Backtracking and Branch and Bound

Module 11
CSE5311 Fall 2008

Backtracking

- Using Backtracking
- Large instances of difficult combinatorial problems can be solved
- Worst case complexity of Backtracking can be exponential
- Typically, a path is taken to check if a solution can be reached
- If not, the path is abandoned and another path taken
- The process is repeated until the solution is arrived at

N -Queens problem

- Place n-queens on an $\mathrm{n} \times \mathrm{n}$ chess board so that no two queens attack each other.
- A queen can attack another if the latter is on the same row, column or diagonal

Hamiltonian Circuit Problem

Hamiltonian Circuit Problem

Hamiltonian Circuit Problem

Subset Sum Problem

- Given a Set S =\{s1,s2, ... Sn\} and a posiitive integer 'd' find a subset of the given set S such that the sum of the positive integers in the subset is equal to 'd'.
- Let $S=\{3,7,9,13,26,41\} ; \mathrm{d}=51$.
- Note - the list should be sorted.

SubSet probienn $\quad \begin{aligned} & \text { Let } \mathbf{s}=\{3,7,9,13,26,41\} ; \\ & \mathbf{d}=51\end{aligned}$

Subset problem

Let $S=\{3,7,9,13,26,41\} ;$
d $=51$

Branch and Bound

- With backtracking
- The search space is can be very large
- It is an exhaustive search
- Worst case complexity is exponential
- Branch and bound technique
- Limits the search space
- Through an estimate of the
- Upper bound or
- Lower bound

Scheduling problem

- The problem of assigning n people to n jobs such that the total cost is as small as possible

Job Person	J1	J2	J3	$\mathrm{J4}$
A	9	2	7	8
B	6	4	3	7
C	5	8	1	8
D	7	6	9	4

Branch and Bound

- Find a Lower Bound on the cost of the solution
- The lower bound is only an estimate
- This is only an estimate
- The LB may not be a legitimate solution
- In this case, consider the lowest cost from each row
- $2+3+1+4=10$
- This is our LB

Job Person	J1	J2	J3	J4
A	9	2	7	8
B	6	4	3	7
C	5	8	1	8
D	7	6	9	4

Knapsack Problem

- We wish the maximize the
$\mathbf{W}=10$ profit in the knapsack
- Maximization
- Use Upper bound
- $\mathrm{UB}=v+(W-v)\left(\mathrm{v}_{\mathrm{i}+1} / \mathrm{w}_{\mathrm{i}+1}\right)$
- When we start $\mathrm{v}=0$

Traveling Salesperson Problem

- LB $=\sum$ (distance to two nearest cities)/2
- \sum over all cities

Problems

Item	Weight	Value	Value/ weight	
A	10	$\$ 100$		
B	7	$\$ 63$		
C	8	$\$ 56$		
D	4	$\$ 12$		

