String Matching Algorithms

Topics

- Basics of Strings
- Brute-force String Matcher
- Rabin-Karp String Matching Algorithm
In string matching problems, it is required to find the occurrences of a pattern in a text.

These problems find applications in text processing, text-editing, computer security, and DNA sequence analysis.

Find and Change in word processing

Sequence of the human cyclophilin 40 gene

CCCAGTCTGG AATACAGTGG **CGCGATCTCG** GTTCACTGCA
ACCGCCGCCT **CCCGGG**TTCA AACGATTCTC CTGCCTCAGC

CGCGATCTCG : DNA binding protein GATA-1

CCCGGG : DNA binding protein Sma 1

C: Cytosine, G : Guanine, A : Adenosine, T : Thymine
Text: $T[1..n]$ of length n and Pattern $P[1..m]$ of length m. The elements of P and T are characters drawn from a finite alphabet set Σ. For example $\Sigma = \{0,1\}$ or $\Sigma = \{a,b,\ldots,z\}$, or $\Sigma = \{c,g,a,t\}$. The character arrays of P and T are also referred to as strings of characters. Pattern P is said to occur with shift s in text T if $0 \leq s \leq n-m$ and

\[
T[s+1..s+m] = P[1..m] \text{ or } T[s+j] = P[j] \text{ for } 1 \leq j \leq m,
\]

such a shift is called a valid shift.

The string-matching problem is the problem of finding all valid shifts with which a given pattern P occurs in a given text T.

DAA 251 Week 11
Brute force string-matching algorithm

To find all valid shifts or possible values of s so that $P[1..m] = T[s+1..s+m]$;
There are $n-m+1$ possible values of s.

Procedure `BF_String_Matcher(T,P)`

1. $n \leftarrow \text{length}[T]$;
2. $m \leftarrow \text{length}[P]$;
3. for $s \leftarrow 0$ to $n-m$
4. do if $P[1..m] = T[s+1..s+m]$
5. then shift s is valid

This algorithm takes $\Theta((n-m+1)m)$ in the worst case.
abc

aab

acaabc

aab

aab

matches
Rabin-Karp Algorithm

Let $\Sigma = \{0, 1, 2, \ldots, 9\}$. We can view a string of k consecutive characters as representing a length-k decimal number. Let p denote the decimal number for $P[1..m]$. Let t_s denote the decimal value of the length-m substring $T[s+1..s+m]$ of $T[1..n]$ for $s = 0, 1, \ldots, n-m$. $t_s = p$ if and only if $T[s+1..s+m] = P[1..m]$, and s is a valid shift.

$$p = P[m] + 10(P[m-1] + 10(P[m-2] + \ldots + 10(P[2] + 10(P[1])))$$

We can compute p in $O(m)$ time.

Similarly we can compute t_0 from $T[1..m]$ in $O(m)$ time.
\[6378 = 8 + 7 \times 10 + 3 \times 10^2 + 6 \times 10^3 \quad \text{m = 4}\]
\[= 8 + 10 \times (7 + 10 \times (3 + 10 \times 6))\]
\[= 8 + 70 + 300 + 6000\]

\[p = P[m] + 10(P[m-1] + 10(P[m-2] + \ldots + 10(P[2] + 10(P[1])))\]
\(t_{s+1} \) can be computed from \(t_s \) in constant time.

\[t_{s+1} = 10(t_s - 10^{m-1} T[s+1]) + T[s+m+1] \]

Example: \(T = 314152 \)

\(t_s = 31415, s = 0, m = 5 \) and \(T[s+m+1] = 2 \)

\[t_{s+1} = 10(31415 - 10000 \times 3) + 2 = 14152 \]

Thus \(p \) and \(t_0, t_1, \ldots, t_{n-m} \) can all be computed in \(O(n+m) \) time.

And all occurrences of the pattern \(P[1..m] \) in the text \(T[1..n] \) can be found in time \(O(n+m) \).

However, \(p \) and \(t_s \) may be too large to work with conveniently.

Do we have a simple solution!!
Computation of \(p \) and \(t_0 \) and the recurrence is done modulus \(q \).

In general, with a \(d \)-ary alphabet \(\{0,1,...,d-1\} \), \(q \) is chosen such that \(d \times q \) fits within a computer word.

The recurrence equation can be rewritten as
\[
t_{s+1} = (d(t_s - T[s+1]h) + T[s+m+1]) \mod q,
\]
where \(h = d^{m-1} \mod q \) is the value of the digit “1” in the high order position of an \(m \)-digit text window.

Note that \(t_s \equiv p \mod q \) does not imply that \(t_s = p \).
However, if \(t_s \) is not equivalent to \(p \mod q \), then \(t_s \neq p \), and the shift \(s \) is invalid.

We use \(t_s \equiv p \mod q \) as a fast heuristic test to rule out the invalid shifts.
Further testing is done to eliminate spurious hits.
- an explicit test to check whether
\[
P[1..m] = T[s+1..s+m]
\]
\[t_{s+1} = (d(t_s - T[s+1]h) + T[s+m+1]) \mod q \]

\[h = d^{m-1} \mod q \]

Example:

\[T = 31415; \quad P = 26, \quad n = 5, \quad m = 2, \quad q = 11 \]

\[p = 26 \mod 11 = 4 \]

\[t_0 = 31 \mod 11 = 9 \]

\[t_1 = (10(9 - 3(10) \mod 11) + 4) \mod 11 \]

\[= (10 (9 - 8) + 4) \mod 14 = 14 \mod 11 = 3 \]
Procedure \text{RABIN-KARP-MATCHER}(T,P,d,q)

\textbf{Input} : Text T, pattern P, radix d (which is typically $|\Sigma|$), and the prime q.

\textbf{Output} : valid shifts s where P matches

1. $n \leftarrow \text{length}[T]$;
2. $m \leftarrow \text{length}[P]$;
3. $h \leftarrow d^{m-1} \mod q$;
4. $p \leftarrow 0$;
5. $t_0 \leftarrow 0$;
6. \textbf{for} $i \leftarrow 1$ \textbf{to} m
7. \hspace{1em} do $p \leftarrow (d \times p + P[i]) \mod q$;
8. \hspace{1em} $t_0 \leftarrow (d \times t_0 + T[i]) \mod q$;
9. \textbf{for} $s \leftarrow 0$ \textbf{to} $n-m$
10. \hspace{1em} do if $p = t_s$
11. \hspace{2em} then if $P[1..m] = T[s+1..s+m]$
12. \hspace{3em} then “pattern occurs with shift “ s
13. \hspace{1em} if $s < n-m$
14. \hspace{2em} then $t_{s+1} \leftarrow (d(t_s - T[s+1]h) + T[s+m+1]) \mod q$;
Comments on Rabin-Karp Algorithm

- All characters are interpreted as radix-d digits
- h is initiated to the value of high order digit position of an m-digit window
- p and t_0 are computed in $O(m+m)$ time
- The loop of line 9 takes $\Theta((n-m+1)m)$ time

The loop 6-8 takes $O(m)$ time
The overall running time is $O((n-m)m)$
TEST ON ASSIGNMENT DATES

24 (MONDAY) 1:00 to 2:00 PM and 2:00 to 3:00 PM

25 (TUESDAY) 2:00 to 3:00 PM

and 26 (WEDNESDAY) 8:00 - 9:00 PM

MAY 1999

(DURING YOUR TUTORIAL TIME)