1. Given an array of integers $A[1..n]$, such that, for all i, $1 \leq i < n$, we have $|A[i]-A[i+1]| \leq 1$. Let $A[1] = x$ and $A[n] = y$, such that $x < y$. Design an efficient search algorithm to find j such that $A[j] = z$ for a given value z, $x \leq z \leq y$. What is the maximal number of comparisons to z that your algorithm makes?

2. The input is a set S containing n real numbers, and a real number x.
 a. Design an algorithm to determine whether there are two elements of S whose sum is exactly x. The algorithm should run in $O(n \log n)$ time.
 b. Suppose now that the set S is given in a sorted order. Design an algorithm to solve the above problem in time $O(n)$.

3. Suppose we are to find the k smallest elements in a list of n elements, and we are not interested in their relative order. Can a linear-time algorithm be found when k is a constant? If so give the algorithm. In either case, justify your answer.

4. Consider a set S of $n \geq 2$ distinct numbers given in unsorted order. Give an algorithm to determine two distinct numbers x and y ($x \neq y$) exist in the set S such that $|x-y| \leq |w-z|$ for all $w,z \in S$ and $w \neq z$. Your algorithm should run in $O(n \log n)$ time.

5. The input is d sequences of elements such that each sequence is already sorted, and there is a total of n elements. Design an $O(n \log d)$ algorithm to merge all the sequences into one sorted sequence.

<< Solutions in Class>>