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Flow Networks

A directed graph can be interpreted as a flow network 

to analyse material flows through networks.

Material courses through a system from a source 

(where it is produced) to a sink (where it is consumed).

Examples : 

Water through pipelines

Newspapers through distribution system

Electricity through cables

Cars on a production line

on roads

The source produces the material at a steady rate .

The sink consumes the material at a steady rate
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Flow: the rate at which the material moves from one 

point to another

100 litres of water per hour in a pipe

30 Amperes of electric current in a circuit

5 litres/hour

30 liters/hour 

25 litres/hour

The rate at which a 

material enters a vertex

= the rate at which the 

material leaves the vertex
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The flow network G =(V,E) is a directed graph in which 

each edge (u,v) ∈∈∈∈ E has a nonnegative capacity c(u,v) ≥≥≥≥ 0.
If (u,v) ∉∉∉∉ E then c(u,v) = 0.

A flow network has a source vertex s, and a sink vertex t. 

For every vertex v ∈∈∈∈ V there is a path from s to v and

v to t in a connected graph.

source
sink

s
t
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A flow in G is a real-valued function f : V ×××× V →→→→ R that satisfies the 

following three properties:

1. Capacity constraint : For all u,v ∈∈∈∈ V, we require f(u,v) ≤≤≤≤ c(u,v).
The net flow from one vertex to another must not exceed the given 

capacity.

2. Skew symmetry : For all u,v ∈∈∈∈ V, we require f(u,v) = -f(v,u).

The net flow from a vertex u to a vertex v is the negative of the net flow 

in the reverse direction.

The net flow from a vertex to itself is zero for all u ∈∈∈∈ V, that is f(u,u) = 0.

3. Flow conservation :  For all u∈∈∈∈ V - {s,t},

we require

The total net flow out of a vertex other than the source or sink is zero. 

∑∑∑∑
∈∈∈∈

====
Vv

vuf 0),(
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The quantity f(u,v) can be negative or positive, it is called 

the net flow from vertex u to v. 

The value of a flow is defined as 

∑∑∑∑
∈∈∈∈

====
Vv

vsff ),(

In the maximum-flow problem, we are given a flow network G with source s 

and sink t, and we wish to find a flow of maximum value from s to t.

There is no net flow between u and v if there is no edge between them.

If (u,v) ∉∉∉∉ E and (v,u) ∉∉∉∉ E, then c(u,v) = c(v,u) = 0.

Hence, the capacity constraint, f(u,v) ≤≤≤≤ 0 and f(v,u) ≤≤≤≤ 0.
By skew symmetry, f(u,v) = -f(v,u),

therefore, f(u,v) + f(v,u) = 0.

Nonzero net flow from vertex u to vertex v implies that (u,v)∈∈∈∈E
or (v,u)∈∈∈∈E (or both). 
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Consider the network G=(V,E) shown in the figure below. The 

network is for a transport system that transports crates of an item 

from source  vertex s to sink vertex t through a number of 

intermediate points. Each edge (u,v) ∈∈∈∈ E in the network is labeled

with its capacity c(u,v).

db

ca

4
10 9 7

12

20

14

13

16

4

s t
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Let us consider a flow in G, f=19
If f(u,v) >0, edge (u,v) is labeled f(u,v)/c(u,v)

If f(u,v) ≤≤≤≤ 0, the edge is labeled by its capacity only.

db

ca

1/4

10
4/9

7/7

12/12
15/20

11/14

8/13

11/16

4/4

s t
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The positive net flow entering a vertex v is defined by 

∑∑∑∑

>>>>

∈∈∈∈

0),(

),(

vuf

Vu
vuf

Initially, c (a ,b) = 8, and c (b, a) = 3  -- Fig. a.

f (a, b) = 5 and f (b, a) = 2, -- Fig. b

the net flow is shown as  3/8 in direction a to b – Fig. c

3

8

a

b

2/3

5/8

a

b

3

3/8

a

b

Fig.a Fig.b Fig.c
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If we increase the flow from 

b to a from 2 to 6 then the net flow is 1/3 in the direction 

b to a as shown in Fig. d.

3

8

a

b

2/3

5/8

a

b

3

3/8

a

b

1/3

8

a

b

Fig.a Fig.b Fig.c Fig.d
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The Ford_Fulkerson method

The method is iterative,

Starts with f(u,v) for (u,v) ∈∈∈∈ V, initial flow of value 0.

The method is based on the augmenting path which 

is defined as a path from s to t along which we can 

push more flow and then augment flow along this 

path.

Procedure Ford_Fulkerson_method(G,s,t)

1. f←←←← 0;

2. while there exists an augmenting path p

3. do augment flow along path p

4. return f
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Residual Networks

Consider a flow network G(V,E) with source s and sink t 

and let f be a flow in G.

Consider a pair of vertices u,v ∈∈∈∈ V.

Residual capacity between u and v is given by 

r(u,v) = c(u,v) - f(u,v)

�the additional net flow we can push from u to v before 

exceeding the capacity. 

For example, if c(u,v) = 25 and f(u,v) = 19, then r(u,v) = 6.

If f(u,v) < 0 then r(u,v) > c(u,v)

Given a flow network G=(V,E) and a flow f, the residual 

network of G induced by f is Gf=(V,Ef),

where Ef ={(u,v) ∈∈∈∈V×××× V : r(u,v) > 0}
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db

ca

1/4

10
4/9

7/7

12/12
15/20

11/14

8/13

11/16

4/4

s t
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11

5

t

db

ca

s

Each edge in the residual network can admit positive net flow 

only.

The residual network may include several edges that are not in 

the original network, (u,v) ∈∈∈∈ Ef and (u,v) ∉∉∉∉ E is possible (Ef is not 

a subset of E). However, (u,v) appears in Gfonly if (v,u) ∈∈∈∈ E and 

there is a positive flow from v to u. Because the net flow f(u,v) is 

negative,

r(u,v) = c(u,v)-f(u,v) > 0 and (u,v) ∈∈∈∈ Ef

4
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An edge (u,v) can appear in a residual network only if at 

least one of (u,v) and (v,u) appears in the original 

network.

Ef≤≤≤≤ 2E

Augmenting Paths

It is a simple path from s to t in Gf. Each edge (u,v) 

on an augmenting path admits some additional 

positive net flow from u to v without violating the 

capacity constraint on the edge. The residual 

capacity of a path p is given by,

r(p) = min { r(u,v) : (u,v) is in p }
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







−−−−====

otherwise

ponisuvifpr

ponisvuifpr

f p

0

),()(

,),()(

Let's define a flow function fp,

fp is a flow in Gf with value fp= r(p) >0.
If we add fp to f, we get another flow in G whose 

value is closer to the maximum.
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Algorithm

Procedure Ford-Fulkerson(G,s,t)

Input : Flow Network G(V,E)

Output : Maximum flow for the given network

1.for each edge (u,v) ∈∈∈∈ E

2. do  f[u,v]←←←← 0;

3. f[v,u]←←←← 0;

4.while there exists a path p from s to t in the  

residual network Gf

5. do r(p)←←←← min {r(u,v) : (u,v) is in p};

6. for each edge (u,v) in p

7. do f[v,u]←←←← - f[u,v];

8. f[u,v] ←←←← f[u,v] + r(p);

9.return 
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db

ca

4
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db

ca

4

10
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4/4

s t
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75

11

4

11

b d

ca

11

3

4 7

8

13

3
13

5

4

s t

db

ca

1/4

10
4/9

7/7

12/12
15/20

11/14

8/13

11/16

4/4

s t

db

ca

4

7/10
4/9

7/7

4/12
7/20

11/14

13

11/16

4/4

s t



10/25/2007 CSE 5311   Kumar 20

db
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Ford Fulkerson – cuts of flow networks

New notion:   cut (S,T) of a flow network

A cut (S,T) of a flow network G=(V,E) is a partition of V in to S and 

T = V \ S such that s ∈ S and t ∈ T.

Implicit summation notation: f (S, T) =  Σ Σ f (u, v)

S t

v1

v2

v3

v4

1
0

12/13

12/12

11
/16

1
/ 4

4/
4

19/20

7
/ 7

0/
9

11/14

TS

In the example:

S = {s,v1,v2) , T = {v3,v4,t}

Net flow f (S ,T) = f (v1,v3) + f (v2,v4) + f (v2,v3)

=  12 + 11 + (-0) = 23

Capacity c(S,T) = c(v1,v3) + c(v2,v4) 

=   12 + 14 = 26

u ∈∈∈∈ S v ∈∈∈∈ T

Cuts of Flow slides prepared by 

Shwetha and Pradeep
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Ford Fulkerson – cuts of flow 

networks
Lemma:

The value of a flow in a network is the net flow across any cut of the 

network
f (S ,T) = | f |

S t

v1

v2

v3

v4

1
0

12/13

12/12

11
/16

1
/ 4

4/
4

19/20

7
/ 7

0/
9

11/14

Cuts of Flow slides prepared by 

Shwetha and Pradeep
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Ford Fulkerson – cuts of flow 

networks
Assumption: 

The value of any flow f in a flow network G is bounded from above 

by the capacity of any cut of G

Lemma:  | f |  < c (S, T)

| f | = f (S, T) 

= Σ Σ f (u, v) 

< Σ Σ c (u, v) 

= c (S, T)
v ∈∈∈∈Tu ∈∈∈∈S

v ∈∈∈∈Tu ∈∈∈∈S S t

v1

v2

v3

v4
1
0

12/13

12/12

11
/16

1
/ 4

4/
4

19/20

7
/7

0/
9

11/14

Cuts of Flow slides prepared by 

Shwetha and Pradeep
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F. Fulkerson: Max-flow min-cut theorem

If f is a flow in a flow network G = (V,E) with source s and sink 

t, then the following conditions are equivalent:

1. f is a maximum flow in G.

2. The residual network Gf contains no augmenting paths.

3. | f | = c (S, T) for some cut (S, T) of G.
proof:

(1) ⇒ (2): 

We assume for the sake of contradiction that f is a maximum flow in G but that there 

still exists an augmenting path p in Gf.

Then as we know from above, we can augment the flow in G according to the formula: 

f´= f + fp. That would create a flow f´that is strictly greater than the former flow f 

which is in contradiction to our assumption that f is a maximum flow.

Cuts of Flow slides prepared by Shwetha

and Pradeep
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F. Fulkerson: Max-flow min-cut theorem

If f is a flow in a flow network G = (V,E) with source s and sink 

t, then the following conditions are equivalent:

1. f is a maximum flow in G.

2. The residual network Gf contains no augmenting paths.

3. | f | = c (S, T) for some cut (S, T) of G.

proof:

(2) ⇒ (3):

S t

v1

v2

v3

v4

6/8

3/3

4/6

8/8

5/6

6/6

3/3

1/3
S t

v1

v2

v3

v4

2

3

2

8

1

6

3

2

5

6 1
4

residual network G
f

original flow network G

Cuts of Flow slides prepared by Shwetha

and Pradeep
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F. Fulkerson: Max-flow min-cut 

theorem
If f is a flow in a flow network G = (V,E) with source s and sink 

t, then the following conditions are equivalent:

1. f is a maximum flow in G.

2. The residual network Gf contains no augmenting paths.

3. | f | = c (S, T) for some cut (S, T) of G.

proof:

(2) ⇒ (3): 

Define

S = {v ∈∈∈∈V | ∃∃∃∃ path p from s to v in Gf }

T = V \ S (note t ∉ S according to (2))

S t

v1

v2

v3

v4

2

3

2

8

1

6

3

2

5

6 1
4

residual network G
f

Cuts of Flow slides prepared by Shwetha

and Pradeep
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F. Fulkerson: Max-flow min-cut 

theorem
If f is a flow in a flow network G = (V,E) with source s and sink 

t, then the following conditions are equivalent:

1. f is a maximum flow in G.

2. The residual network Gf contains no augmenting paths.

3. | f | = c (S, T) for some cut (S, T) of G.

proof:

(2) ⇒ (3):

S = {v ∈V | ∃ path p from s to v in Gf }

T = V \ S  (note t ∉ S according to (2))

⇒ for ∀ u ∈ S, v ∈ T: f (u, v) = c (u, v) 
(otherwise (u, v) ∈ Ef and v ∈ S)

⇒ | f | = f (S, T) ≤ c (S, T)
1

S t

v1

v2

v3

v4

6/8

3/3

4/6

8/8

5/6

6/6

3/3

1/3

original network G

Cuts of Flow slides prepared by Shwetha

and Pradeep
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• Suppose that each source si in a multisource, multisink problem 
produces exactly pi units of flow, so that f(si,V) = pi. Suppose that each 
sink tj consumes exactly qj units so that f(V,tj) = qj, where .  Show how to 
convert the problem of finding a flow f that obeys these additional 
constraints into the problem of finding a maximum flow in a single-source, 
single-sink flow network. 

• Given a flow network G = (V, E), let f1 and f2 be functions from V × V to 
R. The flow sum f1 + f2 is the function from V × V to R defined by (f1 + 
f2)(u, v) = f1(u, v) + f2(u, v) for all  u, v ∈ V.  If f1 and f2 are flows in G, 
which of the three flow properties must the flow f1 + f2 satisfy, and which 
might it violate?

• The edge connectivity of an undirected graph is the minimum number k 
of edges that muct be removed to disconnect the graph. For example, the 
edge connectivity of a tree is 1, and the edge connectivity of a cyclic 
chain of vertices is 2. Show that how the edge connectivity of an 
undirected graph G = (V,E) can be determined by running a maximum-
flow algorithm on at most Vflow networks, each having O(V) vertices 
and O(E) edges. 
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Bipartite Matching

• Finding a matching M in G of largest size

• A bipartite graph G = (V,E) is an undirected graph whose 
node set is partitioned into two sets X and Y such that V
= X∪Y. Every edge e ∈E has one end in X and the other 
end in Y. 

• A matching M in G is a subset of the edges M ⊆ E such 
that each node  v ∈V appears in at most one edge in M.
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Bipartite graph and Flow Network

s t

Each edge has a capacity of ONE

u v
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F. Fulkerson: Max-flow min-cut 

theorem
If f is a fow in a flow network G = (V,E) with source s and sink t, 

then the following conditions are equivalent:

1. f is a maximum flow in G.

2. The residual network Gf contains no augmenting paths.

3. | f | = c (S, T) for some cut (S, T) of G.

proof:

(3) ⇒ (1):

| f | = f (S, T) < c (S, T)

the statement of (3) :  | f | = c (S, T) implies that f is a maximum flow

Cuts of Flow slides prepared by Shwetha

and Pradeep
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s t
s t

s t
s t

s t

s t v1-u1

v2-u3

v3-u5

v5-u4



10/25/2007 CSE 5311   Kumar 34


