Xplore. Restrictions apply.

streamlet providers can advertise their services.
This directory also provides code-level implemen-
tations of streamlets at runtime.

For the MobiGATE architecture, traditional
application development is separated into two inde-
pendent activities: streamlet development and MCL
script composition; we can also regard these activ-
ities as two different levels of programming. For
streamlet development, programmers don’t know or
care where their input comes from or where their
output goes. They know nothing about the applica-
tion’s coordination pattern, and focus on imposing
service logic on incoming messages. In contrast, in
MCL composition, programmers know no details
about the tasks the streamlets perform. The only
concern is ensuring that streamlets receive the right
input from the right source, deliver the results to the
right sinks, and get reconfigured correctly in
response to different system events. It’s possible to
use streamlets developed for one application in
other concurrent applications, even with their dif-
ferent coordination patterns. This reusability results
from the separation of concerns and is one of Mobi-
GATE’s most desirable properties.

The Client
In contrast to the server, the MobiGATE client sys-
tem has no concept of channel or coordination. All
the composition information is already recorded in
the incoming message header. At the client side,
the system simply needs to read the message head-
ers and distribute the messages to corresponding
client streamlets for reverse processing. It then
sends the resultant messages to higher-layered

applications. This asymmetry mechanism has
greatly liberated MobiGATE client systems from
heavy coordination logic and translates into much
lower consumption of computing resources and
energy on the client side.

The Event System
The generation and propagation of system events
is another important issue we considered when
designing MobiGATE. Today’s Internet clients vary
widely with respect to both hardware and software
properties, including screen size, color depth,
effective bandwidth, processing power, and the
ability to handle different data formats. To build a
dynamically adaptable system, we had to capture
the various client variations and model them into
a standard and recognizable form before the sys-
tem could respond to them.

In the MobiGATE event system, we classified all
client variations into four categories, each of which
represents one axis along which clients can vary.
System command is some system-generated event
that manages running applications; network vari-
ation is related to underlying network conditions;
and hardware variation and software variation cor-
respond to different settings of mobile clients. In
contrast to some existing adaptive systems, Mobi-
GATE should completely shield overlying applica-
tions from system events and the resultant
adaptation work. To achieve this, we designed a
kernel entity, the event manager we mentioned ear-
lier, to control the event system’s operation, includ-
ing event subscription, triggering, and monitoring.
The event manager monitors the underlying client

IEEE INTERNET COMPUTING www.computer.org/internet/ SEPTEMBER • OCTOBER 2006 65

Applying Coordination

Figure 2. MobiGATE server architecture. The system consists of two execution planes: the streamlet execution and the
stream coordination. The former schedules the computation of streamlets, whereas the latter is responsible for
communications between different streamlets.

Stream coordination plane

Streamlet execution plane

Stub
Stub

Stub
Stub

Publish

Compose

Streamlet
directory

Streamlet
manager

Coordination
manager

Event
manager

Streamlet developer

MobiGATE coordination
language (MCL) programmer

MCL script

MCL
compiler

Streamlet
2

Streamlet
N

Streamlet
3

Streamlet
1

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on April 24,2010 at 22:39:25 UTC from IEEE Xplore. Restrictions apply.

variations and composes corresponding events in
response to various situations. Simultaneously, it
multicasts events among different stream compo-
sitions, which will invoke the onEvent() method
after they receive these events. To avoid incurring
overheads from processing this flood of events,
individual streams can subscribe to events of inter-
est and react to only those by performing appro-
priate reconfiguration, while ignoring events that
they consider superfluous. To support this function,
the event manager is equipped with the sub-
scribeEvent()method, which stream applications
can use to register their events of interest.

Case Example
We wanted to fully exercise the MobiGATE sys-
tem’s components by setting up a realistic test bed
in the form of a stream application operating over
an emulated wireless network. To conduct this case
study, we implemented the entire MobiGATE sys-
tem and its runtime environment on a Java plat-
form to promote maximum interoperability across
heterogeneous systems. The testing setup included
three PCs: one acted as the MobiGATE server resid-
ing on the wired departmental LAN; a second acted
as the mobile node; and the third, installed with the
NIST Net network emulator, we configured to act
as a wireless router for emulating a wireless oper-
ating environment. Having a single server and a
single client simplified the experimental scenario,
while still retaining the experiments’ end-to-end
semantics. Importantly, the setup let us complete-
ly emulate a real system operation that exercises
the interactions across all entities, including the
proxies and client. We also prepared a pragmatic

example of the composition of service entities. For
this experiment, we used the following service enti-
ties, in the form of streamlets:

• switch divides incoming messages based on
the data’s semantic type;

• image lower size reduces the size of incom-
ing images;

• image down sampling reduces the sample rate
to create lossy compression of an image;

• text compress a generic text compressor; and
• merge integrates different types of information

into a whole body.

In the application, a component continuously
generated several real image and text messages. The
system processed image messages via the switch,
image lower size, image down sampling, and
merge streamlets successively, from start to finish.
Text messages encountered a different situation,
however. Under normal conditions (bandwidth
greater than 100 Kbytes per second), the text mes-
sages passed only through the streamlets switch
and merge. However, when the bandwidth fell
below 100 Kbytes per second, the system inserted
the text compress streamlet between the other two
to adapt to the poor bandwidth. After recording
each message’s sending and receiving time, we cal-
culated the time incurred to transmit each message
and obtained the overall system throughput.

We thoroughly measured system throughput
for the experiment over bandwidths of 20, 50, 100,
200, 500, and 750 Kbytes, and 1 and 2 Mbytes per
second, successively. Figure 3 shows the results.
System throughput improved noticeably with the
MobiGATE system as compared with a setup that
directly transferred messages across the wireless
link. The throughput gain increased as bandwidth
decreased. We expected this because the effect of
applying streamlet services to reduce the amount
of required bandwidth begins to take prominence.
When the bandwidth fell below 100 Kbytes per
second, the system invoked a special reconfigura-
tion mechanism to insert the text compress
streamlet into the stream. The results indicate that
the system throughput improved greatly (from 1
Kbyte to 4 to 7 Kbytes per second). The experi-
ments clearly indicate MobiGATE’s benefit and its
ability to offset processing overheads that deploy-
ing the streamlet application might incur. This is
particularly true if we deploy MobiGATE in an
environment in which resource availability is
dynamic and scarce.

66 SEPTEMBER • OCTOBER 2006 www.computer.org/internet/ IEEE INTERNET COMPUTING

Service Adaptation

Figure 3. Experimental results. The MobiGATE system obtained
improvement in system throughput over multiple bandwidths.

0

5

10

15

20

25

30

35

40

45

2,000 1,000 750 500 200 100 50 20

Bandwidth (Kbytes/sec)

Using MobiGATE
Not using MobiGATE

Sy
st

em
 t

hr
ou

gh
pu

t
(K

by
te

s/
se

c)

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on April 24,2010 at 22:39:25 UTC from IEEE Xplore. Restrictions apply.

Figure 4 shows MobiGATE’s adaptation effects
for transforming image messages in the experi-
ment. Figure 4a presents the original image; Fig-
ure 4b shows the results of this image passing
through the image down sampling streamlet; and
Figure 4c shows the effects of the image lower
size streamlet. Finally, Figure 4d shows the
resulting image that made it to the client. By pass-
ing images through these streamlets, MobiGATE
can greatly reduce transmission volume, while
concurrently supporting mobile clients with
smaller displays.

Our approach to service adaptation has several
desirable properties, including reusability, ease

of modification, and maintenance of an intuitive
processing flow. Our empirical experimental results
demonstrated the system’s effectiveness in adapt-
ing data flows over an emulated wireless link while
incurring insignificant computational overheads
in its execution environment.

As an adaptive system running in the mobile
world, MobiGATE needs to consider many system
and deployment issues — far more than the sepa-
ration of concerns we discussed in this article.
Scalability, security, and heterogeneity are three
such important topics necessitating future explo-
ration before we can realistically deploy Mobi-
GATE in an open and wide-area environment.

Acknowledgments
Hong Kong Polytechnic University Central Research Grant G-

U154 and Internal Competitive Research Grant AP-F82 sup-

ported this work.

References

1. R. Caceres and L. Iftode, “Improving the Performance of

Reliable Transport Protocols in Mobile Computing Envi-

ronments,” IEEE J. Selected Areas in Comm., vol. 13, no. 5,

1995, pp. 850–857.

2. A.T.S. Chan and S.N. Chuang, “MobiPADS: A Reflective

Middleware for Context-Aware Computing,” IEEE Trans.

Software Eng., vol. 29, no. 12, 2003, pp. 1072–1085.

3. A. Fox et al., “Adapting to Network and Client Variability

via On-Demand Dynamic Distillation,” Proc. 7th Internet

Conf. Architectural Support for Programming Languages

and Operating Systems (ASPLOS-VII), 1996, pp. 160–170.

4. B. Noble et al., “Agile Application-Aware Adaptation for

Mobility,” Proc. 16th ACM Symp. Operating System Prin-

ciples, ACM Press, 1997, pp. 276–287.

5. P.K. McKinley et al., “Composable Proxy Services to Sup-

port Collaboration on the Mobile Internet,” IEEE Trans.

Computers, vol. 52, no. 6, 2003, pp. 713–726.

6. T.W. Malone and K. Crowston, “The Interdisciplinary Study

of Coordination,” ACM Computing Surveys, vol. 26, 1994,

pp. 87–119.

7. Y. Zheng and A.T.S. Chan, “ Stream Composition for High-

ly Adaptive and Reconfigurable Mobile Middleware,” Proc.

28th IEEE Ann. Int’l Computer Software and Applications

Conf. (COMPSAC 04), IEEE Press, 2004, pp. 122–127.

Yongjie Zheng is a PhD student in the University of Florida’s

Department of Computer and Information Science and

Engineering. His current research includes adaptive mid-

dleware, software architecture, and mobile computing.

Zheng has a BE in computer science and technology from

Tsinghua University and an MPhil in computer science

from the Hong Kong Polytechnic University. Contact him

at yzheng@cise.ufl.edu.

Alvin T.S. Chan is an associate professor at the Hong Kong Poly-

technic University and founding member of a university

spin-off company, Information Access Technology. He is

an active consultant and has been providing consultancy

services to both local and overseas companies. His research

interests include computer networking, mobile computing,

and context-aware computing. Chan has a PhD in com-

puter engineering from the University of New South Wales,

Australia. He is a member of the IEEE and the ACM. Con-

tact him at cstschan@comp.polyu.edu.hk.

Grace Ngai is an assistant professor at the Hong Kong Poly-

technic University. Her research interests include natural

language processing, machine learning, and mobile com-

piling. Ngai has a PhD in computer science from the Johns

Hopkins University. She is a member of the ACM. Contact

her at csgngai@comp.polyu.edu.hk.

IEEE INTERNET COMPUTING www.computer.org/internet/ SEPTEMBER • OCTOBER 2006 67

Applying Coordination

Figure 4. MobiGATE’s adaptation effects on image
data. (a) The original image (12.9 Kbytes) passes
through (b) the image down sampling streamlet
(3.18 Kbytes) and c) the image lower size
streamlet (8.63 Kbytes), resulting in (d) a smaller,
lower-quality image (2 Kbytes), which the client
receives on a smaller display.

(a) (b)

(d)(c)

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on April 24,2010 at 22:39:25 UTC from IEEE Xplore. Restrictions apply.

