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Flow Networks

A directed graph can be interpreted as a flow network
to analyse material flows through networks.

Material courses through a system from a source

(where it is produced) to a sink (where it is consumed).
Examples :

Water through pipelines
Newspapers through distribution system
Electricity through cables
Cars on a production line
on roads

The source produces the material at a steady rate .
The sink consumes the material at a steady rate



Flow: the rate at which the material moves from one
point to another

100 litres of water per hour in a pipe

30 Amperes of electric current in a circuit

< > 25 litres/hour
5 litres/hour /&

30 liters/hour
The rate at which a

material enters a vertex
= the rate at which the
material leaves the vertex
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The flow network G =(V,E) is a directed graph in which
each edge (u,v) € E has a nonnegative capacity c(u,v) > 0.
If (u,v) £ E then c(u,v) = 0.

A flow network has a source vertex s, and a sink vertex t.

For every vertex v € V there is a path from s to v and
v to tin a connected graph.

S /
t
source ]
sink
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A flow in G is a real-valued function f: V x V — R that satisfies the
following three properties:

1. Capacity constraint : For all u,v  V, we require f(u,v) < c(u,v).
The net flow from one vertex to another must not exceed the given
capacity.

2. Skew symmetry : For all u,v € V, we require f(u,v) = -f(v,u).

The net flow from a vertex u to a vertex v is the negative of the net flow
in the reverse direction.
The net flow from a vertex to itself is zero for all u € V, that is f(u,u) = 0.

3. Flow conservation : Forall ue V- {s,t},

we require S fu,v) =0
velV

The total net flow out of a vertex other than the source or sink is zero.
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The quantity f(u,v) can be negative or positive, it is called
the net flow from vertex u to v.

The value of a flow is defined as

fl= Zf(s,v)

veV

In the maximum-flow problem, we are given a flow network G with source s
and sink t, and we wish to find a flow of maximum value from s to t.

There is no net flow between u and v if there is no edge between them.
If (u,v) £ E and (v,u) ¢ E, then c(u,v) = c(v,u) = 0.
Hence, the capacity constraint, f(u,v) < 0 and f(v,u) < 0.
By skew symmetry, f(u,v) = -f(v,u),
therefore, f(u,v) + f(v,u) = 0.

Nonzero net flow from vertex u to vertex v implies that (u,v) cE
or (v,u) eE (or both).
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Consider the network G=(V,E) shown in the figure below. The
network is for a transport system that transports crates of an item
from source vertex s to sink vertex t through a number of
intermediate points. Each edge (u,v) € E in the network is labeled
with its capacity c(u,v).
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Let us consider a flow in G, | f| =19
If f(u,v) >0, edge (u,v) is labeled f(u,v)/c(u,v)
If f(u,v) <0, the edge is labeled by its capacity only.
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The positive net flow entering a vertex v is defined by

> f(u,v)

uclV

S (u,v)>0

Initially, c (a ,b) =8,and c (b, a) =3 -- Fig. a.
f(a,b)=5andf(b,a)=2, --Fig. b
the net flow is shown as 3/8 in direction ato b — Fig. c

CF
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8 5/8 3/8 8
3 2/3 3 1/3
Fig.a Fig.b Fig.c Fig.d

If we increase the flow from
b to a from 2 to 6 then the net flow is 1/3 in the direction
b to a as shown In Fig. d.

10/25/2007 CSE 5311 Kumar 10



The Ford Fulkerson method

The method is iterative,

Starts with f(u,v) for (u,v) € V, initial flow of value 0.
The method is based on the augmenting path which
is defined as a path from s to t along which we can
push more flow and then augment flow along this
path.

Procedure Ford Fulkerson_method(G,s,t)

1. f < 0;

2. while there exists an augmenting path p
3. do augment flow along path p

4. return f
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Residual Networks

Consider a flow network G(V,E) with source s and sink ¢
and let fbe a flow in G.
Consider a pair of vertices u,v € V.
Residual capacity between u and v is given by
r(u,v) = c(u,v) - f(u,v)

Hthe additional net flow we can push from u to v before

exceeding the capacity.

For example, if ¢c(u,v) = 25 and f(u,v) = 19, then r(u,v) = 6.
If f(u,v) <0 then r(u,v) > c(u,v)

Given a flow network G=(V,E) and a flow f, the residual
network of G induced by fis G~(V,E)),
where E; ={(u,v) €VxV : r(u,v) > 0}
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Each edge in the residual network can admit positive net flow
only.

The residual network may include several edges that are not in
the original network, (u,v) € E;and (u,v) ¢ E is possible (E;is not
a subset of E). However, (u,v) appears in G;only if (v,u) € E and
there is a positive flow from v to u. Because the net flow f(u,v) is

negative,
r(u,v) = c(u,v)-f(u,v) > 0 and (u,v) € E;
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An edge (u,v) can appear in a residual network only if at
least one of (u,v) and (v,u) appears in the original
network.

|E,|<2]|E]

Augmenting Paths

It is a simple path from s to tin G, Each edge (u,v)
on an augmenting path admits some additional
positive net flow from u to v without violating the

capacity constraint on the edge. The residual
capacity of a path p is given by,

r(p) =min {r(u,v) : (u,v) isinp}
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Let's define a flow function f,

fp=

J\

" r(p) if (u,v) is on p,
—r(p) if (vou) is on p

0 otherwise

\

f, is a flow in G, with value |f,|= r(p) >0.
If we add f, to f, we get another flow in G whose
value is closer to the maximum.
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Algorithm

Procedure Ford-Fulkerson(G;,s,t)
Input : Flow Network G(V,E)
Output : Maximum flow for the given network

1.for each edge (u,v) € E

2. do flu,v] < 0;

3. flv,u] < 0;

4.while there exists a path p from s to tin the
residual network G;

5. do r(p) < min {r(u,v) : (u,v) is in p};

6. for each edge (u,v) in p

7. do flv,u] < - flu,v];

8. flu,v] « flu,v] + r(p);

9.return
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Ford Fulkerson — cuts of flow networks

New notion: cut (S,7) of a flow network

A cut (§,7) of a flow network G=(V,E) 1s a partition of V' in to S and
I'=V\Ssuchthats e Sand ¢ € T.

In the example:

S={s,viv2),T={v3v4t}

o @ Net flow /(S ,T) = £ (v,v3) + f (v2,vd) + £ (v2,v3)
Q
N ! % = 12+ 11 +(-0)=23
s @ 11/14 @ Capacity ¢(S,7) = c¢(vl,v3) + c(v2,v4)
I
—s ; T— = 12+14=26
Implicit summation notation: f(S, T) = 2 2 f(u, v) Cuts of Flow slides prepared by

Shwetha and Pradeep
ueS veT
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Ford Fulkerson — cuts of flow
hetworks

Lemma:

The value of a flow 1n a network 1s the net flow across any cut of the

network
5. 7)=|f]

Cuts of Flow slides prepared by
Shwetha and Pradeep
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Ford Fulkerson — cuts of flow
hetworks

Assumption:

The value of any flow f in a flow network G 1s bounded from above
by the capacity of any cut of G

Lemma: | |f]| < c (S, T)

f1=1(5T)

=22 f(u v)
;352 (u, v)
e

Cuts of Flow slides prepared by
Shwetha and Pradeep
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F. Fulkerson: Max-flow min-cut theorem

If f1s a flow 1n a flow network G = (V,E) with source s and sink
t, then the following conditions are equivalent:

I. f1is a maximum flow in G.

2. The residual network G, contains no augmenting paths.

3. | f|] =c (S 1) for some cut (S, T) of G.
proof:
(1) = ():

We assume for the sake of contradiction that fis a maximum flow in G but that there
still exists an augmenting path p in G,.

Then as we know from above, we can augment the flow in G according to the formula:
=/ +/, That would create a flow f"that is strictly greater than the former flow f
which is in contradiction to our assumption that fis a maximum flow.
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F. Fulkerson: Max-flow min-cut theorem

If f1s a flow 1n a flow network G = (V,E) with source s and sink
t, then the following conditions are equivalent:

I. f1is a maximum flow in G.

2. The residual network G, contains no augmenting paths.

3. | f] =c (S T)for some cut (S, 7) of G.

proof: original flow network G residual network Gf

2) = (3): @ >

4/6

4@

6
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F. Fulkerson: Max-flow min-cut
theorem

If /1s a flow 1n a flow network G = (V,E) with source s and sink
t, then the following conditions are equivalent:

I. f1is a maximum flow in G.

2. The residual network G, contains no augmenting paths.

3. |f]=c (S T) for some cut (S, T) of G.
proof:

(2) = (3):
Define

residual network/ G 0

§={v V| dpathp from s to v in G}
T=V1S§ (notet ¢ Saccording to (2))
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F. Fulkerson: Max-flow min-cut
theorem

If f1s a flow 1n a flow network G = (V,E) with source s and sink
t, then the following conditions are equivalent:

1. fis a maximum flow in G.

2. The residual network Gy contains no augmenting paths.

3. [f|=c (S, T)for some cut (S, T) of G.

proof: original network/G
(2)= (3): ’

(note t ¢ S according to (2))

= forVueS,veT:f(u,v)=c(u,v)
(otherwise (u, v) € E;and v € S)

. 28
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. Suppose that each source s; in a multisource, multisink problem
produces exactly p; units of flow, so that f(s, V) = p.. Suppose that each
sink {; consumes exactly g; units so that (V.t) = q;, where . Show how to
convert the problem of finding a flow f that obeys these additional
constraints into the problem of finding a maximum flow in a single-source,
single-sink flow network.

. Given a flow network G = (V, E), let f1 and f2 be functions from V x V to
R. The flow sum f1 + f2 is the function from V x V to R defined by (f1 +
2)(u, v) = A(u, v) + 2(u, v) forall u, v e V. If f1 and 72 are flows in G,
which of the three flow properties must the flow f1 + f2 satisfy, and which
might it violate?

. The edge connectivity of an undirected graph is the minimum number k
of edges that muct be removed to disconnect the graph. For example, the
edge connectivity of a tree is 1, and the edge connectivity of a cyclic
chain of vertices is 2. Show that how the edge connectivity of an
undirected graph G = (V,E) can be determined by running a maximum-
flow algorithm on at most | V| flow networks, each having O(V) vertices
and O(E) edges.
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Bipartite Matching

* Finding a matching M in G of largest size

* A bipartite graph G = (V,E) is an undirected graph whose
node set is partitioned into two sets X and Y such that V
= XUY. Every edge e E has one end in X and the other
endin.

A matching Min G is a subset of the edges M < E such
that each node v €V appears in at most one edge in M.
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Bipartite graph and Flow Network

Each edge has a capacity of ONE
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F. Fulkerson: Max-flow min-cut
theorem

If f1s a fow 1n a flow network G = (V,E) with source s and sink t,
then the following conditions are equivalent:

I. f1is a maximum flow in G.

2. The residual network G, contains no augmenting paths.

3. |f|=c (S, T)for some cut (S, 7) of G.
proof:
(3) = (1):
f1=f(ST)<c(ST)
the statement of (3) : | f| =c (S, T) implies that f1s a maximum flow
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v2-u3
v3-ud
vo-ud
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