
10/1/2007 CSE 5311 Fall 2007

M Kumar

1

Dynamic programming techniques

Topics
•Basics of DP

•Matrix-chain Multiplication

•Longest Common

subsequence

• All-pairs Shortest paths

Further Reading

Chapter 6

Textbook

10/1/2007 CSE 5311 Fall 2007

M Kumar

2

Dynamic programming

•Solves problems by combining the solutions to subproblems

•DP is applicable when subproblems are not independent

Subproblems share subsubproblems

In such cases a simple

Divide and Conquer strategy solves common

subsubproblems.

•In DP every subproblem is solved just once and the solution is

saved in a table for future reference (avoids re-computation).

•DP is typically applied to optimization problems

•A given problem may have many solutions, DP chooses the

optimal solution.

10/1/2007 CSE 5311 Fall 2007

M Kumar

3

Four stages of Dynamic Programming

♦Characterize the structure of an optimal solution

♦Recursively define the value of an optimal solution

♦Compute the value of an optimal solution in a bottom-up

fashion

♦Construct an optimal solution from computed results

10/1/2007 CSE 5311 Fall 2007

M Kumar

4

Longest common subsequence

A subsequence is formed from a list by deleting zero or

more elements (the remaining elements are in order)

A common subsequence of two lists is a

subsequence of both.

The longest common subsequence (LCS) of two

lists is the longest among the common

subsequences of the two lists.

Example:

abcabba and cbabac are two sequences

baba is a subsequence of both

10/1/2007 CSE 5311 Fall 2007

M Kumar

5

a b c a b b a

b a b a

c b a b a c

10/1/2007 CSE 5311 Fall 2007

M Kumar

6

To find the length of an LCS of lists x and y, we

need to find the lengths of the LCSs of all pairs of

prefixes.

�a prefix is an initial sublist of a list

If x = (a1,a2,a3, . . ., am) and

y = (b1,b2,b3, . . ., bn)

0 ≤≤≤≤ i ≤≤≤≤ m and 0≤≤≤≤ j≤≤≤≤ n

Consider an LCS of the prefix (a1,a2,a3, . . ., ai) from x

and of the prefix (b1,b2,b3, . . ., bj) from y.

If i or j = 0 then one of the prefixes is εεεε and the only

possible common subsequence between x and y is εεεε and
the length of the LCS is zero.

10/1/2007 CSE 5311 Fall 2007

M Kumar

7

L(i,j) is the length of the LCS of (a1,a2,a3, . . ., ai) and

(b1,b2,b3, . . ., bj).

BASIS: If i+j = 0, then both i and j are zero and so the LCS

is εεεε.

INDUCTION: Consider i and j, and suppose we have

already computed L(g,h) for any g and h such that

g+h < i+j.

1.If either i or j is 0 then L(i,j) = 0.

2.If i>0 and j>0, and ai ≠≠≠≠ bj then

L(i,j) = max(L(i,j-1),L(i-1,j)).

3.If i >0 and j> 0, and ai = bj then L(i,j) = L(i-1,j-1)+1.

10/1/2007 CSE 5311 Fall 2007

M Kumar

8

εεεε a b c a

εε εε
a

c

a

 b

0 0 0 0 0

0 1 1 1 1

1.If either i or j is 0 then L(i,j) = 0.

2.If i>0 and j>0, and ai ≠≠≠≠ bj then

L(i,j) = max(L(i,j-1),L(i-1,j)).

3.If i >0 and j> 0, and ai = bj then L(i,j) = L(i-1,j-1)+1.

0 1 1 2 2
0 1 1 2 3

0 1 2 2 3

10/1/2007 CSE 5311 Fall 2007

M Kumar

9

Procedure LCS(x,y)

Input : The lists x and y

Output : The longest common subsequence and its

length

1. for j ←←←← 0 to n do

2. L[0,j] ←←←← 0;

3. for i ←←←← 1 to m do

4. L[i,0] ←←←←0;

5. for j ←←←← 1 to n do

6. if a[i] ≠≠≠≠ b[j] then
7. L[i,j] ←←←← max {L[i-1,j],L[i,j-1]};

8. else

9 L[i,j] ←←←← 1+L[i-1,j-1];

10/1/2007 CSE 5311 Fall 2007

M Kumar

10

Example:

Consider, lists x = abcabba and y = cbabac

1 2 3 3 3 3 4

1 1 1 2 2 2 3
0 1 1 1 2 2 2

0
0
0
0
0
0

1 2 2 3 3 3 4

0 0 1 1 1 1 1

1 2 2 2 3 3 3

0 0 0 0 0 0 0 0

c
a
b
a
b
c

6
5
4
3
2
1
00
0 a b c a b b a

10/1/2007 CSE 5311 Fall 2007

M Kumar

11

Consider another example

abaacbacab and bacabbcaba LCS : bacacab

1 2 3 4 5 5 5 6 7 7
1 2 3 4 4 4 5 6 6 6

6
1 2 3 4 4 4 5 5 5 6

1 2 3 3 4 4 4 4

1 2 3 4 4 4 4 5 5

5 5
1 2 3 3 3 3 4 4 4 4

1 2 2 3 3 3 3 3 3 4
1 2 2 2 2 2 2 3 3 3

1 1 1 1 2 2 2 2 2 2
0 1 1 1 1 1 1 1 1 1`

0
0

0
0

0
0

0
0

0
0

b
a

c
a

b
c

a
a

b
a

0 0 0 0 0 0 0 0 0 0 0 0
0 b a c a b b c a b a

10/1/2007 CSE 5311 Fall 2007

M Kumar

12

• Give a dynamic-programming solution to the 0-1 knapsack problem

that runs in O(nW) time, where n is the number of items and W is

the maximum weight of items that the thief can put in his knapsack.

The weight is measured in Kgs (say). The maximum weight is an integer.

The given items are 1..n

Let S be the optimal solution for W and i be the highest numbered item in S.

S’ = S- {i} is an optimal solution for (W-wi) Kilos and items 1.. i-1.

The value of the solution in S is the value vi of item i plus the value of the

solution S’.

Let c[i,w] be the value of the solution for items 1..i and maximum weight w.

 0 if i =0 or w=0.

C[i,w] = c[i-1,w] if wi > w

max (vi+c[i-1,w-wi],c[i-1,w] if i >0 and w ≥≥≥≥ wi

The value of the solution for i items either includes item i, in which case it is

vi plus a Subproblem solution for i-1 items and the weight excluding wi or

doesn’t include the item i.

10/1/2007 CSE 5311 Fall 2007

M Kumar

13

• Give a dynamic-programming solution to the 0-1 knapsack problem

that runs in O(nW) time, where n is the number of items and W is

the maximum weight of items that the thief can put in his knapsack.

Inputs : W, n, v=<v1,v2, …, vn> and w = < w1, w2, …, wn>

The table is c[0..n, 0..W] – each entry is referred to as c[i,j]

The first row entries are filled first and then the second row entries are

computed and so on (very similar to the LCS solution).

At the end c[n,W] contains the maximum value.

Trace the items which are part of the solution from c[n,W].

If c[i,w] = c[i-1,w] then i is not part of the solution, go to c[i-1,w] and trace

back

If c[i,w] ≠≠≠≠ c[i-1,w] then i is part of the solution, trace with c[i-1,w-wi].

10/1/2007 CSE 5311 Fall 2007

M Kumar

14

1524

2033

1012

1221

ValueWeightItem

373025151004

323022121003

222222121002

12121212001

0000000

543210j

10/1/2007 CSE 5311 Fall 2007

M Kumar

15

Matrix-chain Multiplication

Consider the matrix multiplication procedure

MATRIX_MULTIPLY(A,B)

1. if columns[A] ≠≠≠≠ rows[B]
2. then error "incompatible dimensions”

3. else for i ←←←← 1 to rows[A]

4. do for j ←←←←1 to columns[B]

5. do C[i,j] ←←←←0;

6. for k ←←←← 1 to columns [A]

7. do C[i,j] ←←←← C[i,j]+A[i,k]*B[k,j];

8. return C

10/1/2007 CSE 5311 Fall 2007

M Kumar

16

The time to compute a matrix product is

dominated by the number of scalar

multiplications in line 7.

If matrix A is of size (p××××q) and B is of size (q××××r),
then the time to compute the product matrix is

given by pqr.

Consider three matrices A1, A2, and A3 whose

dimensions are respectively

(10××××100), (100××××5), (5××××50).
Now there are two ways to parenthesize these

multiplications

I ((A1××××A2) ××××A3)

II (A1×××× (A2××××A3))

10/1/2007 CSE 5311 Fall 2007

M Kumar

17

First Parenthesization

Product A1××××A2 requires 10××××100××××5 = 5000 scalar

multiplications

A1××××A2 is a (10××××5) matrix

(A1××××A2) ××××A3 requires 10 ×××× 5 ×××× 50 = 2500 scalar multiplications.

Total : 7,500 multiplications

=

×

10××××100 100 ××××5 10 ××××5

=

×

10××××5 5 ××××50 10 ××××50

A1

A1××××A2

(A1××××A2)

××××A3
A3

A1 A2 A1××××A2

10/1/2007 CSE 5311 Fall 2007

M Kumar

18

 Second Parenthesization

 Product A2××××A3 requires 100××××5××××50 = 25,000 scalar multiplications

A2××××A3 is a (100××××50) matrix

 A1×××× (A2××××A3) requires 10××××100××××50 = 50,000 scalar multiplications

 Total : 75,000 multiplications.

The first

parenthesization

is 10 times faster

than the second

one!!

How to pick the

best

parenthesization

?

=

×

100××××5 5 ××××50 100 ××××50

=

×

10××××100 100 ××××50 10 ××××50

A2 A3 A2××××A3

A2××××A3

A1××××
(A2 ××××A3)

A1

10/1/2007 CSE 5311 Fall 2007

M Kumar

19

The matrix-chain matrix multiplication

Given a chain (A1, A2, . . . ,An) of n matrices, where

for i = 1,2, …, n matrix Ai has dimension pi-1××××pi,

fully parenthesize the product A1A2…An in a way

that minimizes the number of scalar

multiplications.

The order in which these matrices are multiplied

together can have a significant effect on the total

number of operations required to evaluate the

product.

An optimal solution to an instance of a matrix--chain

multiplication problem contains within it optimal solutions

to the subproblem instances.

10/1/2007 CSE 5311 Fall 2007

M Kumar

20

∑∑∑∑
−−−−

====
≥≥≥≥−−−−⋅⋅⋅⋅

====

==== 1

1
2

11
n

k
nifknPkP

nif
nP

)()(
)(

Let, P(n) : The number of alternative

parenthesizations of a sequence of n matrices

We can split a sequence of n matrices between

kth and (k+1)st matrices for any k = 1, 2, …, n-1

and we can then parenthesize the two resulting

subsequences independently,

This is an exponential in n

10/1/2007 CSE 5311 Fall 2007

M Kumar

21

Consider A1××××A2 ××××A3 ××××A4

if k =1, then

A1×××× (A2 ××××(A3 ××××A4)) or

A1××××((A2 ××××A3)××××A4)

if k =2 then

(A1××××A2) ×××× (A3 ××××A4)

if k =3 then

((A1××××A2) ××××A3) ××××A4

or (A1××××(A2 ××××A3)) ××××A4

10/1/2007 CSE 5311 Fall 2007

M Kumar

22

Structure of the Optimal Parenthesization

A i..j = Ai××××Ai+1×××× . . . ×××× Aj

An optimal parenthesization splits the product

Ai..j = (Ai××××Ai+1×××× . . . ×××× Ak) ×××× (Ak+1××××Ak+2×××× . . . ×××× Aj)

for 1≤≤≤≤ k < n

The total cost of computing Ai..j

= cost of computing (Ai××××Ai+1×××× . . . ×××× Ak)

+ cost of computing (Ak+1×××× Ak+2×××× . . . ×××× Aj)

+ cost of multiplying the matrices Ai..k and Ak+1..j.

Ai...k must also be optimal if we want Ai..j to be optimal. If Ai..k

is not optimal then Ai..j is not optimal. Similarly Ak+1..j must

also be optimal.

10/1/2007 CSE 5311 Fall 2007

M Kumar

23

Recursive Solution

We'll define the value of an optimal solution recursively in

terms of the optimal solutions to subproblems.

m[i,j] = minimum number of scalar multiplications needed to

compute the matrix Ai..j

m[1,n] = minimum number of scalar multiplications needed to

compute the matrix A1..n.

If i = j ; the chain consists of just one matrix

A i..i = Ai - no scalar multiplications

m[i,i] = 0 for i = 1, 2, …, n.

m[i,j] = minimum cost of computing the subproducts

Ai..k and A k+1 ..j + cost of multiplying these two matrices

Multiplying Ai..k and Ak+1....j takes pi-1pk pj scalar multiplications

m[i,j] = m[i,k] + m[k+1,j] + pi-1pk pj for i≤≤≤≤ k < j

10/1/2007 CSE 5311 Fall 2007

M Kumar

24

The optimal parenthesization must use one

of these values for k, we need to check

them all to find the best solution.

Therefore,

++++++++++++
<<<<≤≤≤≤

====
====

−−−− jki pppjkmkim
jki

jiif

jim
11

0

]},[],[{
min],[

Let s[i,j] be the value of k at which we can split the

product Ai×××× Ai+1×××× . . . ×××× Aj

to obtain the optimal parenthesization.

s[i,j] equals a value of k such that

m[i,j] = m[i,k] + m[k+1,j] + pi-1pk pj for i≤≤≤≤ k < j

10/1/2007 CSE 5311 Fall 2007

M Kumar

25

Input: sequence (p0,p1,…pn)

Output : an auxiliary table m[1..n,1..n] with m[i,j]

costs and another auxiliary table s[1..n,1..n] with

records of index k which achieves optimal cost in

computing m[i,j]
1. n←←←←length[p]-1;

2. for i ←←←← 1 to n

3. do m[i,i] ←←←←0;

4. for l←←←← 2 to n

5. do for i ←←←← 1 to n-l+1

6. do j ←←←← i+l-1

7. m[i,j]←∞←∞←∞←∞;
8. for k ←←←← i to j-1

9. do q ←←←←m[i,k]+m[k+1,j]+pi-1pkpj;

10. if q < m[i,j];

11. then m[i,j] ←←←←q;

12. s[i,j] ←←←←k;

13. return m and s

Procedure Matrix_Chain_Order (p)

10/1/2007 CSE 5311 Fall 2007

M Kumar

26

Consider Four Matrices

A1 : 10 ×××× 20 A2 : 20××××50

A3: 50××××1 A4 : 1 ××××100

m[i,j] = m[i,k] + m[k+1,j] + pi-1pk pj for i≤≤≤≤ k < j

Consider A1××××A2 ××××A3 ××××A4

if k =1, then

A1×××× (A2 ××××(A3 ××××A4))

A1××××((A2 ××××A3)××××A4)

if k =2 then

(A1××××A2) ×××× (A3 ××××A4)

if k =3 then

((A1××××A2) ××××A3) ××××A4

and (A1××××(A2 ××××A3)) ××××A4

MIN[(10,000+500),(1000+200)

10 ××××50

20 ××××1

j↓↓↓↓ i→→→→ 1 2 3 4

1 0 -- -- --

2 10,000 0 -- --
3 1200 1000 0 --

4 2200 3000 5000 0

10/1/2007 CSE 5311 Fall 2007

M Kumar

27

Consider, A1 (30××××35)A2 (35××××15)A3 (15××××5),
A4(5××××10), A5(10××××20), A6(20××××25)

j↓↓↓↓/i→→→→ 1 2 3 4 5 6

1 0 -- -- -- -- --

2 15,750 0 -- -- -- --

3 7,875 2,625 0 -- -- --

4 9,375 4,375 750 0 -- --

5 11,875 7,125 2,500 1,000 0 --

6 15,125 10,500 5,375 3,500 5,000 0

m

j↓↓↓↓/i→→→→ 1 2 3 4 5
2 1 - - - -
3 1 2 - - -
4 3 3 3 - -
5 3 3 3 4 -
6 3 3 3 5 5

s

(A1..A3)×××× (A4..A6)

(A1 ×××× (A2 ×××× A3)) ××××

((A4 ×××× A5) ×××× A6)

10/1/2007 CSE 5311 Fall 2007

M Kumar

28

Complexity? With and without DP?

• T(1) ≥ 1

• T(n) ≥ 1 +

• T(n) ≥

• Exponential in n

1)1)()(
1

1

≥+−+∑
−

=

nforknTkT
n

k

∑
−

=

+
1

1

)(2
n

i

niT

10/1/2007 CSE 5311 Fall 2007

M Kumar

29

10/1/2007 CSE 5311 Fall 2007

M Kumar

30

 Consider the problem of neatly printing a paragraph on a
printer. The input text is a sequence of n words of length
l1,l2, . . ., ln, measured in input characters. We want to print
this paragraph neatly on a number of lines that hold a
maximum of M characters each. Our criterion of "neatness" is
as follows. If a given line contains words i through j and leave
exactly one space between words, the number of extra space
characters at the end of the line is

We wish to minimize the sum, over all the lines except the last
of the extra space characters at the ends of lines. Give a
dynamic programming algorithm to print a paragraph of n
words neatly on a printer. Analyze the running time and
space requirements of your algorithm.

∑
=

−+−
j

ik

klijM

10/1/2007 CSE 5311 Fall 2007

M Kumar

31

Hints

• Assume that no word is longer than a line

• Determine the cost of a line containing words i

through j (cost is the number of free spaces)

• We want to minimize the sum of line costs over

all lines in the paragraph.

• Try to represent the above by a recursive

expression

10/1/2007 CSE 5311 Fall 2007

M Kumar

32

• Assume that no word has more characters than that can be fitted in
a line li≤M for all i

• We use DP for the following reasons,

– There are a number of repeated problems

– Solutions have optimal substructure

• That is, if we place words 1..k on line 1, then the placement of words
k+1 ..n must be optimal, else we have to improve the solution

• We denote the space at the end of a line that contains words i
through j by,

– Space [i,j] = M-j+i- ΣΣΣΣ lk (k = i through j)

• Let

– cl[i, j] = cost of including a line containing words i through j in the sum S
we want to minimize

– c[j] = cost of an optimal arrangement of words i through j

• When the words don’t fit on a line, such sum should not be part of S

– Therefore we assume that cl[i, j] = ∞ when space[i, j] < 0

– For the last line when j =n, space[i, j] =0, and therefore, cl[i, j] =0

– For all other cases cl[i, j] = space[i, j]

10/1/2007 CSE 5311 Fall 2007

M Kumar

33

– Therefore we assume that cl[i, j] = ∞ when space[i, j] < 0

– For the last line when j =n, space[i, j] =0, and therefore, cl[i, j] =0

– For all other cases cl[i, j] = space[i, j]

• The problem is to minimize S (the sum of all cl) over all lines of the

paragraph

• Cost of optimal arrangement = c[n]

• C[n] is defined recursively as follows,

– c[0] =0

– c[j] = min c[i-1+cl[i,j]

• To arrange the first j words on lines, pick some i such that words i..j

will be on the last line.

• Cost of the whole arrangement is given by

– Line cost for that line containing words i..j PLUS

– Cost of an optimal arrangement of the first i-1 words on earlier lines

• To find i such that the cost is minimized

1≤ i≤ j

10/1/2007 CSE 5311 Fall 2007

M Kumar

34

• All choices will fit in any line because of the assumption
that no word is longer than a line

• When c[j] is computed, if c[j] is based on the value of c[k], set p[j] = k

• When c[n] is computed, we trace the pointers to see where to break the
lines.

• The last line starts at word p[n]+1, the line preceding that will start at
p[p[n]]+1.

• The p table entries point to where each c value came from (the
corresponding i)

• Space = Θ(n)
• Time = Θ(n*M)

p[n]p[1]0p

c[n]c[2]c[1]c[0]c

10/1/2007 CSE 5311 Fall 2007

M Kumar

35

• A ski rental agency has m pairs of skis,

where the height of the ith pair of skis is si.

There are n skiers who wish to rent skis,

where the height of the ith skier is hi.

Ideally, each skier should obtain a pair of

skis whose height matches with his own

height as closely as possible. Design an

efficient algorithm to assign skis so that the

sum of the absolute differences of the

heights of each skier and his/her skis is

minimized.

