
CSE5311

Design and Analysis of Algorithms

8/24/2009 1CSE5311 Fall 2009      M Kumar

What are algorithms?
• An algorithm is a precise and unambiguous specification of a 

sequence of steps that can be carried out to solve a given 
problem or to achieve a given condition.

• An algorithm is a computational procedure to solve a well 
defined computational problem. 

• An algorithm accepts some value or set of values as input 
and produces a value or set of values as output.

• An algorithm transforms the input to the output.

• Algorithms are closely intertwined with the nature of the 
data structure of the input and output values.
– Data structures are methods for representing the data models on a computer whereas 

data models are abstractions used to formulate problems.

8/24/2009 2CSE5311 Fall 2009      M Kumar



Where do we use Algorithms?

• Everyday Life
– Going from Point A to Point B
– A recipe for preparing a food item
– Decision making

• Computer Science
– AI
– Databases
– Networks
– Multimedia Systems

• Biology
– Bioinformatics
– Ant colonies

• Economics
• Marketing
• Running a Business
• Music
• Games
• Others … please add

8/24/2009 CSE5311 Fall 2009      M Kumar 3

Example Algorithms

• An algorithm to sort a sequence of natural numbers into non‐
decreasing order
– Application : Lexicographical ordering

• An algorithm to find a shortest path from one node to 
another in a graph
– Application: Routing in computer networks

• An algorithm to find the best scheduling of events to 
resources
– Application: Lecture halls to courses

• An algorithm to recognize a substring in a string of letters
– Application: Word find in a text.

8/24/2009 4CSE5311 Fall 2009      M Kumar



Real‐life Examples

• Travelling sales person problem

• Google
– Probe, crawl, search, sort, rank….

• Amazon
– Search, mine, match, rank….

• Travelocity
– Search, mine, match, rank,…

• Netflix (http://netflix.com)
• New Releases, Classics, TV episodes and more on DVD

Over 100,000 DVD titles. 
– 100 shipping points nationwide and more than 95 percent of our members receive their DVDs in 

about one business day. 

8/24/2009 5CSE5311 Fall 2009      M Kumar

Problem 1

• A man needs to transport a wolf, a goat and a cabbage 
across a river. The boat has room only for the man and one 
other item (either the wolf, the goat or the cabbage). In the 
absence of the man the wolf would eat the goat and the 
goat would eat the cabbage. Solve this problem for the man.

8/24/2009 CSE5311 Fall 2009      M Kumar 6



Problem 2

• Four persons A,B, C, and D wish to cross a bridge. It is dark at
night and they need to use the only flashlight in their 
possession, that has a battery life only 17 mins. A maximum 
of two people can cross the bridge at any given time. Each 
person walks at a different pace and a pair must walk at the 
slower person’s pace. The times taken by the four persons 
(if allowed to cross individually) are given as: A‐ 1 min; B – 2 
mins; C – 5 mins; and D‐10 mins;

8/24/2009 CSE5311 Fall 2009      M Kumar 7

Problem 3

• The town of Konigsberg (now Kaliningrad) lay on the banks and on two islands of 
the Pregel river. The city was connected by 7 bridges. The puzzle (as encountered 
by Leonhard Euler in 1736) : Whether it was possible to start walking from 
anywhere in town and return to the starting point by crossing all bridges exactly 
once.

8/24/2009 CSE5311 Fall 2009      M Kumar 8

A

B

C D

Konigsberg bridges

B

A

C
D



Course Description 

• Design and Analysis of Algorithms is THE most important basic 
course in any graduate computer science and engineering 
curriculum. 
– It is vital for every computer science student to be fluent with

algorithms and their analysis. 
– Students are encouraged to solve homework problems and 

discuss/solve problems in the class. 
– Each student will be given one specific algorithm or problem to carry 

out an in‐depth study. 

• Typically, this course should be taken in the very first 
semester of your graduate study because algorithms are used 
in Networks, Operating Systems, Databases, and other 
(including advanced) courses.

8/24/2009 CSE5311 Fall 2009      M Kumar 9

Course Objectives

• The objective of this course is to build a solid foundation of 
the most important fundamental subject in computer science. 
Creative thinking is essential to algorithm design. Algorithm 
analysis and verification demands sound mathematical 
acumen and programming skills.

8/24/2009 CSE5311 Fall 2009      M Kumar 10



Mode of Teaching

• The class meets twice a week (Mondays and Wednesdays 1:00 to 2:20pm). 
– Power point slides and other lecture material will be used. 
– At the end of each topic, students must attempt to solve exercise problems. 
– There will be no specific text book for the class –

• the instructor will provide comprehensive notes and references to relevant material. 
• Exercise problems can be found on the course web page and in reference books. 
• All students are expected to work on these problems and participate in the class discussions.

• The course on Algorithms is critical to your development as a computer 
scientist, a researcher, a creative thinker and/or a problem solver. 
– algorithms are extensively used in 

• databases, networks, artificial intelligence, bioinformatics, pervasive and mobile computing, robotics, security, 
architecture, all engineering and science disciplines, finance, management, music, biology and indeed in 
everyday life. 

• You will be encouraged to think on your own and to discuss solutions with 
your peers. 

• The course is not limited to any programming language. 
• Students are strongly encouraged to use reference books and course material 

that will be available and updated from time to time on the course page. 

8/24/2009 CSE5311 Fall 2009      M Kumar 11

Information

• Instructor
– Mohan Kumar

• 333 NH
• Email: mkumar@uta.edu
• Phone: (817) 272‐3610

• Class: 
– Mon/Wed   ‐ 1:00 to 2:20 PM 314 PH

• Office Hours
– Mon/Wed ‐ 2:30 to 4:00 PM 

• Course site: 
– http://crystal.uta.edu/~kumar/cse5311_09FLDAA      

• GTA: TBA  

8/24/2009 CSE5311 Fall 2009      M Kumar 12



Syllabus

• Review of Asymptotic Analysis and Growth of Functions; 
– Trees, Heaps, and Graphs; and Recurrences.

• Greedy Algorithms: 
– Minimum spanning tree, Union‐Find algorithms, Kruskal's Algorithm, Clustering, 

Huffman Codes, and Multiphase greedy algorithms. 
• Dynamic Programming: 

– Shortest paths, negative cycles, matrix chain multiplications, sequence alignment, RNA 
secondary structure, application examples.

• Network Flow: 
– Maximum flow problem, Ford‐Fulkerson algorithm, augmenting paths, Bipartite 

matching problem, disjoint paths and application problems.
• NP and Computational tractability: 

– Polynomial time reductions; The Satisfiability problem; NP‐Complete problems; and 
Extending limits of tractability.

• Approximation Algorithms
– Local Search and Randomized Algorithms

• Applications of Algorithms, sample examples

8/24/2009 CSE5311 Fall 2009      M Kumar 13

Reference Books

• Class Notes, Power Point Slides, and Exercise Problems 
– Mohan Kumar

• Algorithm Design
– Jon Kleinberg and Éva Tardos, Pearson Addison‐Wesley

• The Design and Analysis of Algorithms 1974 
– AV Aho, JE Hopcroft and JD Ullman, Addison‐Wesley Publishing Company

• Introduction to Algorithms: A Creative Approach, Reprinted 1989 
– Udi Manber, Addison‐Wesley Publishing Company 

• Introduction to Algorithms, Second Edition, 2001 
– T Cormen, C E Leiserson, R L Rivest and C Stein McGraw Hill and MIT Press 

• Graph Algorithms, 1979 
– Shimon Even, Computer Science Press 

• The Design & Analysis of Algorithms, 2005
– Anany Levitan, Addison Wesley

• The Art of Computer Programming, Vols. 1 and 3 
– Knuth, Addison Wesley Publishing Company

8/24/2009 CSE5311 Fall 2009      M Kumar 14



Assessment

• Quizzes and class participation: 40% 

• The structure of the quizzes will be discussed in class, at least 
one week prior to the quiz. 
– Quiz 1 (10%): September 9, 2009 

– Quiz 2 (10%): September 23, 2009

– Quiz 3 (10%): October 07, 2009
– Quiz 4 (10%): October 28, 2009

• Final Exam (30 %): December 02, 2009

• Lab Assignment: 30%

• Quizzes 1 thru 4 are of duration 60 minutes and the Final 
Exam is of duration 2 hours.

8/24/2009 CSE5311 Fall 2009      M Kumar 15

QUESTIONS? 

8/24/2009 CSE5311 Fall 2009      M Kumar 16



Study of Algorithms

• Designing algorithms

• Expressing algorithms

• Algorithm Validation

• Algorithm Analysis

• Alternative techniques

8/24/2009 CSE5311 Fall 2009      M Kumar 17

Algorithms vs. Program Code

Algorithms

• An algorithm,
∗ is an abstraction of an 

actual program

∗ is a computational 
procedure that terminates

• An algorithm is composed 
of a finite set of steps,

∗ each step may require one 
or more operations,

∗ each operation must be 
definite and effective

Program Code

• A program is an expression 
of an algorithm in a 
programming language.

• A program code conforms 
to the dictates of policies 
and limitations of a 
programming language. 

8/24/2009 CSE5311 Fall 2009      M Kumar 18



8/24/2009 CSE5311 SPRING 2007     MKUMAR 19

Presenting algorithms
• Description : The algorithm will be described in English, with the 

help of one or more examples

• Specification : The algorithm will be presented as pseudo code  

(We don't use any programming language)

• Validation  : The algorithm will be proved to be correct for all 
problem cases

• Analysis:  The running time or time complexity of the algorithm will 
be evaluated

Algorithms

• An algorithm is designed to solve a given problem
• An algorithm does not take into account the intricacies and 

limitations of any programming language. 
– we are free to express ourselves when designing an algorithm.

• An algorithm should be unambiguous
– it should have precise steps

• An algorithm has three main components:
– input
– the algorithm itself and
– output.

• An algorithm will be implemented using a programming language
• An algorithm designer is like an architect while programmers are 

like masons, carpenters, plumbers etc.)

8/24/2009 CSE5311 Fall 2009      M Kumar 20



Algorithms (Contd.)

• The algorithms we design should be
– Simple

• Unambiguous (e.g. The students should understand algorithms the instructor gives in 
the class and the GTA should understand the algorithms students write in a test or 
exam)

– Feasible
• Should be implementable using a programming language and

• executable on a computer.

– Cost effective
• CPU time

• Memory used

• Communication

• Energy

8/24/2009 CSE5311 Fall 2009      M Kumar 21

Algorithm Design

• Abstract solution to the problem
– Algorithmic solution to problems are applicable to many applications

• Resource limitations and constraints
– Time

• Most common criteria
• Modern applications demand more computing power and time

– Memory
• Modern applications demand more computing power and time
• Data in main memory 

– Energy
• Critical to battery operated devices

• Application requirements
– Input/output limitations
– Time, space

8/24/2009 22CSE5311 Fall 2009      M Kumar



Algorithm Evaluation
• We evaluate the performance of algorithms based on 

– time (CPU‐time) and 

– Space (semiconductor memory) 

• Both are expensive 

• The time taken to execute an algorithm is dependent on one 
or more of the following, 

• number of data elements
• the degree of a polynomial
• the size of a file to be sorted
• the number of nodes in a graph

• Computer scientists should endeavour to minimize time, space 
and energy required.

8/24/2009 CSE5311 Fall 2009      M Kumar 23

Expressing Algorithms

Procedure ALGO_X (A [1,…,n])
• Input : unsorted array A
• Output : Sorted array A 
• for i ← 1 to n‐1
• small ← i;
• for j ← i+1 to n
• if A[j] < A[small] then
• small ← j;
• temp ← A[small];
• A[small] ← A[i];
• A[i] ← temp;
• end

Procedure AlGO_Y (A[1,…,n],i,n)
• Input : Unsorted array A
• Output : Sorted array A
• while i < n  
• do small ← i;
• for j ← i+1 to n 
• if A[j] < A[small] then
• small ← j;
• temp ← A[small];
• A[small] ← A[i];
• A[i] ← temp;
• ALGO_Y(A,i+1,n)

end
• end

8/24/2009 CSE5311 Fall 2009      M Kumar 24



Analyzing Algorithms

• We start with data size n

• Last line – same algorithm 
recalled, but for data  size n‐
1

• The algorithm takes (n‐1) 
steps to find the smallest 
element in the array

• T(n) = T(n‐1) + b * n

8/24/2009 CSE5311 Fall 2009      M Kumar 25

Procedure AlGO_Y (A[1,…,n],i,n)
• Input : Unsorted array A
• Output : Sorted array A
• while i < n  
• do small ← i;
• for j ← i+1 to n 
• if A[j] < A[small] then
• small ← j;
• temp ← A[small];
• A[small] ← A[i];
• A[i] ← temp;
• ALGO_Y(A,i+1,n)
• end

Recursive call for data size n‐
1

Steps for finding 
the smallest 
element plus 
swap

Analysis (Contd.)

• T(n) = T(n‐1) + b. n  (1) 
• T(n‐1) = T(n‐2) + (n‐1)b   (2) 
• T(n‐2) = T(n‐3) + (n‐2) b  (3)
• . . .
• T(n‐i) = T(n‐(i+1)) + (n‐i)b (4)

Using (2) in (1)
T(n) = T(n‐2) + b [n+(n‐1)]

= T(n‐3) + b [n+(n‐1)+(n‐2)
= T(n‐(n‐1)) + b[n+(n‐1)+(n‐2) 

+ . . . +(n‐(n‐2))]

• T(n) = O(n2)

8/24/2009 CSE5311 Fall 2009      M Kumar 26



8/24/2009 CSE5311 SPRING 2007     MKUMAR 27

Asymptotic Notations

–O‐notation

» Asymptotic upper bound

• A given function f(n), is O (g(n)) if there exist positive 

constants c and n0 such that  0 ≤ f(n) ≤ c g(n) for all n≥ n0. 

• O (g(n)) represents a set of functions, and

O (g(n)) = {f(n): there exist positive constants c and n0 such 

that 0 ≤ f(n) ≤ c g(n) for all n≥ n0}. 

8/24/2009 CSE5311 SPRING 2007     MKUMAR 28

O Notation

0
5

10
15
20
25
30
35
40

1 2 3 4 5 6 7 8 9

f(n) = 2n+6
cg(n) = 4n

c = 4

n0 = 3.5

f(n), is O (g(n)) if there exist 

positive constants c and n0

such that    0 ≤ f(n) ≤ c g(n)

for all  n≥ n0. 



8/24/2009 CSE5311 SPRING 2007     MKUMAR 29

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

1 10 100 1000 10000

log n
n
n logn
n^2
2^n

8/24/2009 CSE5311 SPRING 2007     MKUMAR 30

Ω‐notation
Asymptotic lower bound

• A given function f(n), is Ω (g(n)) if there exist positive 

constants c and n0 such that 0 ≤ c g(n) ≤ f(n) for all n≥ n0. 

• Ω (g(n)) represents a set of functions, and

Ω(g(n)) = {f(n): there exist positive constants c and n0 such 

that 0 ≤ c g(n) ≤ f(n) for all n≥ n0}



8/24/2009 CSE5311 SPRING 2007     MKUMAR 31

Θ‐notation
Asymptotic tight bound

• A given function f(n), is Θ (g(n)) if there exist positive constants c1, 

c2,and n0 such that 0 ≤ c1g(n) ≤ f(n) ≤ c2 g(n) for all n≥ n0. 

• Θ (g(n)) represents a set of functions, and

Θ (g(n)) = {f(n): there exist positive constants c1, c2, and n0 such that 

0 ≤ c1g(n) ≤ f(n) ≤ c2 g(n) for all n≥ n0. 

O, Ω, and Θ correspond  (loosely) to “≤”, “≥”, and “=”. 

Running Times and Space

• How many times each statement is executed?
– Are there loops in the algorithm?

– Is the algorithm iterative, repetitive, recursive etc.

– How much memory is used in executing the algorithm?

8/24/2009 CSE5311 Fall 2009      M Kumar 32



Algorithm complexity

log 2n n nlog2n n2 n3 2n n!

n=10 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 4 secs

n=20 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 18 min 1025 yrs

n=50 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 36 yrs

n=100 < 1 sec < 1 sec < 1 sec < 1 sec 1 sec 1017 yrs

n=103 < 1 sec < 1 sec < 1 sec 1 sec 18min

n=104 < 1 sec < 1 sec < 1 sec 2 min 12 days

n=105 < 1 sec < 1 sec 2 secs 3 hours 32  yrs

n=106 < 1 sec 1 sec 20 secs 12 days 31710 
yrs

8/24/2009 CSE5311 Fall 2009      M Kumar 33

Processor performing 1 million high‐level instructions per second

J. Kleinberg and E. Tardos, Algorithm Design, Addison Wesley, 2005 

Constant Time

• Constant number of statements
– e.g., Let X = 4;

– Y = 6;

– if A[j] < A[small] then A[j] = SMALL

• The complexity (or running time) is O(1)

8/24/2009 CSE5311 Fall 2009      M Kumar 34



Logarithmic Time

• Divide and conquer algorithm

• Problem divided into two or more equal parts and each part 
solved recursively

• Binary Search Tree
– T (n) = c • T (n/2) + O(1)

– Time to solve problem of size n is equal to time to solve problem of 
size n/2 (multiplied by a constant) PLUS constant time. 

8/24/2009 CSE5311 Fall 2009      M Kumar 35

Linear Time

• The running time increases linearly with the size of the 
problem
– Computing the minimum of n data elements

– Merging two sorted lists

• O(n log2n) time algorithms
– Merge sort
– Quick sort

– Heap sort

8/24/2009 CSE5311 Fall 2009      M Kumar 36



Quadratic Time

• There are n points in a plane. If each point is specified by its 
(x,y) coordinates, find the closest pair of points.

• A brute force algorithm 

– What is the complexity of the algorithm?

– n(n‐1)/2 computational steps 
– Quadratic time

8/24/2009 CSE5311 Fall 2009      M Kumar 37

Dmin = ∞
For each point pi (xi,yi)

for each point pj (xj,yj)  such that i≠j 
compute Dij = √[ (xi‐xj)2 +(yi‐yj)2 ]
If  Dij < Dmin then Dij =Dmin

End
End

Polynomial Time

• Problems that can be solved in polynomial time
– Algorithms when implemented, can be executed in polynomial time –

O(nk)

8/24/2009 CSE5311 Fall 2009      M Kumar 38



Beyond Polynomial Time

• Some problems cannot be solved in polynomial time

• There are NO known polynomial solutions for these problems
– Traveling Salesperson is a classic example of such a problem
– We will study such problems and approximate solutions to these 

problems

8/24/2009 CSE5311 Fall 2009      M Kumar 39

Recursive Algorithms

• A recursive function is one that is called from within its own 
body.
– The call be direct or indirect

• F calls itself; F1 calls F2, F2 calls F1. 

8/24/2009 CSE5311 Fall 2009      M Kumar 40

Fact(n)
Begin

If n ≤ 1 then Fact (n) =1;
else Fact(n) = n*Fact(n‐1);

End

BASIS

INDUCTION



Applications of recursion
• The Towers if Hanoi problem consists of three pegs A, B, and C, and n rings of  

varying size. Initially the rings are stacked on peg A in order of decreasing size, the 
largest ring at the bottom. The problem is to move the rings from peg A to peg B 
one at a time in such a way that no ring is ever placed on a smaller ring. Peg C may 
be used for temporary storage of rings.  Write a recursive algorithm to solve this 
problem.  What is the execution time of your algorithm in terms of the number of 
times a ring is moved? 

8/24/2009 CSE5311 Fall 2009      M Kumar 41

. . .

Recursive Solution

• The problem
– Move n rings from A to B, using C as auxiliary

• Time taken 

8/24/2009 CSE5311 Fall 2009      M Kumar 42

if n > 1
Begin

move recursively (n‐1) rings from A to C, using B as auxiliary
move largest disk from A to B
move recursively (n‐1) disks from C to B, using A as auxiliary

End  

1)1(2)(
1)1(

+−=
=

nTnT
T



Switches

8/24/2009 CSE5311 Fall 2009      M Kumar 43

8/24/2009 CSE5311 Fall 2009      M Kumar 44

What is the recursion?
Define? 



Exercise Problems
1.  Write a recursive algorithm to find the maximum of n real numbers in an array A 

[0 .. n‐1].  What is the complexity of your algorithm? 

2. Derive an expression to find the sum of the first n squares, where n is a positive 
integer. Provide a proof for the sum using induction. Write an algorithm to find the 
sum of the first n squares. What is the complexity of the algorithm?

3. The input is a set S containing n real numbers, and a real number x. 
a.  Design an algorithm to determine whether there are two elements of S whose 
sum is exactly x. The algorithm should run in O(n log n) time. 
b.  Suppose now that the set S is given in a sorted order. Design an algorithm to solve 
the above problem in time O (n). 

4. Given an array of integers A[1..n], such that, for all i, 1 ≤i ≤ n, we have |A[i]‐
A[i+1]| ≤ 1. Let A[1] = x and A[n] = y, such that x < y. Design an efficient search 
algorithm to find j such that A[j] = z for a given value z, x ≤ z ≤ y. What is the maximal 
number of comparisons to z that your algorithm makes? 

8/24/2009 CSE5311 Fall 2009      M Kumar 45

Exercise Problems(Contd.)

• The Towers if Hanoi problem consists of three pegs A, B, and C, and n rings of  
varying size. Initially the rings are stacked on peg A in order of decreasing size, the 
largest ring at the bottom. The problem is to move the rings from peg A to peg b 
one at a time in such a way that no ring is ever placed on a smaller ring. Peg C may 
be used for temporary storage of rings.  Write a recursive algorithm to solve this 
problem.  What is the execution time of your algorithm in terms of the number of 
times a ring is moved? 

8/24/2009 CSE5311 Fall 2009      M Kumar 46



8/24/2009
CSE5311 FALL  2008     

MKUMAR 
47

Compare the following pairs of functions in terms of order of magnitude. In 
each case, say whether f(n) = O(g(n), f(n) = Ω (g(n)), and/or f(n) = Θ (g(n))

f(n) g(n)

a. 100n +log n n + (log n)2

b. log n log(n2)

c. n2/log n n(log n)2

d. (log n)log n n/log n

e. √n (log n)5

f. n 2n 3n


