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1. There is a network of n mobile devices carried by human beings who move around. The 
moving devices can be defined by a graph at any point as follows: a node represents each 
of n devices and there is an edge between devices i and j if the locations of i and j are no 
more than 500 meters apart.  Decide whether the following claim can ensure that all 
devices are connected all the time.  

Claim: Let G be a graph on n nodes, where n is an even number. If every node of 
G has degree at least n/2, then G is connected. 
[Ex. 7, Ch. 3] 

2. Suppose that an n-node undirected graph G = (V,E) contains two nodes s and t such that 
the distance between s and t is strictly greater than  n/2. Show that there must exist some 
node v, not equal to either s or t, such that deleting v from G destroys all s-t paths.  That is 
to say that, the graph obtained from G by deleting v contains no path from s to t. Give an 
algorithm with running time O(m+n) to find such a node v.  

[Ex. 9, Ch. 3]  

3. The manager of a large student union on campus comes to you with the following 
problem. She’s in charge of a group of students, each of whom is scheduled to work one 
shift during the week. There are different jobs associated with these shifts , but we can 
view each shift as a single contiguous interval of time. There can be multiple shifts going 
on at once.  The manager is trying to find a subset of these students to form a supervising 
committee that she can meet with once a week. She considers such a committee to be 
complete if, for every student not on the committee, the student shift overlaps (at least 
partially) the shift of some student who is on the committee. In this way, each student’s 
performance can be observed by at least one person who is serving on the committee. 

Give an efficient algorithm that takes the schedule of n shifts and produces a 
complete supervising committee containing as few students as possible. 
[Ex. 15. Ch. 4] 
 

4. You have a processor that can operate 24 hours a day, every day. People submit requests 
to run daily jobs on the processor. Each job has a start time and a end time; if a job is 
accepted to run on the processor it must run continuously, every day, for the period 
between its  start and end times.  

Given a list of n jobs, your goal is to accept as many jobs as possible (regardless of 
their length), subject to the constraint that the processor can run at most one job at 
any given time. Provide an algorithm to do this with a running time that is polynomial 
in n. Assume that no two jobs have the same start and end times.  
[Ex. 17, Ch. 4] 



5. Suppose you’re consulting for a company that manufactures PC equipment and ships it to 
distribute all over the country. For each of the next n weeks, they have a projected supply 
si of equipment (measured in pounds), which has to be shipped by an air freight carrier.  

Each week’s supply can be carried by one of two air freight companies, A or B. 
• Company A charges a fixed rate r per pound (so it costs r × si to ship the 
week’s supply si).  
• Company B makes contracts for a fixed amount c per week, independent 
of the weight. However, contracts with company B must be made in blocks 
of four consecutive weeks at a time.  

A schedule, for the PC Company, is a choice of air freight company (A or B) for each 
of the n weeks, with the restriction that company B, whenever chosen, must be 
chosen for blocks of four contiguous weeks at a time. The cost of the schedule is the 
total amount paid to company A and B, according to the description above.  
 
Give a polynomial-time algorithm that takes a sequence of supply values s1, s2, … sn 
and returns a schedule of minimum cost.  
[Ex. 11, Ch. 6] 

 
6. Suppose we wish to replicate a file over a collection of n servers, labeled S1, S2, … Sn. To 

place a copy of the file at server Si, results in a placement cost of ci for an integer ci >0.  
 
Now, if a user requests the file from a server Si, and no copy of the file is present at Si, 
then the servers Si+1, Si+2, Si+3 … are searched in order until a copy of the file is 
finally found, say at server Sj where, j > i. This results in access cost of j-i( note that 
lower-indexed servers are not consulted in this search. )  The access cost is 0 if server 
Si holds a copy of the file. We will require that a copy of the file be placed at server Sn, 
so that all such searches will terminate, at least, at Sn.  
 
We’d like to place copies of files at servers so as to minimize the sum of placement 
and access costs. Formally, we say that a configuration is a choice for each server Si 
with i = 1, 2, … n-1, of whether to place a copy of the file at Si or not (Recall that a 
copy is always placed at Sn.)  The total cost of the configuration is the sum of all 
placement costs for servers with a copy of the file, plus the sum of all access costs 
associated with all n servers.  
 
Give a polynomial time algorithm to find a configuration of minimum total cost.  
[Ex. 12, Ch. 6] 
 

7. We define the Escape problem as follows.  We are given a directed graph G = (V,E) 
(picture a network of roads). A certain collection of nodes X ⊂ V are designated as 
populated nodes and a certain other collection S ⊂ V are designated as safe nodes 
(Assume that X and S are disjoint). In case of emergency, we want evacuation routes 
from populated nodes to safe nodes. A set of evacuation routes is defined as a set of paths 
in G so that (i) each node in X is the tail of one path, (ii) the last node on each path lies in 
S, and (iii)  the paths do not share any edges. Such a set of paths gives a way for 
occupants of the populated nodes to escape to S, without overly congesting any edge in G.  



a. Given G, X, and S, show how to decide in polynomial time whether such a set of 
evacuation routes exists.  

b. Suppose we change (iii) to “the paths do not share any nodes”, show show how to 
decide in polynomial time whether such a set of evacuation routes exists, given G, 
X and S.  

[Ex. 14, Ch. 7] 
8. Consider a set A = {a1, a2, … an} and a collection B1, B2, …Bm of subsets of A (i.e., Bi ⊆ A 

for each i).  
We say that set H ⊆ A is a hitting set for the collection B1, B2, …Bm if H contains at 
least one element from each Bi – that is if H∩Bi is not empty for each i (so H hits all 
the sets Bi).  
We define the hitting set problem as follows. We are given a set A = {a1, a2, … an}, a 
collection B1, B2, …Bm  of subsets of A, and a number k. We are asked: Is there a 
hitting set H ⊆ A for  B1, B2, …Bm so that the size of H  is at most k?  
Prove that the Hitting Set is NP-Complete. 
[Ex. 5, Ch. 8] 

9. Suppose you are given a set of positive integers A = {a1, a2, … an} and a positive integer 
B. A subset S ⊆ A is called a feasible if the sum of the numbers in S does not exceed 
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a .  The sum of the numbers in S will be called the total sum of S. You would 

like to select a feasible subset S of A whose total sum is as large as possible.  
 

[Ex. 3, Ch. 11] 
 

10. A dynamic programming solution was given for the 0-1 Knapsack problem. The 
algorithm runs in O(nW), where n is the number of number of items and W is the size of 
the knapsack. It was assumed that the weights are integers and that W is small. How do 
you solve this problem if W is large and if the weights are not integers.  
[ Pages. 644-349, Ch. 11]  

 
  


