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Dynamic programming techniques

Topics
•Basics of DP

•Matrix-chain Multiplication

•Longest Common 

subsequence

• All-pairs Shortest paths

Further Reading

Chapter 6

Textbook
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Dynamic programming

•Solves problems by combining the solutions to subproblems

•DP is applicable when subproblems are not independent

Subproblems share subsubproblems

In such cases a simple 

Divide and Conquer strategy solves common 

subsubproblems.

•In DP every subproblem is solved just once and the solution is 

saved in a table for future reference (avoids re-computation).

•DP is typically applied to optimization problems

•A given problem may have many solutions, DP chooses the 

optimal solution.
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Four stages of Dynamic Programming

♦Characterize the structure of an optimal solution

♦Recursively define the value of an optimal solution

♦Compute the value of an optimal solution in a bottom-up 

fashion

♦Construct an optimal solution from computed results
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Longest common subsequence

A subsequence is formed from a list by deleting zero or 

more elements  (the remaining elements are in order)

A common subsequence of two lists is a 

subsequence of both. 

The longest common subsequence (LCS) of two 

lists is the longest among the common 

subsequences of the two lists. 

Example:

abcabba and cbabac are two sequences

baba is a subsequence of  both
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a b c a b b a

b a b a

c b a b a c
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To find the length of an LCS of lists x and y, we 

need to find the lengths of the LCSs of all pairs of 

prefixes.

�a prefix is an initial sublist of a list

If x = (a1,a2,a3, . . ., am) and 

y = (b1,b2,b3, . . ., bn)

0 ≤≤≤≤ i ≤≤≤≤ m and 0≤≤≤≤ j≤≤≤≤ n

Consider an LCS of the prefix (a1,a2,a3, . . ., ai) from x 

and of the prefix (b1,b2,b3, . . ., bj) from y. 

If i or j = 0 then one of the prefixes is εεεε and the only 

possible common subsequence between x and y is εεεε and 
the length of the LCS is zero.
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L(i,j) is the length of the LCS of (a1,a2,a3, . . ., ai) and

(b1,b2,b3, . . ., bj).

BASIS: If i+j = 0, then both i and j are zero and so the LCS 

is εεεε.

INDUCTION: Consider i and j, and suppose we have 

already computed L(g,h) for any g and h such that 

g+h < i+j.

1.If either i or j is 0 then L(i,j) = 0.

2.If i>0 and j>0, and ai ≠≠≠≠ bj then 

L(i,j) = max(L(i,j-1),L(i-1,j)).

3.If i >0 and j> 0, and ai = bj then L(i,j) = L(i-1,j-1)+1.
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εεεε a b  c  a

εε εε
a
  
  
c 
  
a
  
 b

 

0  0  0  0  0

0  1 1 1 1

1.If either i or j is 0 then L(i,j) = 0.

2.If i>0 and j>0, and ai ≠≠≠≠ bj then 

L(i,j) = max(L(i,j-1),L(i-1,j)).

3.If i >0 and j> 0, and ai = bj then L(i,j) = L(i-1,j-1)+1.

0  1  1 2 2
0  1  1  2 3

0  1  2  2  3
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Procedure LCS(x,y)

Input : The lists x and y

Output : The longest common subsequence and its 

length

1. for j ←←←← 0 to n do

2. L[0,j] ←←←← 0;

3. for i ←←←← 1 to m do

4. L[i,0] ←←←←0;  

5. for j ←←←← 1 to n do

6. if a[i] ≠≠≠≠ b[j] then
7. L[i,j] ←←←← max {L[i-1,j],L[i,j-1]};

8. else

9 L[i,j] ←←←← 1+L[i-1,j-1];
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Example:

Consider, lists x = abcabba and y = cbabac

1 2 3 3 3 3 4

1 1 1 2 2 2 3
0 1 1 1 2 2 2

0
0
0
0
0
0

1 2 2 3 3 3 4

0 0 1 1 1 1 1

1 2 2 2 3 3 3

0 0 0 0 0 0 0 0

c
a
b
a
b
c

6
5
4
3
2
1
00
0  a   b  c a  b b a



10/1/2007 CSE 5311 Fall 2007

M Kumar

11

Consider another example

abaacbacab and bacabbcaba LCS : bacacab

1 2 3 4 5 5 5 6 7 7
1 2 3 4 4 4 5 6 6 6

6
1 2 3 4 4 4 5 5 5 6

1 2 3 3 4 4 4 4

1 2 3 4 4 4 4 5 5

5 5
1 2 3 3 3 3 4 4 4 4

1 2 2 3 3 3 3 3 3 4
1 2 2 2 2 2 2 3 3 3

1 1 1 1 2 2 2 2 2 2
0 1 1 1 1 1 1 1 1 1`

0
0

0
0

0
0

0
0

0
0

b
a

c
a

b
c

a
a

b
a

0 0 0 0 0 0 0 0 0 0 0 0
0 b a c a b b c a b a
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• Give a dynamic-programming solution to the 0-1 knapsack problem 

that runs in O(nW) time, where n is the number of items and W is 

the maximum weight of items that the thief can put in his knapsack. 

The weight is measured in Kgs (say).  The maximum weight is an integer.

The given items are 1..n

Let S be the optimal solution for W and i be the highest numbered item in S.

S’ = S- {i} is an optimal solution for (W-wi) Kilos and items 1.. i-1.

The value of the solution in S is the value vi of item i plus the value of the 

solution S’.

Let c[i,w] be the value of the solution for items 1..i and maximum weight w.

 0 if i =0 or w=0.

C[i,w] =   c[i-1,w] if wi > w

max (vi+c[i-1,w-wi],c[i-1,w] if i >0 and w ≥≥≥≥ wi

The value of the solution for i items either includes item i, in which case it is 

vi plus a  Subproblem solution for i-1 items and the weight excluding wi or 

doesn’t include the item i.
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• Give a dynamic-programming solution to the 0-1 knapsack problem 

that runs in O(nW) time, where n is the number of items and W is 

the maximum weight of items that the thief can put in his knapsack. 

Inputs : W, n, v=<v1,v2, …, vn> and w = < w1, w2, …, wn>

The table is c[0..n, 0..W] – each entry is referred to as c[i,j]

The first row entries are filled first and then the second row entries are 

computed and so on (very similar to the LCS solution).

At the end c[n,W] contains the maximum value. 

Trace the items which are part of the solution from c[n,W]. 

If c[i,w] =  c[i-1,w] then i is not part of the solution, go to c[i-1,w] and trace 

back

If c[i,w] ≠≠≠≠ c[i-1,w] then i is part of the solution, trace with c[i-1,w-wi].
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1524

2033

1012

1221

ValueWeightItem

373025151004

323022121003

222222121002

12121212001

0000000

543210j
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Matrix-chain Multiplication

Consider the matrix multiplication procedure

MATRIX_MULTIPLY(A,B)

1. if columns[A] ≠≠≠≠ rows[B]
2. then error "incompatible dimensions”

3. else for i ←←←← 1 to rows[A]

4. do for j ←←←←1 to columns[B]

5. do C[i,j] ←←←←0;

6. for k ←←←← 1 to columns [A]

7. do C[i,j] ←←←← C[i,j]+A[i,k]*B[k,j];

8. return C
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The time to compute a matrix product is 

dominated by the number of scalar 

multiplications in line 7.

If matrix A is of size (p××××q) and B is of size (q××××r), 
then the time to compute the product matrix is 

given by pqr.

Consider three matrices A1, A2, and A3 whose 

dimensions are respectively  

(10××××100), (100××××5), (5××××50).
Now there are two ways to parenthesize these 

multiplications

I ((A1××××A2) ××××A3) 

II (A1×××× (A2××××A3))
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First Parenthesization

Product A1××××A2 requires 10××××100××××5 = 5000 scalar 

multiplications

A1××××A2 is a (10××××5) matrix

(A1××××A2) ××××A3 requires 10 ×××× 5 ×××× 50 = 2500 scalar multiplications.

Total : 7,500 multiplications
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10××××5 5 ××××50 10 ××××50

A1

A1××××A2

(A1××××A2) 

××××A3
A3

A1 A2 A1××××A2



10/1/2007 CSE 5311 Fall 2007

M Kumar

18

 Second Parenthesization

 Product A2××××A3 requires 100××××5××××50 = 25,000 scalar multiplications 

A2××××A3 is a (100××××50) matrix

 A1×××× (A2××××A3) requires 10××××100××××50 = 50,000 scalar multiplications

 Total : 75,000 multiplications.

The first 

parenthesization

is 10 times faster 

than the second 

one!!

How to pick the 

best 

parenthesization

?
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10××××100 100 ××××50 10 ××××50

A2 A3 A2××××A3

A2××××A3

A1××××
(A2 ××××A3)

A1
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The matrix-chain matrix multiplication

Given a chain (A1, A2, . . . ,An) of n matrices, where 

for i = 1,2, …, n matrix Ai has dimension pi-1××××pi, 

fully parenthesize the product A1A2…An in a way 

that minimizes the number of scalar 

multiplications.

The order in which these matrices are multiplied 

together can have a significant effect on the total 

number of operations required to evaluate the 

product.

An optimal solution to an instance of a matrix--chain 

multiplication problem contains within it optimal solutions 

to the subproblem instances.
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Let, P(n) : The number of alternative 

parenthesizations of a sequence  of n matrices

We can split a sequence of n matrices between 

kth and (k+1)st matrices for any k = 1, 2, …, n-1 

and we can then parenthesize the two resulting 

subsequences independently,

This is an exponential in n
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Consider A1××××A2 ××××A3 ××××A4

if k =1,  then 

A1×××× (A2 ××××(A3 ××××A4)) or

A1××××((A2 ××××A3 )××××A4)

if k =2  then 

(A1××××A2) ×××× (A3 ××××A4)

if k =3  then 

((A1××××A2) ××××A3) ××××A4

or (A1××××(A2 ××××A3)) ××××A4
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Structure of the Optimal Parenthesization

A i..j = Ai××××Ai+1×××× . . . ×××× Aj

An optimal parenthesization splits the product

Ai..j = (Ai××××Ai+1×××× . . . ×××× Ak) ×××× (Ak+1××××Ak+2×××× . . . ×××× Aj)

for 1≤≤≤≤ k < n

The total cost of computing Ai..j

= cost of computing (Ai××××Ai+1×××× . . . ×××× Ak) 

+ cost of computing (Ak+1×××× Ak+2×××× . . . ×××× Aj) 

+ cost of multiplying the matrices Ai..k and Ak+1..j.

Ai...k must also be optimal if we want Ai..j to be optimal. If Ai..k

is not optimal then Ai..j is not optimal. Similarly Ak+1..j must 

also be optimal.
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Recursive Solution

We'll define the value of an optimal solution recursively in 

terms of the optimal solutions to subproblems.

m[i,j] = minimum number of scalar multiplications needed to 

compute  the matrix Ai..j

m[1,n] = minimum number of scalar multiplications needed to 

compute  the matrix A1..n.

If i = j ; the chain consists of just one matrix

A i..i = Ai - no scalar multiplications

m[i,i] = 0 for  i = 1, 2, …, n. 

m[i,j] = minimum cost of computing the subproducts

Ai..k and A k+1 ..j + cost of multiplying these two matrices

Multiplying Ai..k and Ak+1....j takes pi-1pk pj scalar multiplications

m[i,j] = m[i,k] + m[k+1,j] + pi-1pk pj for i≤≤≤≤ k < j
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The optimal parenthesization must use one 

of these values for k, we need to check 

them all to find the best solution.

Therefore, 
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Let s[i,j] be the value of k at which we can split the 

product  Ai×××× Ai+1×××× . . . ×××× Aj

to obtain the optimal parenthesization.

s[i,j]  equals a value of k such that

m[i,j] = m[i,k] + m[k+1,j] + pi-1pk pj for i≤≤≤≤ k < j
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Input: sequence (p0,p1,…pn) 

Output : an auxiliary table m[1..n,1..n] with m[i,j] 

costs and another auxiliary table s[1..n,1..n] with 

records of index k which achieves optimal cost in 

computing m[i,j]
1. n←←←←length[p]-1;

2. for i ←←←← 1 to n

3. do m[i,i] ←←←←0;

4. for l←←←← 2 to n

5. do for i ←←←← 1 to n-l+1

6. do j ←←←← i+l-1

7. m[i,j]←∞←∞←∞←∞;
8. for k ←←←← i to j-1

9. do q ←←←←m[i,k]+m[k+1,j]+pi-1pkpj;

10. if q < m[i,j];

11. then m[i,j] ←←←←q;

12. s[i,j] ←←←←k;

13. return m and s

Procedure Matrix_Chain_Order (p)
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Consider Four Matrices 

A1 : 10 ×××× 20   A2 : 20××××50

A3: 50××××1 A4 : 1 ××××100

m[i,j] = m[i,k] + m[k+1,j] + pi-1pk pj for i≤≤≤≤ k < j

Consider A1××××A2 ××××A3 ××××A4

if k =1,  then 

A1×××× (A2 ××××(A3 ××××A4))

A1××××((A2 ××××A3 )××××A4)

if k =2  then 

(A1××××A2) ×××× (A3 ××××A4)

if k =3  then 

((A1××××A2) ××××A3) ××××A4

and (A1××××(A2 ××××A3)) ××××A4

MIN[(10,000+500),(1000+200) 

10 ××××50

20 ××××1

j↓↓↓↓ i→→→→ 1 2 3 4

1 0 -- -- --

2 10,000 0 -- --
3 1200 1000 0 --

4 2200 3000 5000 0
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Consider, A1 (30××××35)A2 (35××××15)A3 (15××××5), 
A4(5××××10), A5(10××××20), A6(20××××25)

j↓↓↓↓/i→→→→ 1 2 3 4 5 6

1 0 -- -- -- -- --

2 15,750 0 -- -- -- --

3 7,875 2,625 0 -- -- --

4 9,375 4,375 750 0 -- --

5 11,875 7,125 2,500 1,000 0 --

6 15,125 10,500 5,375 3,500 5,000 0

m

j↓↓↓↓/i→→→→ 1 2 3 4 5
2 1 - - - -
3 1 2 - - -
4 3 3 3 - -
5 3 3 3 4 -
6 3 3 3 5 5

s

(A1..A3)×××× (A4..A6)

(A1 ×××× (A2 ×××× A3)) ××××

((A4 ×××× A5) ×××× A6)
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Complexity? With and without DP?

• T(1) ≥ 1

• T(n) ≥ 1 + 

• T(n) ≥

• Exponential in n
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 Consider the problem of neatly printing a paragraph on a 
printer. The input text is a sequence of n words of length   
l1,l2, . . ., ln, measured in input characters. We want to print 
this paragraph neatly on a number of lines that hold a 
maximum of M characters each. Our criterion of "neatness" is 
as follows. If a given line contains words i through j and leave 
exactly one space between words, the number of extra space 
characters at the end  of the line is

We wish to minimize the sum, over all the lines except the last 
of the extra space characters at the ends of lines.  Give a 
dynamic programming algorithm to print a paragraph of n
words neatly on a printer. Analyze the running time and 
space requirements of your algorithm.

∑
=

−+−
j

ik

klijM
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Hints 

• Assume that no word is longer than a line

• Determine the cost of a line containing words i

through j (cost is the number of free spaces)

• We want to minimize the sum of line costs over 

all lines in the paragraph.

• Try to represent the above by a recursive 

expression   
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• Assume that no word has more characters than that can be fitted in 
a line li≤M for all i

• We use DP for the following reasons,

– There are a number of repeated problems

– Solutions have optimal substructure

• That is, if we place words 1..k on line 1, then the placement of words             
k+1 ..n must be optimal, else we have to improve the solution

• We denote the space at the end of a line that contains words i
through j by,

– Space [i,j] = M-j+i- ΣΣΣΣ lk ( k = i through j)

• Let

– cl[i, j] = cost of including a line containing words i through j in the sum S
we want to minimize

– c[j] = cost of an optimal arrangement of words i through j

• When the words don’t fit on a line, such sum should not be part of S

– Therefore we assume that cl[i, j] = ∞ when space[i, j] < 0

– For the last line when j =n, space[i, j] =0, and therefore, cl[i, j] =0

– For all other cases cl[i, j] = space[i, j] 
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– Therefore we assume that cl[i, j] = ∞ when space[i, j] < 0

– For the last line when j =n, space[i, j] =0, and therefore, cl[i, j] =0

– For all other cases cl[i, j] = space[i, j] 

• The problem is to minimize S (the sum of all cl) over all lines of the 

paragraph

• Cost of optimal arrangement = c[n]

• C[n] is defined recursively as follows,

– c[0] =0

– c[j] = min c[i-1+cl[i,j] 

• To arrange the first j words on lines, pick some i such that words i..j

will be on the last line.

• Cost of the whole arrangement is given by

– Line cost for that line containing words i..j PLUS

– Cost of an optimal arrangement of the first i-1 words on earlier lines

• To find i such that the cost is minimized

1≤ i≤ j
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• All choices will fit in any line because of the assumption 
that no word is longer than a line

• When c[j] is computed, if c[j] is based on the value of c[k], set p[j] = k

• When c[n] is computed, we trace the pointers to see where to break the 
lines.

• The last line starts at word  p[n]+1, the line preceding that will start at 
p[p[n]]+1. 

• The p table entries point to where each c value came from (the 
corresponding i) 

• Space = Θ(n)
• Time = Θ(n*M)

p[n]p[1]0p

c[n]c[2]c[1]c[0]c
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• A ski rental agency has m pairs of skis, 

where the height of the ith pair of skis is si. 

There are n skiers who wish to rent skis, 

where the height of the ith skier is hi. 

Ideally, each skier should obtain a pair of 

skis whose height matches with his own 

height as closely as possible. Design an 

efficient algorithm to assign skis so that the 

sum of the absolute differences of the 

heights of each skier and his/her skis is 

minimized.


