Computational Geometry

TOPICS Preliminaries Point in a Polygon Polygon Construction Convex Hulls

Geometric Algorithms

Geometric Algorithms find applications in such areas as

- Computer Graphics
- Computer Aided Design
- VLSI Design
- GIS
- Robotics

algorithms dealing with

points, lines, line segments, and polygons

In particular, the algorithms will

- Determine whether a point is inside a Polygon
- Construct a Polygon
- Determine Convex Hulls

Preliminaries:

A point p is represented as a pair of coordinates (x,y)A line is represented by a pair of points A path is a sequence of points p_1, p_2, \ldots, p_n and the line segments connecting them,

 $p_1 - p_2, p_2 - p_3, \dots, p_{k-1} - p_k$

A closed path whose last point is the same as the first is a polygon.

A simple polygon is one whose corresponding path does not intersect itself. It encloses a region in the plane.

A Convex Polygon is a polygon such that any line segment connecting two points inside the polygon is itself entirely in the polygon.

The **convex hull** of a set of points is defined as the smallest convex polygon enclosing all the given points.

Determining whether a point is inside a polygon

Given a simple polygon P, and a point q, determine whether the point is inside or outside the polygon. (a non-convex polygon)

Procedure Point_in_a_Polygon(P,q)

Input : P (a simple polygon with vertices p_1, p_2, p_3 , and edges e_1, e_2, e_3 , \dots e_n and q (x₀,y₀) a point. **Output:** INSIDE (a Boolean variable, True if q is inside P, and false otherwise) Count \leftarrow 0; for all edges e_i of the polygon do if the line $x = x_0$ intersects e_i then $y_i \leftarrow y$ coordinate of the intersection between lines e_i and $x=x_0$; if $y_i > y_0$ then Count \leftarrow Count +1; if count is odd then INSIDE \leftarrow TRUE; else INSIDE \leftarrow FALSE

This does not work if the line passes through terminal points
of edgesCSE5311 Kumar6

It takes constant time to perform an intersection between two line segments. The algorithm computes n such intersections, where n is the size on the polygon. Total running time of the algorithm, O(n).

Constructing a Simple Polygon

Given a set of points in the plane, connect them in a simple closed path.

Consider a large circle that contains all the points. Scan the area of C by a rotating line. Connect the points in the order they are encountered in the scan.

Procedure Simple_Polygon

Input : $p_1, p_2, ..., p_n$ (points in the polygon) Output : P (a simple polygon whose vertices $p_1, p_2, ..., p_n$ are in some order)

for i ← 2 to n
 α_i ← angle between line p₁-p_i and the x-axis;
 sort the points according to the angles
 (use the corresponding priority for the point
 and do a heapsort)
 P is the polygon defined by the list of points in
the sorted order.

Complexity : Complexity of the sorting algorithm.

Convex Hulls

The convex hull of a set of points is defined as the smallest convex polygon enclosing all the points in the set.

The convex hull is the smallest region encompassing a set of points. A convex hull can contain as little as three and as many as all the points as vertices.

Problem Statement : Compute the convex hull of n given points in the plane.

There are two algorithms Gift Wrapping O(n²) Graham's Scan O(nlogn)

Procedure Gift_Wrapping($p_1, p_2, ..., p_n$) Input : $p_1, p_2, ..., p_n$ (a set of points in the plane) Output : P (the convex hull of $p_1, p_2, ..., p_n$)

P ← {0} or ε;
 p ← a point in the set with the largest x-coordinate;
 Add p to P;
 L ← line containing p and parallel to the x-axis;
 while |P| < n do
 q ← point such that the angle between the line -p-q-and L is minimal among all points;

- 7. add q to P;
- 8. L ← line -p-q-;
- 9. p←q;

Graham's Scan:

Given a set of n points in the plane, ordered as in the algorithm Simple Polygon, we can find a convex path among the first k points whose corresponding convex polygon encloses the first k points.

Angle between -q3-q4- and -q4-p6- is greater than 180 Therefore m = m-1 = 3 We skip p4 Angle between -q4-q5- and -q5-p6- is greater than 180 Therefore m = m-1 = 4 We skip p5

Procedure Graham's Scan (p_1, p_2, \ldots, p_n) **Input** : p_1, p_2, \ldots, p_n (a set of points in the plane) Output : q_1, q_2, \ldots, q_n (the convex hull of p_1, p_2, \ldots, p_n) $p1 \leftarrow the point in the set with the largest x-coordinate$ (and smallest y-coordinate if there are more than one point with the same x-coordinate) **Construct Simple Polygon and arrange points in order** Let order be p_1, p_2, \ldots, p_n $q_1 \leftarrow p_1;$ $q_2 \leftarrow p_2;$ $q_3 \leftarrow p_3;$ (initially P consists of $p_1, p_2, and p_3$) m ← 3; for $k \leftarrow 4$ to n do while the angle between lines $-q_{m-1}-q_m$ and $-q_m-p_k - \ge 180^\circ$ do $m \leftarrow m-1$: **[Internal to the polygon]** $m \leftarrow m+1;$ $q_m \leftarrow p_k;$