Flow Networks

Topics

Flow Networks Residual networks Ford-Fulkerson's algorithm Ford-Fulkerson's Max-flow Min-cut Algorithm

Chapter 7

Algorithm Design *Kleinberg and Tardos*

10/25/2007

Flow Networks

A directed graph can be interpreted as a flow network to analyse material flows through networks.

Material courses through a system from a source (where it is produced) to a sink (where it is consumed). Examples :

> Water through pipelines Newspapers through distribution system Electricity through cables Cars on a production line on roads

The source produces the material at a steady rate . The sink consumes the material at a steady rate Flow: the rate at which the material moves from one point to another

100 litres of water per hour in a pipe 30 Amperes of electric current in a circuit

The flow network G = (V, E) is a directed graph in which each edge $(u, v) \in E$ has a nonnegative capacity $c(u, v) \ge 0$. If $(u, v) \notin E$ then c(u, v) = 0.

A flow network has a source vertex *s*, and a sink vertex *t*. For every vertex $v \in V$ there is a path from *s* to *v* and *v* to *t* in a connected graph.

A flow in G is a real-valued function $f: V \times V \rightarrow R$ that satisfies the following three properties:

1. Capacity constraint : For all $u, v \in V$, we require $f(u, v) \leq c(u, v)$. The net flow from one vertex to another must not exceed the given capacity.

2. Skew symmetry : For all $u, v \in V$, we require f(u, v) = -f(v, u).

The net flow from a vertex *u* to a vertex *v* is the negative of the net flow in the reverse direction.

The net flow from a vertex to itself is zero for all $u \in V$, that is f(u,u) = 0.

3. Flow conservation : For all $u \in V - \{s,t\}$, we require $\sum_{v \in V} f(u,v) = 0$

The total net flow out of a vertex other than the source or sink is zero.

 $I \cup I \subseteq \cup I \subseteq \cup \cup I$

The quantity f(u,v) can be negative or positive, it is called the net flow from vertex u to v.

The value of a flow is defined as

$$|f| = \sum_{v \in V} f(s,v)$$

In the maximum-flow problem, we are given a flow network G with source *s* and sink *t*, and we wish to find a flow of maximum value from *s* to *t*.

There is no net flow between u and v if there is no edge between them. If $(u,v) \notin E$ and $(v,u) \notin E$, then c(u,v) = c(v,u) = 0. Hence, the capacity constraint, $f(u,v) \le 0$ and $f(v,u) \le 0$. By skew symmetry, f(u,v) = -f(v,u), therefore, f(u,v) + f(v,u) = 0.

Nonzero net flow from vertex *u* to vertex *v* implies that $(u,v) \in E$ or $(v,u) \in E$ (or both).

Consider the network G=(V,E) shown in the figure below. The network is for a transport system that transports crates of an item from source vertex *s* to sink vertex *t* through a number of intermediate points. Each edge $(u,v) \in E$ in the network is labeled with its capacity c(u,v).

Let us consider a flow in G, |f|=19If f(u,v) > 0, edge (u,v) is labeled f(u,v)/c(u,v)If $f(u,v) \le 0$, the edge is labeled by its capacity only.

The positive net flow entering a vertex *v* is defined by

 $\sum_{u \in V} f(u, v)$ f(u, v) > 0

Initially, c (a ,b) = 8, and c (b, a) = 3 -- Fig. a. f (a, b) = 5 and f (b, a) = 2, -- Fig. b the net flow is shown as 3/8 in direction a to b – Fig. c

If we increase the flow from

b to a from 2 to 6 then the net flow is 1/3 in the direction b to a as shown in Fig. d.

The Ford Fulkerson method

The method is iterative,

Starts with f(u,v) for $(u,v) \in V$, initial flow of value 0. The method is based on the augmenting path which is defined as a path from *s* to *t* along which we can push more flow and then augment flow along this path.

Procedure Ford_Fulkerson_method(G,s,t)

1. f ← 0;
 2. while there exists an augmenting path p
 3. do augment flow along path p
 4. return f

Residual Networks

Consider a flow network G(V,E) with source *s* and sink *t* and let *f* be a flow in *G*. Consider a pair of vertices $u, v \in V$. Residual capacity between u and v is given by r(u,v) = c(u,v) - f(u,v)

■the additional net flow we can push from *u* to *v* before exceeding the capacity.

For example, if c(u,v) = 25 and f(u,v) = 19, then r(u,v) = 6. If f(u,v) < 0 then r(u,v) > c(u,v)

Given a flow network G=(V,E) and a flow f, the residual network of G induced by f is $G_f=(V,E_f)$, where $E_f = \{(u,v) \in V \times V : r(u,v) > 0\}$

10/25/2007

Each edge in the residual network can admit positive net flow only.

The residual network may include several edges that are not in the original network, $(u,v) \in E_f$ and $(u,v) \notin E$ is possible $(E_f$ is not a subset of E). However, (u,v) appears in G_f only if $(v,u) \in E$ and there is a positive flow from v to u. Because the net flow f(u,v) is negative,

r(u,v) = c(u,v) - f(u,v) > 0 and $(u,v) \in E_f$

10/25/2007

An edge (u,v) can appear in a residual network only if at least one of (u,v) and (v,u) appears in the original network. $|E_f| \le 2 |E|$

Augmenting Paths

It is a simple path from *s* to *t* in G_f . Each edge (*u*,*v*) on an augmenting path admits some additional positive net flow from *u* to *v* without violating the capacity constraint on the edge. The residual capacity of a path *p* is given by,

r(*p*) = *min* { *r*(*u*,*v*) : (*u*,*v*) is in *p* }

Let's define a flow function f_p ,

$$f_{p} = \begin{cases} r(p) \text{ if } (u,v) \text{ is on } p, \\ -r(p) \text{ if } (v,u) \text{ is on } p \\ 0 \text{ otherwise} \end{cases}$$

 f_p is a flow in G_f with value $|f_p| = r(p) > 0$. If we add f_p to f, we get another flow in G whose value is closer to the maximum.

Algorithm

```
Procedure Ford-Fulkerson(G,s,t)
Input : Flow Network G(V,E)
Output : Maximum flow for the given network
```

```
1.for each edge (u,v) \in E
2. do f[u,v] \leftarrow 0;
3.
              f[v,u] ← 0;
4.while there exists a path p from s to t in the
                               residual network G<sub>f</sub>
              r(p) \leftarrow \min \{r(u,v) : (u,v) \text{ is in } p\};
5.
      do
6.
              for each edge (u,v) in p
7.
                      do f[v,u] \leftarrow -f[u,v];
                               f[u,v] \leftarrow f[u,v] + r(p);
8.
9.return
```


CSE 5311 Kumar

10/25/2007

CSE 5311 Kumar

20

Ford Fulkerson – cuts of flow networks

New notion: $\operatorname{cut}(S,T)$ of a flow network

A cut (*S*,*T*) of a flow network G=(V,E) is a partition of *V* in to *S* and $T = V \setminus S$ such that $s \in S$ and $t \in T$.

 $u \in S$ $v \in T$

CSE 5311 Kumar

Implicit summation notation: $f(S, T) = \Sigma \quad \Sigma \quad f(u, v)$

In the example:

$$S = \{s, v1, v2\}, T = \{v3, v4, t\}$$

Net flow $f(S, T) = f(v1, v3) + f(v2, v4) + f(v2, v3)$
 $= 12 + 11 + (-0) = 23$
Capacity $c(S, T) = c(v1, v3) + c(v2, v4)$
 $= 12 + 14 = 26$

Cuts of Flow slides prepared by Shwetha and Pradeep

10/25/2007

22

Ford Fulkerson – cuts of flow networks

Lemma:

$$f(S,T) = |f|$$

Cuts of Flow slides prepared by Shwetha and Pradeep

Ford Fulkerson – cuts of flow networks

Assumption:

The value of any flow f in a flow network G is bounded from above by the capacity of any cut of G

Lemma: $|f| \leq c (S, T)$

$$|f| = f(S, T)$$

= $\sum_{u \in S} \sum_{v \in T} f(u, v)$
 $\leq \sum_{u \in S} \sum_{v \in T} c(u, v)$
= $c(S, T)$

Cuts of Flow slides prepared by Shwetha and Pradeep

10/25/2007

- If *f* is a flow in a flow network G = (V,E) with source *s* and sink t, then the following conditions are equivalent:
- 1. f is a maximum flow in G.
- 2. The residual network G_f contains no augmenting paths.
- 3. |f| = c (*S*, *T*) for some *cut* (*S*, *T*) of *G*.

proof:

(1) \Rightarrow (2):

We assume for the sake of contradiction that f is a maximum flow in G but that there still exists an augmenting path p in G_{f} .

Then as we know from above, we can augment the flow in G according to the formula: $f'=f+f_p$. That would create a flow f' that is strictly greater than the former flow f which is in contradiction to our assumption that f is a maximum flow.

10/25/2007

If *f* is a flow in a flow network G = (V,E) with source *s* and sink *t*, then the following conditions are equivalent:

- 1. f is a maximum flow in G.
- 2. The residual network G_f contains no augmenting paths.

3.
$$|f| = c (S, T)$$
 for some cut (S, T) of G.

- If *f* is a flow in a flow network G = (V,E) with source *s* and sink *t*, then the following conditions are equivalent:
- 1. f is a maximum flow in G.
- 2. The residual network G_f contains no augmenting paths.
- 3. |f| = c (S, T) for some cut (S, T) of *G*.

proof:

 $(2) \Rightarrow (3)$:

Define

 $S = \{v \in V \mid \exists \text{ path } p \text{ from } s \text{ to } v \text{ in } G_f\}$

 $T = V \setminus S$ (note $t \notin S$ according to (2))

10/25/2007

- If f is a flow in a flow network G = (V,E) with source s and sink t, then the following conditions are equivalent:
- 1. f is a maximum flow in G.
- 2. The residual network G_f contains no augmenting paths.
- 3. |f| = c (S, T) for some cut (S, T) of G.

proof:

 $(2) \Rightarrow (3)$:

 $S = \{v \in V \mid \exists \text{ path } p \text{ from } s \text{ to } v \text{ in } G_f \}$

- $T = V \setminus S$ (note t \notin S according to (2))
- $\Rightarrow \text{ for } \forall u \in S, v \in T: f(u, v) = c(u, v)$ (otherwise $(u, v) \in E_f \text{ and } v \in S$)
- $\Rightarrow |f| = f(S, T) \leq c(S, T)$

- Suppose that each source s_i in a multisource, multisink problem produces exactly p_i units of flow, so that $f(s_i, V) = p_i$. Suppose that each sink t_j consumes exactly q_j units so that $f(V,t_j) = q_j$, where . Show how to convert the problem of finding a flow *f* that obeys these additional constraints into the problem of finding a maximum flow in a single-source, single-sink flow network.
- Given a flow network G = (V, E), let f1 and f2 be functions from $V \times V$ to **R**. The flow sum f1 + f2 is the function from $V \times V$ to **R** defined by (f1 + f2)(u, v) = f1(u, v) + f2(u, v) for all u, $v \in V$. If f1 and f2 are flows in G, which of the three flow properties must the flow f1 + f2 satisfy, and which might it violate?
- The edge connectivity of an undirected graph is the minimum number k of edges that muct be removed to disconnect the graph. For example, the edge connectivity of a tree is 1, and the edge connectivity of a cyclic chain of vertices is 2. Show that how the edge connectivity of an undirected graph G = (V, E) can be determined by running a maximumflow algorithm on at most |V| flow networks, each having O(V) vertices and O(E) edges.

Bipartite Matching

- Finding a matching M in G of largest size
- A bipartite graph G = (V,E) is an undirected graph whose node set is partitioned into two sets X and Y such that V = X ∪Y. Every edge e ∈E has one end in X and the other end in Y.
- A matching *M* in *G* is a subset of the edges $M \subseteq E$ such that each node $v \in V$ appears in at most one edge in *M*.

Bipartite graph and Flow Network

Each edge has a capacity of ONE

- If *f* is a fow in a flow network G = (V, E) with source s and sink t, then the following conditions are equivalent:
- 1. f is a maximum flow in G.
- 2. The residual network G_f contains no augmenting paths.
- 3. |f| = c (S, T) for some cut (S, T) of *G*.

proof:

 $(3) \Rightarrow (1)$:

 $|f| = f(S, T) \le c(S, T)$

the statement of (3) : |f| = c (*S*, *T*) implies that *f* is a maximum flow

10/25/2007