1. Suppose that each source s_i in a multisource, multisink problem produces exactly p_i units of flow, so that $f(s_i, V) = p_i$. Suppose that each sink t_j consumes exactly q_j units so that $f(V, t_j) = q_j$, where. Show how to convert the problem of finding a flow f that obeys these additional constraints into the problem of finding a maximum flow in a single-source, single-sink flow network.

2. Given a flow network $G = (V, E)$, let f_1 and f_2 be functions from $V \times V$ to \mathbb{R}. The flow sum $f_1 + f_2$ is the function from $V \times V$ to \mathbb{R} defined by $(f_1 + f_2)(u, v) = f_1(u, v) + f_2(u, v)$ for all $u, v \in V$. If f_1 and f_2 are flows in G, which of the three flow properties must the flow $f_1 + f_2$ satisfy, and which might it violate?

3. The edge connectivity of an undirected graph is the minimum number k of edges that must be removed to disconnect the graph. For example, the edge connectivity of a tree is 1, and the edge connectivity of a cyclic chain of vertices is 2. Show that how the edge connectivity of an undirected graph $G = (V, E)$ can be determined by running a maximum-flow algorithm on at most $|V|$ flow networks, each having $O(|V|)$ vertices and $O(|E|)$ edges.

4. Let P be a simple (not necessarily convex) polygon enclosed in a given rectangle R, and q be an arbitrary point inside R. Design an efficient algorithm to find a line segment connecting q to any point outside R that this line intersects is minimum.

5. Let P be a set of n points in a plane. We define the depth of a point p in P as the number of convex hulls that need to be ‘peeled’ (removed) for p to become a vertex of the convex hull. Design an $O(n^2)$ algorithm to find the depths of all points in P.

6. Given a set of n points in the plane P. A straight forward or brute force algorithm will take $O(n^2)$ to compute a pair of closest points. Give an $O(n \log n)$ algorithm find a pair of closest points. You get a bonus if you can give an $O(n \log n)$ algorithm.

7. Extend Rabin-Karp method to the problem of searching a text string for an occurrence of any one of a given set of k patterns? Start by assuming that all k patterns have the same length. Then generalize your solution to allow the patterns to have different lengths.

8. Let P be set of n points in the plane. We define the depth of a point in P as the number of convex hulls that need to be peeled (removed) for p to become a vertex of the convex hull. Design an $O(n^2)$ algorithm to find the depths of all points in P.

9. The input is two strings of characters $A = a_1, a_2, ..., a_n$ and $B = b_1, b_2, ..., b_n$. Design an $O(n)$ time algorithm to determine whether B is a cyclic shift of A. In other words, the algorithm should determine whether there exists an index k, $1 \leq k \leq n$ such that $a_i = b(k+i) \mod n$, for all i, $1 \leq i \leq n$.
