String Matching Algorithms

Topics

- Basics of Strings
- Brute-force String Matcher
- Rabin-Karp String Matching Algorithm
- KMP Algorithm
In string matching problems, it is required to find the occurrences of a pattern in a text.

These problems find applications in text processing, text-editing, computer security, and DNA sequence analysis.

Find and Change in word processing

Sequence of the human cyclophilin 40 gene

CCCAGTCTGG AATACAGTGG **CGCGATCTCG** GTTCACTGCA
ACCGCCGCCT **CCCGGG**TTCA AACGATTCTC CTGCCTCAGC

CGCGATCTCG : DNA binding protein GATA-1
CCCGGG : DNA binding protein Sma-1

C: Cytosine, G: Guanine, A: Adenosine, T: Thymine
Text: $T[1..n]$ of length n and Pattern $P[1..m]$ of length m. The elements of P and T are characters drawn from a finite alphabet set Σ. For example $\Sigma = \{0,1\}$ or $\Sigma = \{a,b,\ldots,z\}$, or $\Sigma = \{c,g,a,t\}$. The character arrays of P and T are also referred to as strings of characters. Pattern P is said to occur with shift s in text T if $0 \leq s \leq n-m$ and
- $T[s+1..s+m] = P[1..m]$ or
- $T[s+j] = P[j]$ for $1 \leq j \leq m$,
such a shift is called a valid shift.

The string-matching problem is the problem of finding all valid shifts with which a given pattern P occurs in a given text T.
Brute force string-matching algorithm

To find all valid shifts or possible values of s so that $P[1..m] = T[s+1..s+m]$;
There are $n-m+1$ possible values of s.

Procedure `BF_String_Matcher(T,P)`

1. $n \leftarrow \text{length } [T]$;
2. $m \leftarrow \text{length}[P]$;
3. for $s \leftarrow 0$ to $n-m$
4. do if $P[1..m] = T[s+1..s+m]$
5. then shift s is valid

This algorithm takes $\Theta((n-m+1)m)$ in the worst case.
a c a a b c a c a a b c

a a b

a a b

a a b

a c a a a b c

a a b

a a b

a a b

matches
Rabin-Karp Algorithm

Let $\Sigma = \{0, 1, 2, \ldots, 9\}$. We can view a string of k consecutive characters as representing a length-k decimal number. Let p denote the decimal number for $P[1..m]$ Let t_s denote the decimal value of the length-m substring $T[s+1..s+m]$ of $T[1..n]$ for $s = 0, 1, \ldots, n-m$.

$t_s = p$ if and only if $T[s+1..s+m] = P[1..m]$, and s is a valid shift.

$p = P[m] + 10(P[m-1] + 10(P[m-2] + \ldots + 10(P[2] + 10(P[1])))$ We can compute p in $O(m)$ time.

Similarly we can compute t_0 from $T[1..m]$ in $O(m)$ time.
\[6378 = 8 + 7 \times 10 + 3 \times 10^2 + 6 \times 10^3 \quad m = 4\]
\[= 8 + 10 (7 + 10 (3 + 10(6)))\]
\[= 8 + 70 + 300 + 6000\]

\[p = P[m] + 10(P[m-1] + 10(P[m-2] + \ldots + 10(P[2] + 10(P[1])))\]
t_{s+1} can be computed from t_s in constant time.

$t_{s+1} = 10(t_s - 10^{m-1} T[s+1]) + T[s+m+1]$

Example: $T = 314152$
$t_s = 31415$, $s = 0$, $m = 5$ and $T[s+m+1] = 2$

$t_{s+1} = 10(31415 - 10000*3) + 2 = 14152$

Thus p and $t_0, t_1, \ldots, t_{n-m}$ can all be computed in $O(n+m)$ time.
And all occurrences of the pattern $P[1..m]$ in the text $T[1..n]$ can be found in time $O(n+m)$.

However, p and t_s may be too large to work with conveniently.
Do we have a simple solution!!
Computation of p and t_0 and the recurrence is done modulus q.

In general, with a d-ary alphabet \{0,1,...,d-1\}, q is chosen such that $d \times q$ fits within a computer word.

The recurrence equation can be rewritten as

$$t_{s+1} = (d(t_s - T[s+1]h) + T[s+m+1]) \mod q,$$

where $h = d^{m-1} \mod q$ is the value of the digit “1” in the high order position of an m-digit text window.

Note that $t_s \equiv p \mod q$ does not imply that $t_s = p$. However, if t_s is not equivalent to $p \mod q$, then $t_s \neq p$, and the shift s is invalid.

We use $t_s \equiv p \mod q$ as a fast heuristic test to rule out the invalid shifts.

Further testing is done to eliminate spurious hits.

- an explicit test to check whether

$$P[1..m] = T[s+1..s+m]$$
\[t_{s+1} = (d(t_s - T[s+1]h) + T[s+m+1]) \mod q \]

\[h = d^{m-1} \mod q \]

Example:

\(T = 31415; \quad P = 26, \quad n = 5, \quad m = 2, \quad q = 11 \)

\(p = 26 \mod 11 = 4 \)

\(t_0 = 31 \mod 11 = 9 \)

\(t_1 = (10(9 - 3(10) \mod 11) + 4) \mod 11 \)

\(= (10 (9- 8) + 4) \mod 14 = 14 \mod 11 = 3 \)
Procedure **RABIN-KARP-MATCHER**(\(T, P, d, q\))

Input: Text \(T\), pattern \(P\), radix \(d\) (which is typically \(\mid \Sigma \mid\)), and the prime \(q\).

Output: valid shifts \(s\) where \(P\) matches

1. \(n \leftarrow \text{length}[T];\)
2. \(m \leftarrow \text{length}[P];\)
3. \(h \leftarrow d^{m-1} \mod q;\)
4. \(p \leftarrow 0;\)
5. \(t_0 \leftarrow 0;\)
6. \(\text{for } i \leftarrow 1 \text{ to } m\)
7. \(\quad \text{do } p \leftarrow (d \times p + P[i]) \mod q;\)
8. \(\quad t_0 \leftarrow (d \times t_0 + T[i]) \mod q;\)
9. \(\text{for } s \leftarrow 0 \text{ to } n-m\)
10. \(\quad \text{do if } p = t_s\)
11. \(\quad \quad \text{then if } P[1..m] = T[s+1..s+m]\)
12. \(\quad \quad \quad \text{then “pattern occurs with shift “ } s\)
13. \(\quad \quad \quad \text{if } s < n-m\)
14. \(\quad \quad \quad \quad \text{then } t_{s+1} \leftarrow (d(t_s - T[s+1]h) + T[s+m+1]) \mod q;\)
Comments on Rabin-Karp Algorithm

- All characters are interpreted as radix-d digits
- h is initiated to the value of high order digit position of an m-digit window
- p and t_0 are computed in $O(m+m)$ time
- The loop of line 9 takes $\Theta((n-m+1)m)$ time

The loop 6-8 takes $O(m)$ time
The overall running time is $O((n-m)m)$
KMP Algorithm