Computational Geometry

TOPICS
- Preliminaries
- Point in a Polygon
- Polygon Construction
- Convex Hulls
Geometric Algorithms

Geometric Algorithms find applications in such areas as

- Computer Graphics
- Computer Aided Design
- VLSI Design
- GIS
- Robotics

algorithms dealing with

points, lines, line segments, and polygons

In particular, the algorithms will

- Determine whether a point is inside a Polygon
- Construct a Polygon
- Determine Convex Hulls
Preliminaries:

A **point** \(p \) is represented as a pair of coordinates \((x, y)\)
A **line** is represented by a pair of points
A **path** is a sequence of points \(p_1, p_2, \ldots, p_n \) and the line segments connecting them,
\[p_1-p_2, p_2-p_3, \ldots, p_{k-1}-p_k. \]

A **closed path** whose last point is the same as the first is a polygon.

A **simple polygon** is one whose corresponding path does not intersect itself. It encloses a region in the plane.

A **Convex Polygon** is a polygon such that any line segment connecting two points inside the polygon is itself entirely in the polygon.

The **convex hull** of a set of points is defined as the smallest convex polygon enclosing all the given points.
A line segment connecting two points: The points are inside the polygon. The line segment is not entirely in the polygon.

This is not a convex polygon.
Determining whether a *point* is inside a polygon

Given a simple polygon P, and a point q, determine whether the point is inside or outside the polygon. (a non-convex polygon)
Procedure **Point_in_a_Polygon(P,q)**

Input: P (a simple polygon with vertices p₁,p₂,p₃, and edges e₁,e₂,e₃, … eₙ and q (x₀,y₀) a point.

Output: INSIDE (a Boolean variable, True if q is inside P, and false otherwise)

Count ← 0;

for all edges eᵢ of the polygon do

if the line x = x₀ intersects eᵢ then

 yᵢ ← y coordinate of the intersection between lines eᵢ and x=x₀;
 if yᵢ > y₀ then
 Count ← Count +1;
 if count is odd then INSIDE ← TRUE;
else INSIDE ← FALSE

This does not work if the line passes through terminal points of edges
It takes constant time to perform an intersection between two line segments. The algorithm computes n such intersections, where n is the size on the polygon. Total running time of the algorithm, $O(n)$.

![Diagram of a polygon with intersections marked at various points along its edges. A vertical line is drawn through the middle of the polygon.]
Constructing a Simple Polygon

Given a set of points in the plane, connect them in a simple closed path.

Consider a large circle that contains all the points. Scan the area of C by a rotating line. Connect the points in the order they are encountered in the scan.
Procedure **Simple_Polygon**

Input : p_1, p_2, \ldots, p_n (points in the polygon)

Output : P (a simple polygon whose vertices p_1, p_2, \ldots, p_n are in some order)

1. **for** $i \leftarrow 2$ **to** n
2. $\alpha_i \leftarrow$ angle between line p_1-p_i and the x-axis;
3. sort the points according to the angles
 (use the corresponding priority for the point and do a heapsort)
4. P is the polygon defined by the list of points in the sorted order.

Complexity : Complexity of the sorting algorithm.
Convex Hulls

The convex hull of a set of points is defined as the smallest convex polygon enclosing all the points in the set.

The convex hull is the smallest region encompassing a set of points. A convex hull can contain as little as three and as many as all the points as vertices.

Problem Statement : Compute the convex hull of n given points in the plane.

There are two algorithms
 Gift Wrapping $O(n^2)$
 Graham's Scan $O(n \log n)$
Procedure Gift_Wrapping(p₁,p₂, . . . pₙ)
Input : p₁,p₂, . . . pₙ (a set of points in the plane)
Output : P (the convex hull of p₁,p₂, . . . pₙ)

1. P ← {0} or ε;
2. p ← a point in the set with the largest x-coordinate;
3. Add p to P;
4. L ← line containing p and parallel to the x-axis;
5. while |P| < n do
6. q ← point such that the angle between the line -p-q- and L is minimal among all points;
7. add q to P;
8. L ← line -p-q-;
9. p←q;
Graham's Scan:

Given a set of n points in the plane, ordered as in the algorithm Simple Polygon, we can find a convex path among the first k points whose corresponding convex polygon encloses the first k points.
The angle is < 180°.

- q_2-q_3- and $-q_3$-p_4-

- q_{m-1}-q_m- and $-q_m$-p_k - ≥ 180°
-q3-q4- and -q4-p5-

q_m:p4
m:4

k = 5

q_m:p5
m:5

k = 6
Angle between \(-q_4-q_5-\) and \(-q_5-p_6-\) is greater than 180
Therefore \(m = m-1 = 4\)
We skip \(p_5\)

Angle between \(-q_3-q_4-\) and \(-q_4-p_6-\) is greater than 180
Therefore \(m = m-1 = 3\)
We skip \(p_4\)
Angle between $-q_2-q_3$ and $-q_3-p_6$ is less than 180.
Therefore $m = m + 1 = 4$ and $q_4 = p_6$.

$k = 6$
Procedure **Graham's Scan**(p_1, p_2, \ldots, p_n)

Input: p_1, p_2, \ldots, p_n (a set of points in the plane)

Output: q_1, q_2, \ldots, q_n (the convex hull of p_1, p_2, \ldots, p_n)

$p_1 \leftarrow$ the point in the set with the largest x-coordinate
(and smallest y-coordinate if there are more than one point with the same x-coordinate)

Construct Simple Polygon and arrange points in order
Let order be p_1, p_2, \ldots, p_n

$q_1 \leftarrow p_1$;
$q_2 \leftarrow p_2$;
$q_3 \leftarrow p_3$;

(initially P consists of $p_1, p_2,$ and p_3)

$m \leftarrow 3$;

for $k \leftarrow 4$ to n do

while the angle between lines $-q_{m-1}q_m$ and $-q_mp_k \geq 180^\circ$ do

$m \leftarrow m-1$;
[Internal to the polygon]

$m \leftarrow m+1$;
$q_m \leftarrow p_k$;