CSE 5311
 Fall 2007
 Exercise problems on Flow Networks, Computational Geometry and String Matching

1. Suppose that each source $s i$ in a multisource, multisink problem produces exactly $p i$ units of flow, so that $f(s i, V)=p$ i. Suppose that each sink $t j$ consumes exactly $q j$ units so that $f(V, t j)=$ $q j$, where . Show how to convert the problem of finding a flow f that obeys these additional constraints into the problem of finding a maximum flow in a single-source, single-sink flow network.
2. Given a flow network $G=(V, E)$, let $f 1$ and $f 2$ be functions from $V \times V$ to \mathbf{R}. The flow sum $f 1$ $+f 2$ is the function from $V \times V$ to \mathbf{R} defined by $(f 1+f 2)(u, v)=f 1(u, v)+f 2(u, v)$ for all u, v $\in V$. If $f 1$ and $f 2$ are flows in G, which of the three flow properties must the flow $f 1+f 2$ satisfy, and which might it violate?
3. The edge connectivity of an undirected graph is the minimum number k of edges that muct be removed to disconnect the graph. For example, the edge connectivity of a tree is 1 , and the edge connectivity of a cyclic chain of vertices is 2 . Show that how the edge connectivity of an undirected graph $G=(V, E)$ can be determined by running a maximum-flow algorithm on at most $|V|$ flow networks, each having $\mathrm{O}(V)$ vertices and $\mathrm{O}(E)$ edges.
4. Let P be a simple (not necessarily convex) polygon enclosed in a given rectangle R, and q be an arbitrary point inside R. Design an efficient algorithm to find a line segment connecting q to any point outside R such that the number of edge of P that this line intersects is minimum.
5. Let P be a set of n points in a plane. We define the depth of a point p in P as the number of convex hulls that need to be 'peeled' (removed) for p to become a vertex of the convex hull. Design an $O(n 2)$ algorithm to find the depths of all points in P.
6. Given a set of n points in the plane P. A straight forward or brute force algorithm will take $\mathrm{O}(n 2)$ to compute a pair of closest points. Give an $\mathrm{O}(n \log 2 n)$ algorithm find a pair of closest points. You get a bonus if you can give an $\mathrm{O}(n \log n)$ algorithm
7. Extend Rabin-Karp method to the problem of searching a text string for an occurrence of any one of a given set of k patterns? Start by assuming that all k patterns have the same length. Then generalize your solution to allow the patterns to have different lengths.
8. Let P be set of n points in the plane. We define the depth of a point in P as the number of convex hulls that need to be peeled (removed) for p to become a vertex of the convex hull. Design an $O(n 2)$ algorithm to find the depths of all points in P.
9. The input is two strings of characters $A=a 1, a 2, \ldots, a n$ and $B=b 1, b 2, \ldots, b n$. Design an $\mathrm{O}(n)$ time algorithm to determine whether B is a cyclic shift of A. In other words, the algorithm should determine whether there exists an index $k, 1 \leq k \leq n$ such that $a i=b(k+i) \bmod n$, for all $i, 1 \leq i \leq n$.
