Flow Networks

Topics

Flow Networks
Residual networks
Ford-Fulkerson’s algorithm
Ford-Fulkerson's Max-flow Min-cut Algorithm
Flow Networks

A directed graph can be interpreted as a flow network to analyse material flows through networks.

Material courses through a system from a source (where it is produced) to a sink (where it is consumed). Examples:

- Water through pipelines
- Newspapers through distribution system
- Electricity through cables
- Cars on a production line
- On roads

The source produces the material at a steady rate. The sink consumes the material at a steady rate.
Flow: the rate at which the material moves from one point to another

- 100 litres of water per hour in a pipe
- 30 Amperes of electric current in a circuit

The rate at which a material enters a vertex = the rate at which the material leaves the vertex
The flow network $G = (V,E)$ is a directed graph in which each edge $(u,v) \in E$ has a nonnegative capacity $c(u,v) \geq 0$. If $(u,v) \notin E$ then $c(u,v) = 0$.

A flow network has a source vertex s, and a sink vertex t. For every vertex $v \in V$ there is a path from s to v and v to t in a connected graph.
A flow in G is a real-valued function $f : V \times V \rightarrow R$ that satisfies the following three properties:

1. **Capacity constraint**: For all $u, v \in V$, we require $f(u, v) \leq c(u, v)$. The net flow from one vertex to another must not exceed the given capacity.

2. **Skew symmetry**: For all $u, v \in V$, we require $f(u, v) = -f(v, u)$. The net flow from a vertex u to a vertex v is the negative of the net flow in the reverse direction. The net flow from a vertex to itself is zero for all $u \in V$, that is $f(u, u) = 0$.

3. **Flow conservation**: For all $u \in V - \{s, t\}$, we require

 $$\sum_{v \in V} f(u, v) = 0$$

 The total net flow out of a vertex other than the source or sink is zero.
The quantity \(f(u,v) \) can be negative or positive, it is called the net flow from vertex \(u \) to \(v \).

The value of a flow is defined as

\[
|f| = \sum_{v \in V} f(s, v)
\]

In the maximum-flow problem, we are given a flow network \(G \) with source \(s \) and sink \(t \), and we wish to find a flow of maximum value from \(s \) to \(t \).

There is no net flow between \(u \) and \(v \) if there is no edge between them. If \((u,v) \notin E \) and \((v,u) \notin E \), then \(c(u,v) = c(v,u) = 0 \).

Hence, the capacity constraint, \(f(u,v) \leq 0 \) and \(f(v,u) \leq 0 \).

By skew symmetry, \(f(u,v) = -f(v,u) \),

therefore, \(f(u,v) + f(v,u) = 0 \).

Nonzero net flow from vertex \(u \) to vertex \(v \) implies that \((u,v) \in E \) or \((v,u) \in E \) (or both).
Consider the network $G=(V,E)$ shown in the figure below. The network is for a transport system that transports crates of an item from source vertex s to sink vertex t through a number of intermediate points. Each edge $(u,v) \in E$ in the network is labeled with its capacity $c(u,v)$.
Let us consider a flow in G, $|f| = 19$
If $f(u,v) > 0$, edge (u,v) is labeled $f(u,v)/c(u,v)$
If $f(u,v) \leq 0$, the edge is labeled by its capacity only.
The positive net flow entering a vertex \(v \) is defined by

\[
\sum_{u \in V} f(u,v)
\]

\(f(u,v) > 0 \)

Initially, \(c(a,b) = 8 \), and \(c(b,a) = 3 \) -- Fig. a.

\(f(a,b) = 5 \) and \(f(b,a) = 2 \), -- Fig. b

the net flow is shown as 3/8 in direction a to b – Fig. c
If we increase the flow from b to a from 2 to 6 then the net flow is 1/3 in the direction b to a as shown in Fig. d.
The Ford_Fulkerson method

The method is iterative,
Starts with \(f(u,v) \) for \((u,v) \in V\), initial flow of value 0.
The method is based on the augmenting path which is defined as a path from \(s \) to \(t \) along which we can push more flow and then augment flow along this path.

Procedure Ford_Fulkerson_method(\(G,s,t \))

1. \(f \leftarrow 0 \);
2. while there exists an augmenting path \(p \)
3. do augment flow along path \(p \)
4. return \(f \)
Residual Networks

Consider a flow network $G(V,E)$ with source s and sink t and let f be a flow in G. Consider a pair of vertices $u,v \in V$. Residual capacity between u and v is given by

$$r(u,v) = c(u,v) - f(u,v)$$

-the additional net flow we can push from u to v before exceeding the capacity.

For example, if $c(u,v) = 25$ and $f(u,v) = 19$, then $r(u,v) = 6$. If $f(u,v) < 0$ then $r(u,v) > c(u,v)$

Given a flow network $G=(V,E)$ and a flow f, the residual network of G induced by f is $G_f=(V,E_f)$, where $E_f = \{(u,v) \in V \times V : r(u,v) > 0\}$
Each edge in the residual network can admit positive net flow only.

The residual network may include several edges that are not in the original network, \((u,v) \in E_f\) and \((u,v) \notin E\) is possible \((E_f\) is not a subset of \(E\)). However, \((u,v)\) appears in \(G_f\) only if \((v,u) \in E\) and there is a positive flow from \(v\) to \(u\). Because the net flow \(f(u,v)\) is negative,

\[
r(u,v) = c(u,v) - f(u,v) > 0 \quad \text{and} \quad (u,v) \in E_f
\]
An edge \((u,v)\) can appear in a residual network only if at least one of \((u,v)\) and \((v,u)\) appears in the original network.

\[|E_f| \leq 2|E| \]

Augmenting Paths

It is a simple path from \(s\) to \(t\) in \(G_f\). Each edge \((u,v)\) on an augmenting path admits some additional positive net flow from \(u\) to \(v\) without violating the capacity constraint on the edge. The residual capacity of a path \(p\) is given by,

\[r(p) = \min \{ r(u,v) : (u,v) \text{ is in } p \} \]
Let's define a flow function f_p,

$$f_p = \begin{cases}
 r(p) & \text{if } (u,v) \text{ is on } p, \\
 -r(p) & \text{if } (v,u) \text{ is on } p \\
 0 & \text{otherwise}
\end{cases}$$

f_p is a flow in G_f with value $|f_p| = r(p) > 0$. If we add f_p to f, we get another flow in G whose value is closer to the maximum.
Algorithm

Procedure **Ford-Fulkerson**\((G,s,t)\)

Input : Flow Network \(G(V,E)\)

Output : Maximum flow for the given network

1. for each edge \((u,v) \in E\)
2. \hspace{1em} do \hspace{1em} \(f[u,v] \leftarrow 0\);
3. \hspace{1em} \(f[v,u] \leftarrow 0;\)
4. while there exists a path \(p\) from \(s\) to \(t\) in the residual network \(G_f\)
5. \hspace{1em} do \hspace{1em} \(r(p) \leftarrow \min \{r(u,v) : (u,v) \text{ is in } p\};\)
6. \hspace{1em} for each edge \((u,v)\) in \(p\)
7. \hspace{1em} \hspace{1em} do \hspace{1em} \(f[v,u] \leftarrow - f[u,v];\)
8. \hspace{1em} \hspace{1em} \hspace{1em} \(\hspace{1em} f[u,v] \leftarrow f[u,v] + r(p);\)
9. \hspace{1em} return
Ford Fulkerson – cuts of flow networks

New notion: cut \((S,T)\) of a flow network

A cut \((S,T)\) of a flow network \(G=(V,E)\) is a partition of \(V\) in to \(S\) and \(T = V \setminus S\) such that \(s \in S\) and \(t \in T\).

In the example:

\[S = \{s,v1,v2\}, T = \{v3,v4,t\} \]

Net flow \(f(S,T) = f(v1,v3) + f(v2,v4) + f(v2,v3)\)

\[= 12 + 11 + (-0) = 23 \]

Capacity \(c(S,T) = c(v1,v3) + c(v2,v4)\)

\[= 12 + 14 = 26 \]

Implicit summation notation: \(f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v)\)
Ford Fulkerson – cuts of flow networks

Assumption:

The value of any flow f in a flow network G is bounded from above by the capacity of any cut of G.

Lemma: $|f| \leq c(S, T)$

\[
|f| = f(S, T) = \sum_{u \in S} \sum_{v \in T} f(u, v) \\
\leq \sum_{u \in S} \sum_{v \in T} c(u, v) = c(S, T)
\]
Exercise Set 6

- Suppose that each source s_i in a multisource, multisink problem produces exactly p_i units of flow, so that $f(s_i, V) = p_i$. Suppose that each sink t_j consumes exactly q_j units so that $f(V, t_j) = q_j$, where . Show how to convert the problem of finding a flow f that obeys these additional constraints into the problem of finding a maximum flow in a single-source, single-sink flow network.

- Given a flow network $G = (V, E)$, let f_1 and f_2 be functions from $V \times V$ to \mathbb{R}. The flow sum $f_1 + f_2$ is the function from $V \times V$ to \mathbb{R} defined by $(f_1 + f_2)(u, v) = f_1(u, v) + f_2(u, v)$ for all $u, v \in V$. If f_1 and f_2 are flows in G, which of the three flow properties must the flow $f_1 + f_2$ satisfy, and which might it violate?

- The edge connectivity of an undirected graph is the minimum number k of edges that must be removed to disconnect the graph. For example, the edge connectivity of a tree is 1, and the edge connectivity of a cyclic chain of vertices is 2. Show that how the edge connectivity of an undirected graph $G = (V, E)$ can be determined by running a maximum-flow algorithm on at most $|V|$ flow networks, each having $O(V)$ vertices and $O(E)$ edges.
Bipartite Matching

• Finding a matching M in G of largest size
• A bipartite graph $G = (V,E)$ is an undirected graph whose node set is partitioned into two sets X and Y such that $V = X \cup Y$. Every edge $e \in E$ has one end in X and the other end in Y.
• A matching M in G is a subset of the edges $M \subseteq E$ such that each node $v \in V$ appears in at most one edge in M.

Bipartite graph and Flow Network

Each edge has a capacity of ONE