

Pervasive Computing and Communications

Mohan Kumar The University of Texas at Arlington <u>kumar@cse.uta.edu</u> <u>http://ranger.uta.edu/~kumar</u> http://cse.uta.edu/research/pico@uta

Students: H. Alex, G. Duffy, S. Kalasapur, M. Kim, B. Lagesse, N. Mallesh, D. Maxey, S. Patil, and K. Senthivel

This material is based upon work supported by the National Science Foundation under Grant Nos. STI -0129682and IIS-0326505 and The Texas Higher Education Coordinating Board's Advanced Research Program9/7/2010Kumar

Organization

- Motivation
- Pervasive Computing
- Services in pervasive environments
 - Modeling services
 - Service Composition
- PICO project at CSE@UTA
- SeSCo <u>Seamless Service Composition</u>
- Applications
- Conclusions
- Ongoing and Future work Possible Collaborations

Mark Weiser's prophecy

• "The most profound technologies are those that disappear. They weave themselves into the fabric of everyday life until they are indistinguishable from it."

Mark Weiser, "<u>The Computer for the Twenty-First Century</u>," *Scientific American,* pp. 94-10, September 1991

M. Kumar et al., Pervasive Information Communities Organization PICO: A Middleware Framework for Pervasive Computing, IEEE Pervasive Computing, July-September 2003, pp. 72-79.

9/7/2010

PICC

How can pervasive computing help?

- **Desired** actions
 - Detect and recognize events
 - Recognize high-level event
 - Discover and deploy services
 - Combine services
 - Match services to resources
 - Address dynamic issues
 - ...
- On a TIMELY, AUTOMATED, TRANSPARENT basis
- Solution:

Organization

- Motivation
- Pervasive Computing
- Services in pervasive environments
 - Modeling services
 - Service Composition
- PICO project at CSE@UTA
- SeSCo <u>Seamless Service Composition</u>
- Applications
- Conclusions
- Ongoing and Future work Possible Collaborations

Pervasive Computing: Challenges

- **Proactivity and transparency**
 - Delays, resource utilization, unobtrusive services
- Heterogeneity and interoperability
 - Unevenness, incompatibility, h/w, s/w, communication channel
- Location awareness and mobility
 - Handoff- vertical/horizontal, data dissemination/acquisition
- Authentication and security
 - Privacy vs. services, cost, agents, active networks, availability
- Smart environments
 - Deployment, Interference

M. Satyanarayanan, "Pervasive Computing: Vision and Challenges," IEEE Personal Computing, August 2001.

Enabling Technologies

- Networking Technologies
 - Registration and Auto-configuration
 - Mobility management
 - Active networking
 - Wireless access
- Computer Systems Technologies
 - Distributed systems
 - Mobile computing
 - Software agents
 - Information acquisition and dissemination
- Privacy, Trust, Authentication and Security
- Human-Computer Interfaces
 - Multi-modal
 - Voice, touch, GUI, brain-waves, implied command,

Middleware Services

- Glue heterogeneous entities
 - platform for interaction
- Match services to resources
 - Application specific
 - User profiles
- Combine resources and services
- Respond to user/application needs
- Mask unevenness
- Facilitate context-awareness
- Facilitate cooperation and collaboration

Organization

- Motivation
- Pervasive Computing
- Services in pervasive environments
 - Modeling services
 - Service Composition
- PICO project at CSE@UTA
- SeSCo <u>Seamless Service Composition</u>
- Applications
- Conclusions
- Ongoing and Future work Possible Collaborations

Service Composition

- Combining basic services into possibly complex services
- Typically works on the template matching principle
 - Requirements are specified in the form of a template
 - Runtime environment locates services that fit the place holders in the template
 - Coordination among identified services is performed by the runtime environment.
- Complex tasks can be broken down into subtasks
 - One template for each subtask
- Service discovery mechanisms available to locate available services
- Invocation of identified services
 - Event based
 - Process based
 - Task dependant

Service composition in pervasive computing

- Two types of composition mechanisms
- Static
 - Composition orchestrated prior to need
 - Capability to define finer interface dependency details
 - Ideal for stable, managed environments
 - Insufficient support for dynamism
- Dynamic
 - Composition formed once the request arises
 - Can consider the current context/service availability
 - Costly in terms of time for composition.

Current Work:

Research initiatives, no commercial implementations

Made to support systems, limited to pre-designed solutions Service composition used as a *delivery vehicle* for applications. Majority work on *discover* + *match* style

- Identify suitable services, mediate interactions, transactions among identified services
 - Spidernet¹, Reactive composition², Konark³
- Mostly variations of template matching schemes
- [1] X.Gu, k. Nahrstedt, "Dynamic QoS-aware multimedia service configuration in ubiquitous computing environments," 22nd International Conference on Distributed Computing Systems, 2002. Proceedings., 2-5 July 2002, Pages: 311 – 318.
- [2]] D. Chakraborty, F. Perich, A. Joshi, T. Finin, and Y. Yesha. "A Reactive Service Composition Architecture for Pervasive Computing Environments," 7th Personal Wireless Communications Conference (PCW'2002), Singapore, 2002.
- [3]/3./Heral, N. Desai, V. Verma, and C. Lee, "Konark a service discovery and deliveryprotocol for ad-hoc network," in Wireless Communications and Networking, 2003.WCNC 2003. 2003 IEEE, vol. 3, March 2003, pp. 2107 2113.

Organization

- Motivation
- Pervasive Computing
- Services in pervasive environments
 - Modeling services
 - Service Composition
 - Hierarchical Service Composition

PICO project at CSE@UTA

- SeSCo <u>Seamless Service Composition</u>
- Applications
- Conclusions
- Ongoing and Future work Possible Collaborations

PICO Project at CSE@UTA

- Pervasive Information Community Organization
 - Provides transparent, automated services: what you want, when you want, where you want, and how you want.
- PICO is a framework to create <u>mission-oriented</u> dynamic computing communities of software agents that perform tasks on <u>behalf of users</u> and devices <u>autonomously</u> over existing heterogeneous network infrastructures, including the Internet.
- Propose concept of "COMMUNITY COMPUTING" to provide continual, dynamic, automated and transparent services to users.

PICO Architecture

Basic Building Blocks of PICO

- Physical devices
 - Computer-enabled devices: small, wearable to large supercomputer
 - Sensing capabilities
 - Computational power
 - Communication capability
 - Actuators

- Software entities Delegents (Intelligent Delegate)
 - Intelligent SW agents service provisioning
 - Proxy-capable: exist on the infrastructure
 - Event-driven
 - Execute on host devices
 - Need a host for execution
 - Mobile, capable of communicating

Community Computing: PICO based middleware

- Formation of Computing Communities
 - Community Set of collaborating delegents
 - Service provisioning
 - Programmed/scheduled
 - Continuous services
 - Dynamic
 - Membership and community defined a priori
 - Goal-driven
 - Dynamically formed
 - Dynamically dismantled
 - Dynamically formed based on events

Devices

<u>Devices</u>

- $C = \langle C_{ID}, S, F \rangle$
 - C_{ID} : Device identifier
 - S: System characteristics
 - F_c : Functionality of device
- For example, *C* = Heart Monitor
 - S = <operating system; processor type; memory; I/O type; battery; wireless transceiver >
 - F = <ECG monitoring; processing; communicating>

- Intelligent <u>Delegate</u>: works diligently on behalf of a camileun, user, application or service
- $D = \langle D_{id}, F_d \rangle$
 - D_{id} : Delegent ID: < Id, C, P >
 - Id: Delegent ID
 - C: Host Device ID
 - P: Community
 - F_d : Functionality of delegent: < M, R, S >
 - *M*: Program modules
 - R: Delegent rules
 - S: Delegent services

Delegent Example

- A Delegent for ECG monitoring
 - Functionality: < Modules, Rules, Goals>
 - Modules: Signal processing module, Arrhythmia detector, Software filter, Timer, Communication module.
 - Rules: State transitions, Migration rules, Communication rules, Communication rules.
 - Services: Detect arrhythmia, Upload ECG window, Communicate status.

Community

- A community is defined by $P = \langle U, G, E \rangle$
 - U: set of delegents in the community.
 - G: community goal(s).
 - E: community characteristics.
 - Community ID
 - Number of delegents
 - Community coordinator/manager
 - Joining/disjoining of delegents
 - Location awareness and other services
 - Community of delegents need resources
 - CPU, Memory, Bandwidth

- A middleware framework aimed at providing transparent, automated support to users
 - Creates a transparent platform over heterogeneous devices.
 - Device features and specific software functionalities exported as services
 - Creation of *communities* of software agents to support mission critical tasks.
 - Event oriented operation
- Three basic constructs
 - Devices (C = $\langle D_{id}, H, F \rangle$)
 - Delegents (D = $\langle D_{id}, M, R, S \rangle$)
 - Communities ($P = \langle P_{id}, U, G, E \rangle$)

Organization

- Motivation
- Pervasive Computing
- PICO project at CSE@UTA
- Services in pervasive environments
 - Modeling services
 - Service Composition
 - Hierarchical Service Composition
- SeSCo <u>Seamless Service Composition</u>
- Ongoing and Future work Possible Collaborations

S. Kalasapur, M. Kumar and B. Shirazi, Seamless Service Composition in Pervasive Environments, IEEE Transactions on Parallel and Distributed Computing, In Press.

- Each service is treated as a transformational unit, accepting a set of inputs and producing a set of outputs
 - Derived from the state machine representing delegent operation
- Each service faithfully works towards its desired goal
 - Assumption -- there are no malicious services
 - Security and trust schemes need to be employed to enhance the model
- Services are represented using a directed, attributed graph
- Each service has a set of *attributes* associated
 - Each service is described using both semantic and syntactic attributes

Service model

• Each service is represented by

$$G_{\rm S}=\{V_{\rm s},\,E_{\rm s},\,\mu_{\rm s},\,\xi_{\rm s}\}$$

 $Vs \rightarrow$ node (s) representing service (or the state machine for the service)

- $Es \rightarrow$ Edges to and from the service (I/O).
- $\mu_{\rm s} \rightarrow$ Vertex attribute function.
 - Service Name, location, address, cost, etc.
- $\xi_s \rightarrow Edge attribute function$
 - Type and size of parameters and messages
- Attributes can also contain semantic descriptions of entities.

Service aggregation at the directory

- Aggregation based on the transformation achieved by each node
- Stored as a two-layered directed, attributed graph
 - First layer stores semantic transformations
 - Second layer stores syntactic transformations
- At the second layer, each available service is represented using a directed edge between the parameters it transforms

SType: M

Ptype: m

Service aggregation at the directory

Aggregation of services (G_P)

9/7/2010

Ptype: k

SType: A

Ptype: a1

Service graphs

- Each task/request represented as G_R = {V_r, E_r, μ_r, ξ_r}
 Vr → Vertex set representing individual services required
 Er → directed edge set representing interactions among the requested services
 - $\mu_r \rightarrow$ vertex attribute function
 - Service name, allowable cost, required bandwidth, permissible delay, etc,
 - $\xi_r \rightarrow$ Edge attribute function
 - Details about exchanged messages such as size, expected format, data rate, etc.

Task resolution

- Each request (*GR*) consists of a number of services that need to be identified
- Consider each node, and its I/O types
 - Semantic and syntactic representations
- Look for a path in the semantic aggregation
 - If a path exists, composition possible
 - Locate the shortest path (k shortest paths)
- Locate corresponding paths in the syntactic aggregation
 - Weights defined by user preferences, quality parameters, cost, etc., as attributes of $\rm G_R$
- Perform the procedure for all nodes in G_R

Service aggregation process

(Centralized scheme, managed networks)

- Well known directory structure
 - Services register at the directory
 - Directory maintains all available services by aggregating them
- Directory acts as the point of contact for task support
- Service composition performed at the directory
 - Execution of composition left to the client

PICC

PICO Abstractions

9/7/2010

41

Service Layer

Service aggregation process

(Centralized scheme, managed networks)

- Well known directory structure
 - Services register at the directory
 - Directory maintains all available services by aggregating them
- Directory acts as the point of contact for task support
- Service composition performed at the directory
 - Execution of composition left to the client

Centralized scheme: *limitations*

- Ideal to build and operate Service Provider communities, managed infrastructures
- Directory structure can be distributed, but all requests need to be resolved at the directory
- Ideal to build SOAs around assets in the infrastructure
 - Managed service definitions
 - Managed resources, therefore managed directory
 - Access to different resources can be controlled
- Directory node becomes the bottleneck
 - No explicit support for heterogeneous resources
 - No explicit support for dynamisms

Seamless service composition (SeSCo)

- Main Motivation
 - Resource heterogeneity to be actively exploited
 - Resource poor devices need to be proactively supported by their resource rich counterparts
- User centric solutions
 - 'What , where, and how' type of services
 - Dynamisms associated with user mobility
 - Quality of composed service

PICO

Device classification chart

Level (<i>a</i>)	Middleware version	Features	Examples
0	None	Features exported through delegents on Level- 2 or Level-3 devices, No native personalization support	sensors, Legacy printers
1	Minimum	Community member, can not be a proxy, possibly mobile	Cell phone, mote sensors, smart printer
2	Complete	Community member, leader, Can act as a proxy, possibly mobile, Rsource rich	Laptop, PDA
3	Complete	Community member, leader, Can act as a proxy, Rsource rich, typically resides in the infrastructure, managed	PC, Server, Grid, cluster

Creating the hierarchy

The LATCH protocol

- Devices lower in the hierarchy *latch* onto those higher in the hierarchy
- Service related information (Service graphs) exchanged during hierarchy creation
- Staged aggregation for improved composition support.
- Status changes reflected through periodic updates.

Hierarchical service aggregation

- Devices at each level in the hierarchy *aggregate* all services from that part of the hierarchy
 - Includes services available on the local device
 - Plus the services available at all descendent nodes

Properties of the overlay

- Service zone
 - All the services that a device is responsible for
- Search zone
 - All devices where a possible match is searched for

Requests resolved by propagation through the hierarchy

Search zone is *expanded* Incrementally Partial composition is computed at each expansion

Unresolved parts of the requests are forwarded to the parent node

Compositions in the *local service zone* handled by the local node.

Hierarchical service composition

Hierarchical service composition

S2

S1

Request at D3

Comparison with D + M approach

Service composition success rate Based on the composition length

- User mobility is inherent to pervasive computing environments
- When a user moves in the middle of a service session, continued service support needs to be ensured
 - By reconstructing the part of the service that was disrupted
 - Usually rendering services need to be reconfigured

Resource mobility

- Mobile resources
- Resource limitations
 - Battery power, increased load, memory shortage
- Parts of the composition which are no longer valid need to be recomputed
 - The disconnected node could be a higher level node
 - More taxing as compared to user mobility

Available services

PICC

SOA: An Example

SOAs in action

- Tasks can be executed using available services
- Tasks represented as directed, attributed graphs •
 - Nodes represent required services
 - Edges represent transformations among services
- Task graph acts as a *template* for locating and utilizing services ۲

Comparing delivery mechanisms

Kumar

Available and accessible services

PICO Middleware

Kumar

Organization

- Motivation
- Pervasive Computing
- PICO project at CSE@UTA
- Services in pervasive environments
 - Modeling services
 - Service Composition
 - Hierarchical Service Composition
- SeSCo <u>Seamless Service Composition</u>
- Conclusions
- Ongoing and Future work Possible Collaborations

Conclusions

- SOAs to build pervasive computing systems
 - Resources exported as services
 - Service composition mechanism to deliver task support
- SeSCo capable of providing advanced support
 - Capability to dynamically *weave* composite services from basic ones
 - Maintains locality of service, quality of composition
 - Capable of handling user and resource mobility
- Hierarchical service overlay
 - Formed based on resource states
 - Enables resource poor devices to exploit presence of powerful devices
- Dynamic mechanism to maintain overlay and composite services
 - Reflects current resource status
 - Can maintain composite service sessions

- S. Kalasapur, M. Kumar and B. Shirazi, Seamless Service Composition in Pervasive Environments, IEEE Transactions on Parallel and Distributed Computing, In Press.
- H. Ko, G. West, S. Venkatesh, and **M. Kumar**, *Online Temporal Fusion in Multisensor Systems using Dynamic Time Warping*, Information Fusion Journal, In Press.
- M. Kim, **M. Kumar**, and B. Shirazi, *Service Discovery using Volunteer Nodes in Heterogeneous Pervasive Computing Environments*, Elsevier's Pervasive and Mobile Computing, In Press.
- H. Alex, **M. Kumar**, and B. Shirazi, MidFusion: An Adaptive Middleware for Information Fusion in Sensor Network Applications, Information Fusion Journal, In Press. M. Kumar et al., Pervasive *Information Communities Organization PICO: A Middleware Framework for Pervasive Computing*, IEEE Pervasive Computing, July-September 2003, pp. 72-79.
- S. Kalasapur, M. Kumar, B. Shirazi, *"Evaluating Service Oriented Architectures in Pervasive Computing,"* In proceedings of the fourth international conference on Pervasive Computing and Communications, *PerCom 2006*, Pisa, Italy.
- S. Kalasapur, K. Senthivel, M. Kumar, "Service Oriented Pervasive Computing for Emergency Response Systems," In proceedings of the first international workshop on Ubiquitous and Pervasive Health Care, UbiCare 2006, Pisa, Italy.
- S. Kalasapur, M. Kumar, B. Shirazi, *"Seamless Service Composition (SeSCo) in Pervasive Environments,"* In the proceedings of the first international workshop on Multimedia Service Composition, *MSC 2005*, November 2005, Singapore.
- S. Kalasapur, M. Kumar, B. Shirazi, *"Personalized service composition for Ubiquitous Multimedia Delivery,"* In the proceedings of the international conference on the World of Wireless Multimedia, *WoWMoM 2005*, Taormina, Italy.