## String Matching Algorithms

Topics

Basics of Strings<br>Brute-force String Matcher<br>$\square$ Rabin-Karp String Matching Algorithm<br>KMP Algorithm

In string matching problems, it is required to find the occurrences of a pattern in a text.

These problems find applications in text processing, text-editing, computer security, and DNA sequence analysis.

Find and Change in word processing
Sequence of the human cyclophilin 40 gene
CCCAGTCTGG AATACAGTGG CGCGATCTCG GTTCACTGCA
ACCGCCGCCT CCCGGGTTCA AACGATTCTC CTGCCTCAGC
CGCGATCTCG : DNA binding protein GATA-1
CCCGGG : DNA binding protein Sma 1
C: Cytosine, G: Guanine, A : Adenosine, T : Thymine

Text : $\quad \Pi 1 . . n]$ of length $n$ and Pattern $P[1 . . m]$ of length $m$. The elements of $P$ and $T$ are characters drawn from a finite alphabet set $\Sigma$.
For example $\Sigma=\{0,1\}$ or $\Sigma=\{a, b, \ldots, z\}$, or $\Sigma=\{c, g, a, t\}$. The character arrays of $P$ and $T$ are also referred to as strings of characters.
Pattern $P$ is said to occur with shift $s$ in text $T$

$$
\begin{aligned}
& \text { if } 0 \leq s \leq n-m \text { and } \\
& T[s+1 . . s+m]=P[1 . . m] \text { or } \\
& T[s+j]=P[j] \text { for } 1 \leq j \leq m,
\end{aligned}
$$ such a shift is called a valid shift.

The string-matching problem is the problem of finding all valid shifts with which a given pattern $P$ occurs in a given text $T$.

Brute force string-matching algorithm

To find all valid shifts or possible values of so that P[1..m] = T[s+1..s+m] ;
There are $n-m+1$ possible values of $s$.

Procedure BF_String_Matcher(T,P)

1. $\quad n \leftarrow$ length [T];
2. $\quad m \leftarrow$ length $[P]$;
3. for $\boldsymbol{s} \leftarrow \mathbf{O}$ to $\boldsymbol{n}-\boldsymbol{m}$

4
do if $P[1 . . m]=T[s+1 . . s+m]$
then shift $s$ is valid

This algorithm takes $\Theta\left((n-m+1) m_{\text {cs }}\right)$ in ine worst case.


## Rabin-Karp Algorithm

Let $\Sigma=\{0,1,2, \ldots, 9\}$.
We can view a string of $k$ consecutive characters as representing a length-k decimal number.
Let $p$ denote the decimal number for $\mathrm{P}[1 . . \mathrm{m}]$
Let $t_{s}$ denote the decimal value of the length-m
substring $T[s+1 . . s+m]$ of $T[1 . . n]$ for $s=0,1, \ldots, n-m$.
$t_{s}=p$ if and only if
$T[s+1 . . s+m]=P[1 . . m]$, and $s$ is a valid shift.
$p=P[m]+10(P[m-1]+10(P[m-2]+\ldots+10(P[2]+10(P[1]))$
We can compute $p$ in $O(m)$ time.
Similarly we can compute $t_{0}$ from $T 1 . . m$ in $O(m)$ time.

$$
\begin{aligned}
& \begin{aligned}
6378 & = \\
& 8+7 \times 10+3 \times 10^{2}+6 \times 10^{3} \quad \mathrm{~m}=4 \\
& =8+10(7+10(3+10(6))) \\
& =8+70+300+6000
\end{aligned} \\
& p= P[m]+10(P[m-1]+10(P[m-2]+\ldots+10(P[2]+10(P[1]))
\end{aligned}
$$

$t_{s+1}$ can be computed from $\boldsymbol{t}_{s}$ in constant time.
$t_{s+1}=10\left(t_{s}-10^{m-1} T[s+1]\right)+T[s+m+1]$
Example : $T=314152$
$t_{s}=31415, s=0, m=5$ and $7[s+m+1]=2$
$t_{s+1}=10(31415-10000 * 3)+2=14152$

Thus p and $t_{0}, t_{1}, \ldots, t_{n-m}$ can all be computed in $\mathrm{O}(n+m)$ time.
And all occurences of the pattern P[1..m] in the text $T[1 . . n]$ can be found in time $O(n+m)$.

However, $p$ and $t_{s}$ may be too large to work with conveniently.
Do we have a simple solution!!

Computation of $p$ and $t_{0}$ and the recurrence is done using modulus $q$.
In general, with a $d$-ary alphabet $\{0,1, \ldots, d-1\}, q$ is chosen such that $d \times q$ fits within a computer word.

The recurrence equation can be rewritten as
$t_{s+1}=\left(d\left(t_{s}-T[s+1] h\right)+T[s+m+1]\right) \bmod q$,
where $h=d^{m-1}(\bmod q)$ is the value of the digit " 1 " in the high order position of an $m$-digit text window.
Note that $t_{s} \equiv p \bmod q$ does not imply that $t_{s}=p$.
However, if $\boldsymbol{t}_{s}$ is not equivalent to $p \bmod q$, then $t_{s} \neq p$, and the shift $s$ is invalid.
We use $t_{s} \equiv p$ mod $q$ as a fast heuristic test to rule out the invalid shifts.
Further testing is done to eliminate spurious hits.

- an explicit test to check whether

$$
P[1 . . m]=T[s+1 . . s+m]
$$

$$
\begin{aligned}
& t_{s+1}=\left(d\left(t_{s}-T[s+1] h\right)+T[s+m+1]\right) \bmod q \\
& h=d^{m-1}(\bmod q)
\end{aligned}
$$

## Example:

$$
T=31415 ; \quad P=26, n=5, m=2, q=11
$$

$$
p=26 \bmod 11=4
$$

$$
\text { t0 }=31 \bmod 11=9
$$

$$
t 1=(10(9-3(10) \bmod 11)+4) \bmod 11
$$

$$
=(10(9-8)+4) \bmod 11=14 \bmod 11=3
$$

## Procedure RABIN-KARP-MATCHER(T,P,d,q)

Input : Text $T$, pattern $P$, radix $d$ ( which is typically $=|\Sigma|$ ), and the prime $q$.
Output : valid shifts $s$ where $P$ matches

1. $n \leftarrow$ length $[T]$;
2. $m \leftarrow$ length $[P]$;
3. $h \leftarrow d^{m-1} \bmod q$;
4. $p \leftarrow 0$;
5. $t_{0} \leftarrow 0$;
6. for $i \leftarrow 1$ to $m$
7. $\quad$ do $p \leftarrow(d \times p+P[i] \bmod q$;
8. $\quad t_{0} \leftarrow\left(d \times t_{0}+T[i] \bmod q\right.$;
9. for $\boldsymbol{s} \leftarrow \mathbf{0}$ to $\boldsymbol{n}-\boldsymbol{m}$
10. do if $p=t_{s}$
11. then if $P[1 . . m]=T[s+1 . . s+m]$
12. then "pattern occurs with shift ' $s$ '
13. if $\boldsymbol{s}<\boldsymbol{n}-\boldsymbol{m}$
14. then $t_{s+1} \underset{\text { cSE5311 }}{\leftarrow\left(d\left(t_{s}-T[s+1] h\right)+T[s+m+1]\right) \bmod q ; ~}$

## Comments on Rabin-Karp Algorithm

$\square$ All characters are interpreted as radix-d digits
$\square h$ is initiated to the value of high order digit position of an m-digit window
$\square p$ and $t_{0}$ are computed in $O(m+m)$ time
$\square$ The loop of line 9 takes $\Theta((n-m+1) m)$ time
The loop 6-8 takes $\mathrm{O}(\mathrm{m})$ time
The overall running time is $\mathbf{O}((n-m) m)$

## Exercises

-- Home work
Study KMP Algorithm for String Matching

- -- Knuth Morris Pratt (KMP)
- Study Boyer-Moore Algorithm for String matching
- Extend Rabin-Karp method to the problem of searching a text string for an occurrence of any one of a given set of $k$ patterns? Start by assuming that all $k$ patterns have the same length. Then generalize your solution to allow the patterns to have different lengths.
- Let $P$ be set of $n$ points in the plane. We define the depth of a point in $P$ as the number of convex hulls that need to be peeled (removed) for $p$ to become a vertex of the convex hull. Design an $O\left(n^{2}\right)$ algorithm to find the depths of all points in $P$.

The input is two strings of characters $A=a 1, a 2, \ldots$, an and $B=b 1, b 2, \ldots, b n$. Design an $O(n)$ time algorithm to determine whether $B$ is a cyclic shift of $A$. In other words, the algorithm should determine whether there exists an index $k$, $1 \leq k \leq n$ such that $a i=b(k+i) \bmod n$, for all $i, 1 \leq i \leq n$.

