String Matching Algorithms

Topics
-Basics of Strings
DBrute-force String Matcher
- Rabin-Karp String Matching
Algorithm
DKMP Algorithm

In string matching problems, it is required to find the occurrences of a pattern in a text.

These problems find applications in text processing, text-editing, computer security, and DNA sequence analysis.

Find and Change in word processing
Sequence of the human cyclophilin 40 gene
CCCAGTCTGG AATACAGTGG CGCGATCTCG GTTCACTGCA
ACCGCCGCCT CCCGGGTTCA AACGATTCTC CTGCCTCAGC
CGCGATCTCG : DNA binding protein GATA-1
CCCGGG: DNA binding protein Sma 1
C: Cytosine, G: Guanine, A : Adenosine, T : Thymine

Text: $T[1 . . n]$ of length n and Pattern $P[1 . . m]$ of length m. The elements of P and T are characters drawn from a finite alphabet set Σ.
For example $\Sigma=\{0,1\}$ or $\Sigma=\{a, b, \ldots, z\}$, or $\Sigma=\{c, g, a, t\}$.
The character arrays of P and T are also referred to as strings of characters.
Pattern P is said to occur with shift s in text T
if $0 \leq s \leq n-m$ and $\mathrm{T}[\mathrm{s}+1 . . \mathrm{s}+\mathrm{m}]=\mathrm{P}[1 . . \mathrm{m}]$ or $\mathrm{T}[\mathrm{s}+\mathrm{j}]=\mathrm{P}[\mathrm{j}]$ for $1 \leq \mathrm{j} \leq \mathrm{m}$,
such a shift is called a valid shift.
The string-matching problem is the problem of finding all valid shifts with which a given pattern P occurs in a given text T .

Brute force string-matching algorithm

To find all valid shifts or possible values of \mathbf{s} so that P[1..m] = T[s+1..s+m] ;
There are $\mathrm{n}-\mathrm{m}+1$ possible values of s .
Procedure BF_String_Matcher(T,P)

1. $n \leftarrow$ length [T];
2. $\mathrm{m} \leftarrow$ length $[\mathrm{P}]$;
3. for $\mathrm{s} \leftarrow 0$ to $\mathrm{n}-\mathrm{m}$
4. do if $\mathrm{P}[1 . . \mathrm{m}]=\mathrm{T}[\mathrm{s}+1 . . \mathrm{s}+\mathrm{m}]$
5. then shift s is valid

This algorithm takes $\Theta((n-m+1) m)$ in the worst case.
$\stackrel{a}{~}$
C
a
b
C
a
C \qquad b \mathbf{c}
a b
a $a \quad b$
a

a
C

a b a b
C
c matches

Rabin-Karp Algorithm

Let $\Sigma=\{0,1,2, . . ., 9\}$.
We can view a string of k consecutive characters as representing a length-k decimal number.
Let p denote the decimal number for $P[1 . . \mathrm{m}]$
Let t_{s} denote the decimal value of the length-m substring $T[s+1 . . s+m]$ of $T[1 . . n]$ for $s=0,1, \ldots, n-m$.
$t_{s}=p$ if and only if
$T[s+1 . . s+m]=P[1 . . m]$, and s is a valid shift.
$p=P[m]+10(P[m-1]+10(P[m-2]+\ldots+10(P[2]+10(P[1]))$
We can compute p in $O(m)$ time.
Similarly we can compute t_{0} from $\mathrm{T}[1 . . \mathrm{m}]$ in $\mathrm{O}(\mathrm{m})$ time.

$$
\begin{aligned}
6378 & =8+7 \times 10+3 \times 10^{2}+6 \times 10^{3} \quad \mathrm{~m}=4 \\
& =8+10(7+10(3+10(6))) \\
& =8+70+300+6000
\end{aligned}
$$

t_{s+1} can be computed from t_{s} in constant time.
$\mathrm{t}_{\mathrm{s}+1}=\mathbf{1 0 (\mathrm { t } _ { \mathrm { s } } - 1 0 ^ { \mathrm { m } - 1 } \mathrm { T } [\mathrm { s } + 1]) + \mathrm { T } [\mathrm { s } + \mathrm { m } + 1] .] .] .}$
Example : T = 314152
$\mathrm{t}_{\mathrm{s}}=31415, \mathrm{~s}=0, \mathrm{~m}=5$ and $\mathrm{T}[\mathrm{s}+\mathrm{m}+1]=2$
$t_{s+1}=10(31415-10000 * 3)+2=14152$
Thus p and $t_{0}, t_{1}, \ldots, t_{n-m}$ can all be computed in $O(n+m)$ time.
And all occurences of the pattern $\mathrm{P}[1 . . \mathrm{m}]$ in the text $T[1 . . n]$ can be found in time $O(n+m)$.

However, p and t_{s} may be too large to work with conveniently.

Computation of p and t_{0} and the recurrence is done modulus q.
In general, with a d-ary alphabet $\{0,1, \ldots, d-1\}, q$ is chosen such that $\mathrm{d} \times q$ fits within a computer word.

The recurrence equation can be rewritten as $t_{s+1}=\left(d\left(t_{s}-T[s+1] h\right)+T[s+m+1]\right) \bmod q$,
where $h=d^{m-1}(\bmod q)$ is the value of the digit " 1 " in the high order position of an m-digit text window.
Note that $t_{s} \equiv p$ mod q does not imply that $t_{s}=p$.
However, if t_{s} is not equivalent to $p \bmod q$,
then $t_{s} \neq p$, and the shift s is invalid.
We use $t_{s} \equiv p$ mod q as a fast heuristic test to rule out the invalid shifts.
Further testing is done to eliminate spurious hits.

- an explicit test to check whether

$$
\mathrm{P}[1 . . \mathrm{m}]=\underset{\text { Kumar }}{\mathrm{T}}[\mathrm{~s}+1 . \mathrm{string}+\mathrm{matching}]
$$

$t_{s+1}=\left(d\left(t_{s}-T[s+1] h\right)+T[s+m+1]\right) \bmod q$
$h=d^{m-1}(\bmod q)$
Example :
$T=31415 ; \quad P=26, n=5, m=2, q=11$
$\mathrm{p}=26 \bmod 11=4$
t0 $=31 \bmod 11=9$
$t 1=(10(9-3(10) \bmod 11)+4) \bmod 11$
$=(10(9-8)+4) \bmod 14=14 \bmod 11=3$

Procedure RABIN-KARP-MATCHER(T,P,d,q)
Input : Text T, pattern P, radix d (which is typically $=|\Sigma|$), and the prime q.
Output : valid shifts s where P matches

1. $\mathrm{n} \leftarrow$ length $[T]$;
2. $\mathrm{m} \leftarrow$ length $[\mathrm{P}]$;
3. $\mathrm{h} \leftarrow \mathrm{d}^{\mathrm{m}-1} \bmod \mathrm{q}$;
4. $\mathrm{p} \leftarrow 0$;
5. $\mathrm{t}_{0} \leftarrow \mathbf{0}$;
6. for $\mathrm{i} \leftarrow 1$ to m
7. \quad do $p \leftarrow(d \times p+P[i] \bmod q$;
8. $\quad \mathrm{t}_{0} \leftarrow\left(\mathrm{~d} \times \mathrm{t}_{0}+\mathrm{T}[\mathrm{i}] \bmod \mathrm{q}\right.$;
9. for $\mathrm{s} \leftarrow \mathbf{0}$ to $\mathrm{n}-\mathrm{m}$
10. do if $p=t_{s}$
11. then if $P[1 . . m]=T[s+1 . . s+m]$
12. then "pattern occurs with shift " s
13. if $\mathbf{s}<\mathrm{n}-\mathrm{m}$
14.

then $\mathrm{t}_{\mathrm{s}+1} \leftarrow\left(\mathrm{~d}\left(\mathrm{t}_{\mathrm{s}}-\mathrm{T}[\mathrm{s}+1] \mathrm{h}\right)+\mathrm{T}[\mathrm{s}+\mathrm{m}+1]\right) \bmod \mathrm{q} ;$

Comments on Rabin-Karp Algorithm

\square All characters are interpreted as radix-d digits
$\square h$ is initiated to the value of high order digit position of an m-digit window
\square p and t_{0} are computed in $O(m+m)$ time
\square The loop of line 9 takes $\Theta((n-m+1) m)$ time
The loop 6-8 takes $O(m)$ time
The overall running time is $\mathbf{O}((\mathrm{n}-\mathrm{m})+\mathrm{m})$

Knuth Morris Pratt(KMP) Algorithm

Pseudocode:

KMP-Matcher (T, P)
$n \leftarrow$ length (T)
$\mathrm{m} \leftarrow$ length (P)
$\pi \leftarrow$ Compute-Prefix-Function (P)
$\mathrm{q} \leftarrow 0$
for $\mathrm{i}=1$ to n
while $\mathrm{q}>0$ and $\mathrm{P}[\mathrm{q}+1] \neq \mathrm{T}[\mathrm{i}]$;
do $q \underset{\text { if } P[q+1]}{\leftarrow}=T[i]$
then $q \leftarrow q+1$
if $q=m$
then print " Pattern occurs
with shift" ($\mathrm{i}-\mathrm{m}$)
$q \leftarrow \pi[q]$
Compute-Prefix-Function (P)

Compute Prefix Function (P)
$m \leftarrow$ length [P]
$\pi[1] \leftarrow 0$
$k \leftarrow 0$
for $q \leftarrow 2$ to m
do while $\mathrm{k}>0$ and $\mathrm{P}[\mathrm{k}+1] \neq \mathrm{P}[q]$ do $\mathrm{k} \leftarrow \pi[\mathrm{k}]$
if $P[k+1]=P[q]$ then $k \leftarrow k+1$
$\pi[q] \leftarrow k$
return π

- Given the pattern P [1..q] matches text chs T[s+1.. $\mathrm{S}+\mathrm{q}]$
What is the least shift s ' $>s$ such that
$P[1 . . k]=T\left[s^{\prime}+1, . . s^{\prime}+k\right]$, $s^{\prime}+k=s+q$
Given pattern $\mathrm{P}[1 . . \mathrm{m}]$, the prefix function for the pattern P is the function
$\pi:\{1,2, \ldots m\} \rightarrow\{0,1, \ldots m-1\}$ such that
$\pi[q]=\max \left\{k: k<q\right.$ and P_{k} is a suffix of P_{q}

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathrm{b} & \mathrm{a} & \mathrm{c} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} \\
\hline
\end{array} \\
& \begin{array}{ll|l|l|l|l|l|l|}
\mathbf{s} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{c} & \mathrm{a} \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathrm{b} & \mathrm{a} & \mathrm{c} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} \\
\hline
\end{array} \\
& \mathbf{s}^{\prime}=\mathbf{s + 2} \quad \begin{array}{|l|l|l|l|l|l|l|}
\hline a & b & a & b & a & c & a \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|}
\hline a & b & a & b & a \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|}
\hline \mathrm{a} & \mathrm{~b} & \mathrm{a} \\
\hline
\end{array}
\end{aligned}
$$

i	1	2	3	4	5	6	7	8	9	10
$\mathrm{P}[\mathrm{i}]$	a	b	a	b	a	b	a	b	c	a
$\pi[\mathrm{i}]$	0	0	1	2	3	4	5	6	0	1

KMP algorithm (contd..)

Running time analysis of KMP yields $\mathrm{O}(\mathrm{m}+\mathrm{n})$, because the call of the function takes $O(m)$ time and the remainder KMP matcher algorithm takes $O(n)$ time.

KMP is among the fastest algorithms for large sizes of P and T

Boyer Moore Algorithm

Pseudocode

n <-- length [T]
m <-- length [P]
$\partial<--C O M P U T E-L A S T-O C C U R R E N C E-F U N C T I O N(P, m, \xi)$
Ф <-- COMPUTE-GOOD-SUFFIX-FUNCTION(P,m)
$S<-0$
While $s \leq n-m$
do $j<--m$
while $j>0$ and $P[j]=T[s+j]$
do $j<--j-1$
if $\boldsymbol{j}=\mathbf{0}$
then print "Pattern Occurs at shift "s $\boldsymbol{s}<-\boldsymbol{s}+\boldsymbol{\Phi}[0]$
else $\boldsymbol{s}<--\boldsymbol{s}+\max (\Phi[j], j-\partial[\boldsymbol{T}[\boldsymbol{s}+\boldsymbol{j}]])$ $\boldsymbol{s}<-\boldsymbol{s}+1$
else $\boldsymbol{s}<--\boldsymbol{s}+1$

Boyer Moore Algorithm(contd.)

This algorithm is considered as the most efficient algorithm for most of the general applications of string matching.

- This algorithm scans the pattern from right to left
- In case of a mismatch it uses 2 pre computed functions
(a) Good-Suffix Shift (b) Bad Character shift(occurrence shift)

Assume that a mismatch occurs between the character $x[j]=a$ of the pattern and the character $y[i+j]=b$ of the text during an attempt at position j. Then, $x[i+1 . . m-1]=$ $y[i+j+1 . . j+m-1]=\mathrm{u}$ and $x[1] \quad \mathrm{y}[\dot{+}+j]$. The good-suffix shift consists in aligning the segment $\{[\dot{+}+j+1 . . j+m-1]=x[i+1 . . m-1]$ with its rightmost occurrence in x that is preceded by a character different from $\left.x^{[}\right]$

Boyer Moore Algorithm(contd.)

If there exists no such segment, the shift consists in aligning the longest suffix v of $\[i+j+1 . . j+m-1]$ with a matching prefix of x.
y

The bad-character shift consists in aligning the text character $4[i+j]$ with its rightmost occurrence in $x[0$.. $m-2]$.

Boyer Moore Algorithm(contd.)

First attempt

```
GCAT C G C A G A G A G T A T A C A G T A C G
        1
G C A G A G AG
```


Second attempt

```
\(G C A T C G C A G A G A G T A T A C A G T A C G\)
    \(G C A G A G A G\)
```

Third attempt

$G C A T C$	G

Boyer Moore Algorithm(contd.)

Fourth attempt
GCATC GCAGAGAGTATACACTACC
G C A G A GAG
Fifth attempt

$$
\begin{array}{r}
G C A T C G C A G A G A G T A T A C A G T A C C G \\
G \\
G
\end{array}
$$

Total number of character comparisons 17

