CSE5311 Design and Analysis of Algorithms

• This Class
 – What is an algorithm?
 – Asymptotic Analysis
 – Iterative algorithms
 – Recursive algorithms

• At the end of the class
 ▪ Difference between an algorithm and a program
 ▪ O, $Ω$, and $Θ$ notations
 ▪ How to use them
 ▪ Determine complexity of a given algorithm
 ▪ Write recurrence relations for your algorithms

Chapters 1 and 2
Algorithm Design *Kleinberg and Tardos*
Course Syllabus

• **Review of Asymptotic Analysis and Growth of Functions**
 • Trees, Heaps, and Graphs; and Recurrences.
 • Greedy Algorithms:
 – Minimum spanning tree, Union-Find algorithms, Kruskal's Algorithm,
 – Clustering,
 – Huffman Codes, and
 – Multiphase greedy algorithms.
 • Dynamic Programming:
 – Shortest paths, negative cycles, matrix chain multiplications, sequence alignment, RNA secondary structure, application examples.

• **Network Flow:**

• **NP and Computational tractability:**
 – Polynomial time reductions; The Satisfiability problem; NP-Complete problems; and Extending limits of tractability.

• Approximation Algorithms, Local Search and Randomized Algorithms
What are Algorithms?

- An algorithm is a precise and unambiguous specification of a sequence of steps that can be carried out to solve a given problem or to achieve a given condition.
- An algorithm is a computational procedure to solve a well defined computational problem.
- An algorithm accepts some value or set of values as input and produces a value or set of values as output.
- An algorithm transforms the input to the output.
- Algorithms are closely intertwined with the nature of the data structure of the input and output values.

Data structures are methods for representing the data models on a computer whereas data models are abstractions used to formulate problems.
What are these algorithms?
Input? Output? Complexity?

ALGO_DO_SOMETHING (A [1,...,n],1,n)

1. for i ← 1 to n-1
2. small ← i;
3. for j ← i+1 to n
 small ← j;
 temp ← A[small];
7. A[i] ← temp;
9. end

ALGO_IMPROVED (A[1,...,n],i,n)

• while i < n
• do small ← i;
• for j ← i+1 to n
• if A[j] < A[small] then
• small ← j;
• temp ← A[small];
• A[small] ← A[i];
• A[i] ← temp;
• end
• end
Examples

• **Algorithms:**

An algorithm to sort a sequence of numbers into nondecreasing order.

 Application: lexicographical ordering

An algorithm to find the shortest path from a source node to a destination node in a graph

 Application: To find the shortest path from one city to another.

• **Data Models:**

 Lists, Trees, Sets, Relations, Graphs

• **Data Structures:**

 Linked List is a data structure used to represent a List

 Graph is a data structure used to represent various cities in a map.
SELECTION SORT Algorithm (*Iterative method*)

Procedure SELECTION_SORT (A [1,…,n])

Input : unsorted array A
Output : Sorted array A

1. for i ← 1 to n-1
2. small ← i;
3. for j ← i+1 to n
5. small ← j;
6. temp ← A[small];
8. A[i] ← temp;
9. end

Example: Given sequence

<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>1</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>i=1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>i=2</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>i=3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>i=4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
1. for i ← 1 to n-1
2. small ← i;
3. for j ← i+1 to n
5. small ← j;
6. temp ← A[small];
8. A[i] ← temp;
9. end

Complexity:
The statements 2,6,7,8, and 5 take O(1) or constant time.
The outerloop 1-9 is executed n-1 times and the inner loop 3-5 is executed (n-i) times.
The upper bound on the time taken by all iterations as i ranges from 1 to n-1 is given by, $O(n^2)$
• Study of algorithms involves,
 - designing algorithms
 - expressing algorithms
 - algorithm validation
 - algorithm analysis
 - Study of algorithmic techniques
Algorithms and Design of Programs

• An algorithm is composed of a finite set of steps,
 * each step may require one or more operations,
 * each operation must be definite and effective

• An algorithm,
 * is an abstraction of an actual program
 * is a computational procedure that terminates

*A program is an expression of an algorithm in a programming language.
*Choice of proper data models and hence data structures is important for expressing algorithms and implementation.
• We evaluate the performance of algorithms based on time (CPU-time) and space (semiconductor memory) required to implement these algorithms. However, both these are expensive and a computer scientist should endeavor to minimize time taken and space required.

• The time taken to execute an algorithm is dependent on one or more of the following,
 • number of data elements
 • the degree of a polynomial
 • the size of a file to be sorted
 • the number of nodes in a graph
Asymptotic Notations

- O-notation
 » Asymptotic upper bound

- A given function $f(n)$, is $O(g(n))$ if there exist positive constants c and n_0 such that $0 \leq f(n) \leq c g(n)$ for all $n \geq n_0$.

- $O(g(n))$ represents a set of functions, and $O(g(n)) = \{f(n):$ there exist positive constants c and n_0 such that $0 \leq f(n) \leq c g(n)$ for all $n \geq n_0\}$.
O Notation

\[f(n), \text{ is } O(g(n)) \text{ if there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \leq f(n) \leq c g(n) \text{ for all } n \geq n_0. \]

\[f(n) = 2n+6 \]
\[g(n) = 4n \]

\[c = 4 \]
\[n_0 = 3.5 \]
The graph compares the growth of different functions:

- log n
- n
- n log n
- n^2
- 2^n

As n increases, log n grows much slower than n, n log n, n^2, and 2^n, which grow at an increasing rate.
Ω-notation

Asymptotic lower bound

• A given function $f(n)$, is $\Omega(g(n))$ if there exist positive constants c and n_0 such that

 $0 \leq c \cdot g(n) \leq f(n)$ for all $n \geq n_0$.

• $\Omega(g(n))$ represents a set of functions, and

 $\Omega(g(n)) = \{f(n):$ there exist positive constants c and n_0 such that $0 \leq c \cdot g(n) \leq f(n)$ for all $n \geq n_0\}$
Θ-notation

Asymptotic tight bound

• A given function $f(n)$, is $Θ(g(n))$ if there exist positive constants c_1, c_2, and n_0 such that

 $0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n)$ for all $n \geq n_0$.

• $Θ(g(n))$ represents a set of functions, and

 $Θ(g(n)) = \{f(n) :$ there exist positive constants c_1, c_2, and n_0 such that $0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n)$ for all $n \geq n_0$.

O, $Ω$, and $Θ$ correspond (loosely) to “≤”, “≥”, and “=”.
Presenting algorithms

- **Description**: The algorithm will be described in English, with the help of one or more examples

- **Specification**: The algorithm will be presented as pseudocode

 (We don't use any programming language)

- **Validation**: The algorithm will be proved to be correct for all problem cases

- **Analysis**: The running time or time complexity of the algorithm will be evaluated
SELECTION SORT Algorithm (*Iterative method*)

Procedure SELECTION_SORT (A [1,…,n])
Input : unsorted array A
Output : Sorted array A

1. for i ← 1 to n-1
2. small ← i;
3. for j ← i+1 to n
5. small ← j;
6. temp ← A[small];
8. A[i] ← temp;
9. end
Recursive Selection Sort Algorithm
Given an array A[i, ..., n], selection sort picks the smallest element in the array and swaps it with A[i], then sorts the remainder A[i+1, ..., n] recursively.

Example:
Given A [26, 93, 36, 76, 85, 09, 42, 64]

Swap 09 with 23 -- A[1] = 09; A[2, ..., 8] = [93, 36, 76, 85, 26, 42, 64]
Swap 26 with 93 -- A[1, 2] = [09, 26]; A[3, ..., 8] = [36, 76, 85, 93, 42, 64]
No swapping -- A[1, 2, 3] = [09, 26, 36]; A[4, ..., 8] = [76, 85, 93, 42, 64]
Swap 42 with 76 -- A[1, ..., 4] = [09, 26, 36, 42]; A[5, ..., 8] = [85, 93, 76, 64]
Swap 64 with 85 -- A[1, ..., 5] = [09, 26, 36, 42, 64]; A[6, 7, 8] = [93, 76, 85]
Swap 76 with 93 -- A[1, ..., 6] = [09, 26, 36, 42, 64, 76]; A[7, 8] = [93, 85]
Swap 85 with 93 -- A[1, ..., 7] = [09, 26, 36, 42, 64, 76, 85]; A[8] = 93

Sorted list: A[1, ..., 8] = [09, 26, 36, 42, 64, 76, 85, 93]
Procedure **RECURSIVE_SELECTION_SORT** (A[1,…,n],i,n)
Input : Unsorted array A
Output : Sorted array A

\[
\text{while } i < n \\
\text{do } \text{small} \leftarrow i; \\
\text{for } j \leftarrow i+1 \text{ to } n \\
\quad \text{if } A[j] < A[\text{small}] \text{ then} \\
\quad \quad \text{small} \leftarrow j; \\
\quad \text{temp} \leftarrow A[\text{small}]; \\
\quad A[\text{small}] \leftarrow A[i]; \\
\quad A[i] \leftarrow \text{temp}; \\
\text{RECURSIVE_SELECTION_SORT}(A,i+1,n) \\
\text{End} \\
\]
Analysis of Recursive selection sort algorithm

Basis: If i = n, then only the last element of the array needs to be sorted, takes \(\Theta(1) \) time. Therefore, \(T(1) = a \), a constant

Induction: if i < n, then,

1. we find the smallest element in \(A[i, \ldots, n] \), takes at most \((n-1) \) steps
 - swap the smallest element with \(A[i] \), one step
 - recursively sort \(A[i+1, \ldots, n] \), takes \(T(n-1) \) time

Therefore, \(T(n) \) is given by,

\[
T(n) = T(n-1) + b \cdot n \quad (1)
\]

It is required to solve the recursive equation,

\[
T(1) = a; \text{ for } n = 1 \\
T(n) = T(n-1) + b \cdot n; \text{ for } n > 1, \text{ where } b \text{ is a constant}
\]
\[T(n-1) = T(n-2) + (n-1)b \quad (2) \]
\[T(n-2) = T(n-3) + (n-2)b \quad (3) \]
\[\ldots \]
\[T(n-i) = T(n-(i+1)) + (n-i)b \quad (4) \]

Using (2) in (1)

\[T(n) = T(n-2) + b \left[n+(n-1) \right] \]
\[= T(n-3) + b \left[n+(n-1)+(n-2) \right] \]
\[= T(n-(n-1)) + b \left[n+(n-1)+(n-2) + \ldots + (n-(n-2)) \right] \]

\[T(n) = O(n^2) \]
Questions:

- What is an algorithm?
- Why should we study algorithms?
- Why should we evaluate running time of algorithms?
- What is a recursive function?
- What are the basic differences among O, Ω, and Θ notations?
- Did you understand selection sort algorithm and its running time evaluation?
- Can you write pseudocode for selecting the largest element in a given array?

Please write the algorithm in the class.

Home work: Please read

Chapters 1 and 2, Algorithm Design *Kleinberg and Tardos*