
1

8/25/2008 CSE5311 FALL 2008
MKUMAR

1

CSE 5311 Design and Analysis of
Algorithms

Fall 2008
Instructor: Dr. Mohan Kumar

Venue: 110NH
Time: M/W 1:00 – 2:20 PM

8/25/2008 CSE5311 FALL 2008
MKUMAR

2

Algorithms

• An algorithm is a precise and unambiguous specification of a
sequence of steps that can be carried out to solve a given problem
or to achieve a given condition.

• An algorithm accepts some value or set of values as input and
produces a value or set of values as output.

• An algorithm transforms the input to the output.
• Algorithms are closely intertwined with the nature of the data

structure of the input and output values.
• A computer algorithm is a computational procedure to solve a well

defined computational problem.

Hereafter, we mean computer algorithm when we say ‘algorithm’

2

8/25/2008 CSE5311 FALL 2008
MKUMAR

3

Algorithms

• An algorithm is designed to solve a given problem
• An algorithm does not take into account the intricacies and limitations of any

programming language. In other words, we are free to express ourselves
when designing an algorithm.

• An algorithm should be unambiguous, it should have precise steps
• An algorithm has three main components:

– The input
– the algorithm itself and
– the output.

• An algorithm will be implemented using a programming language
• (An algorithm designer is like an architect while programmers are like

masons, carpenters, plumbers etc.)

8/25/2008 CSE5311 FALL 2008
MKUMAR

4

Algorithms

• The algorithms we design should be
– Simple

• Unambiguous (e.g. The students should understand algorithms
the instructor gives in the class and the GTA should
understand the algorithms students write in a test or exam)

– Feasible
• Should be implementable using a programming language and

executable on a computer.
– Cost effective

• CPU time
• Memory used
• Communication
• Energy

3

8/25/2008 CSE5311 FALL 2008
MKUMAR

5

Where do we use algorithms?
• Everyday Life

Going from Point A to Point B
A recipe for preparing a food item
Decision making

• Computer Science
AI
Databases
Networks
Multimedia
Systems

• Biology
Bioinformatics
Ant colonies

• Economics
• Marketing
• Running a Business
• Music
• Games
• Others … please add

8/25/2008 CSE5311 FALL 2008
MKUMAR

6

Example Algorithm: 1

A man needs to transport a wolf, a goat and a head of cabbage across a
river. The boat has room only for the man and one other item (either
the wolf, the goat or the cabbage). In the absence of the man the wolf
would eat the goat and the goat would eat the cabbage. Solve this
problem for the man.

All on LB
Man and Goat cross (Cabbage and Wolf on left bank)
Man returns (Goat on right bank)
Wolf and Man cross (Cabbage on LB and Goat on RB)
Man and Goat return (Wolf on RB and Cabbage on LB)
Man and Cabbage cross (Goat and LB, Wolf on RB)
Man returns (Cabbage and Wolf on right bank)
Man and Goat cross (All on RB)

Input

Output

Resources

Conditions

Limitations

4

8/25/2008 CSE5311 FALL 2008
MKUMAR

7

Example Algorithm: 2
• Four persons A,B, C, and D wish to cross a bridge. It is dark at night and they

need to use the only flashlight in their possession, that has a battery life only
17 mins. A maximum of two people can cross the bridge at any given time.
Each person walks at a different pace and a pair must walk at the slower
person’s pace. The times taken by the four persons (if allowed to cross
individually) are given as: A- 1 min; B – 2 mins; C – 5 mins; and D-10 mins;

Input

Output

Resources

Conditions

Limitations

A,B cross bridge (2mins)

A returns with FL (1 min)

C,D cross bridge (10 mins)

B returns (2 mins)

A, B cross bridge (2mins)

Processor

Memory

Time

8/25/2008 CSE5311 FALL 2008
MKUMAR

8

Konigsberg bridges

A

B

C D
B

A

C D

The town of Konigsberg (now Kaliningrad) lay on the banks and on
two islands of the Pregel river. The city was connected by 7 bridges.
The puzzle (as encountered by Leonhard Euler in 1736) :
Whether it was possible to start walking from anywhere in town and
return to the starting point by crossing all bridges exactly once.

Example Algorithm: 3

5

8/25/2008 CSE5311 FALL 2008
MKUMAR

9

Course Syllabus

• Review of Asymptotic Analysis and Growth of Functions, Recurrences
• Trees, Heaps, and Graphs;.
• Greedy Algorithms:

– Minimum spanning tree,Union-Find algorithms, Kruskal's Algorithm,
– Clustering,
– Huffman Codes, and
– Multiphase greedy algorithms.

• Dynamic Programming:
– Shortest paths, negative cycles, matrix chain multiplications, sequence alignment, RNA secondary

structure, application examples.

• Network Flow:
– Maximum flow problem, Ford-Fulkerson algorithm, augmenting paths, Bipartite matching problem,

disjoint paths and application problems.

• NP and Computational tractability:
– Polynomial time reductions; The Satisfiability problem; NP-Complete problems; and Extending

limits of tractability.

• Approximation Algorithms, Local Search and Randomized Algorithms

8/25/2008 CSE5311 FALL 2008
MKUMAR

10

Course Info

• Instructor: Mohan Kumar, 333 NH Email:
mailto:kumar@cse.uta.edu Phone: (817) 272-3610

• Class: Mon/Wed - 1:00 to 2:20 PM
• Office Hrs.: Mon – 2:30 to 4:00 PM and

Wed - 2:30 to 4:00 PM
• Course site: http://crystal.uta.edu/~kumar/cse5311_08FALL
• GTA: TBA
•

6

8/25/2008 CSE5311 FALL 2008
MKUMAR

11

Books

• Text book
• Algorithm Design

by Jon Kleinberg, Éva Tardos
• Pearson Addison-Wesley
• ISBN 0-321-29535-8
• References
• Class Notes, Power point slides, and Exercise Problems
• The Design and Analysis of Algorithms 1974

– AV Aho, JE Hopcroft and JD Ullman, Addison-Wesley Publishing Company
• Introduction to Algorithms: A Creative Approach, Reprinted 1989

– Udi Manber, Addison-Wesley Publishing Company
• Introduction to Algorithms, Second Edition, 2001

– T Cormen, C E Leiserson, R L Rivest and C Stein McGraw Hill and MIT Press
• Graph Algorithms, 1979

– Shimon Even, Computer Science Press
• Introduction to the Theory of Computation, 1992

– Michael Sipser, PWS Publishing Company
• The Art of Computer Programming, Vols. 1 and 3

– Knuth, Addison Wesley Publishing Company

8/25/2008 CSE5311 FALL 2008
MKUMAR

12

Assessment

• Quizzes and class participation: 40%
• The structure of the quizzes will be discussed in class, at least one

week prior to the quiz.
• Quiz 1 (10%): September 10, 2008
• Quiz 2 (10%): September 24, 2008
• Quiz 3 (10%): October 08, 2008
• Quiz 4 (10%): October 29, 2008
• Final Exam (25 %): December 03, 2008
• Quizzes 1 thru 4 are of duration 30 minutes and the Final Exam is of

duration 2 hours.
• Group Project: 35%

7

8/25/2008 CSE5311 FALL 2008
MKUMAR

13

Group Project: 35%

• Students will have the option of doing a group study or
group project.

• Project problems will be handed out by September 15,
2008 and the expected date of Completion is November
30, 2008. The students will be required to write
programs and run experiments.

• Presentation and demonstration of the projects/research
problem will be during the first week of December 2008.

8/25/2008 CSE5311 FALL 2008
MKUMAR

14

Homework and Class Participation

• Homework Assignments: No Grades awarded
directly!

• Class participation: ACTIVE Participation will
prepare you well for Quizzes and Exams
Students are expected to interact actively during
lectures. All students are expected to solve
homework problems and discuss solutions in the
class.

8

8/25/2008 CSE5311 FALL 2008
MKUMAR

15

CSE5311 Design and Analysis of Algorithms

• This Class
– What is an algorithm?
– Asymptotic Analysis
– Iterative algorithms
– Recursive algorithms

• At the end of the class
Difference between an
algorithm and a program
O, Ω, and Θ notations

How to use them
Determine complexity of a
given algorithm

Write recurrence relations for
your algorithms

Chapters 1 and 2

Algorithm Design Kleinberg and Tardos

8/25/2008 CSE5311 FALL 2008
MKUMAR

16

Course Syllabus

• Review of Asymptotic Analysis and Growth of Functions, Recurrences
• Trees, Heaps, and Graphs;.
• Greedy Algorithms:

– Minimum spanning tree,Union-Find algorithms, Kruskal's Algorithm,
– Clustering,
– Huffman Codes, and
– Multiphase greedy algorithms.

• Dynamic Programming:
– Shortest paths, negative cycles, matrix chain multiplications, sequence alignment, RNA secondary

structure, application examples.

• Network Flow:
– Maximum flow problem, Ford-Fulkerson algorithm, augmenting paths, Bipartite matching problem,

disjoint paths and application problems.

• NP and Computational tractability:
– Polynomial time reductions; The Satisfiability problem; NP-Complete problems; and Extending

limits of tractability.

• Approximation Algorithms, Local Search and Randomized Algorithms

9

8/25/2008 CSE5311 FALL 2008
MKUMAR

17

What are Algorithms ?

• An algorithm is a precise and
unambiguous specification of a
sequence of steps that can be
carried out to solve a given
problem or to achieve a given
condition.

• An algorithm is a computational
procedure to solve a well defined
computational problem.

• An algorithm accepts some
value or set of values as input
and produces a value or set of
values as output.

• An algorithm transforms the
input to the output.

• Algorithms are closely
intertwined with the nature of
the data structure of the input
and output values.

Data structures are methods for representing the data models on a
computer whereas data models are abstractions used to formulate
problems.

8/25/2008 CSE5311 FALL 2008
MKUMAR

18

Problem types

• Sorting
• Searching
• String processing
• Graph problems
• Combinatorial problems
• Geometric problems
• Numerical problems

10

8/25/2008 CSE5311 FALL 2008
MKUMAR

19

What are these algorithms?
Input? Output? Complexity?

ALGO_IMPROVED (A[1,…,n],i,n)

•while i < n
• do small ← i;
• for j ← i+1 to n
• if A[j] < A[small] then
• small ← j;
• temp ← A[small];
• A[small] ← A[i];
• A[i] ← temp;
• ALGO_IMPROVED(A,i+1,n)
•End

ALGO_DO_SOMETHING (A [1,…,n],1,n))

•1.for i ← 1 to n-1
•2. small ← i;
•3. for j ← i+1 to n
•4. if A[j] < A[small] then
•5. small ← j;
•6. temp ← A[small];
•7. A[small] ← A[i];
•8. A[i] ← temp;
•9.end

8/25/2008 CSE5311 FALL 2008
MKUMAR

20

Examples
An algorithm to sort a sequence of numbers in nondecreasing order.

Application : lexicographical ordering

An algorithm to find the shortest path from a source node to a destination

node in a graph

Application: To find the shortest path from one city to another.

An algorithm to fill a knapsack with the most cost effective objects

Application: An algorithm to increase the ‘hit ratio’ of a cache

11

8/25/2008 CSE5311 FALL 2008
MKUMAR

21

• Data Models:
Lists, Trees, Sets, Relations, Graphs

• Data Structures :
Linked List is a data structure used to

represent a List
Graph is a data structure used to

represent various cities in a map.

8/25/2008 CSE5311 FALL 2008
MKUMAR

22

SELECTION SORT Algorithm (Iterative method)

Procedure SELECTION_SORT (A [1,…,n])
Input : unsorted array A
Output : Sorted array A

1. for i ← 1 to n-1
2. small ← i;
3. for j ← i+1 to n
4. if A[j] < A[small] then
5. small ← j;
6. temp ← A[small];
7. A[small] ← A[i];
8. A[i] ← temp;
9. end

Example: Given sequence
5 2 4 6 1 3

i=1 1 2 4 6 5 3
i=2 1 2 4 6 5 3
i=3 1 2 3 6 5 4
i=4 1 2 3 4 5 6

12

8/25/2008 CSE5311 FALL 2008
MKUMAR

23

Complexity:
The statements 2,6,7,8, and 5 take O(1) or constant time.
The outer loop 1-9 is executed n-1 times and the inner loop
3-5 is executed (n-i) times.
The upper bound on the time taken by all iterations as
i ranges from 1 to n-1 is given by, O(n2)

1. for i ← 1 to n-1
2. small ← i;
3. for j ← i+1 to n
4. if A[j] < A[small] then
5. small ← j;
6. temp ← A[small];
7. A[small] ← A[i];
8. A[i] ← temp;
9. end

8/25/2008 CSE5311 FALL 2008
MKUMAR

24

• Study of algorithms involves,
designing algorithms
expressing algorithms
algorithm validation
algorithm analysis
Study of algorithmic techniques

13

8/25/2008 CSE5311 FALL 2008
MKUMAR

25

Algorithms and Design of Programs

• An algorithm is composed of a finite set of steps,
∗ each step may require one or more operations,
∗ each operation must be definite and effective

• An algorithm,
∗ is an abstraction of an actual program
∗ is a computational procedure that terminates

*A program is an expression of an algorithm in a programming
language.
*Choice of proper data models and hence data structures is
important for expressing algorithms and implementation.

8/25/2008 CSE5311 FALL 2008
MKUMAR

26

• We evaluate the performance of

algorithms based on

– Time (CPU-time) and

– Space (semiconductor memory)

• Both are expensive

– computer scientists should

endeavour to minimize time

taken and space required.

• The time taken to execute an algorithm

is dependent on one or more of the

following,
• number of data elements
• the degree of a polynomial
• the size of a file to be sorted
• the number of nodes in a graph

14

8/25/2008 CSE5311 FALL 2008
MKUMAR

27

Asymptotic Notations

– O-notation

» Asymptotic upper bound

• A given function f(n), is O (g(n)) if there exist

positive constants c and n0 such that

0 ≤ f(n) ≤ c g(n) for all n≥ n0.

• O (g(n)) represents a set of functions, and

O (g(n)) = {f(n): there exist positive constants c and

n0 such that 0 ≤ f(n) ≤ c g(n) for all n≥ n0}.

8/25/2008 CSE5311 FALL 2008
MKUMAR

28

O Notation

0
5

10
15
20
25
30
35
40

1 2 3 4 5 6 7 8 9

f(n) = 2n+6
cg(n) = 4n

c = 4

n0 = 3.5

f(n), is O (g(n)) if there exist

positive constants c and n0

such that 0 ≤ f(n) ≤ c g(n)

for all n≥ n0.

15

8/25/2008 CSE5311 FALL 2008
MKUMAR

29

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

1 10 100 1000 10000

log n
n
n logn
n^2
2^n

8/25/2008 CSE5311 FALL 2008
MKUMAR

30

Ω-notation
Asymptotic lower bound

• A given function f(n), is Ω (g(n)) if there exist positive

constants c and n0 such that 0 ≤ c g(n) ≤ f(n) for all n≥ n0.

• Ω (g(n)) represents a set of functions, and

Ω(g(n)) = {f(n): there exist positive constants c and n0 such

that 0 ≤ c g(n) ≤ f(n) for all n≥ n0}

16

8/25/2008 CSE5311 FALL 2008
MKUMAR

31

Θ-notation
Asymptotic tight bound

• A given function f(n), is Θ (g(n)) if there exist positive constants

c1, c2,and n0 such that 0 ≤ c1g(n) ≤ f(n) ≤ c2 g(n) for all n≥ n0.

• Θ (g(n)) represents a set of functions, and

Θ (g(n)) = {f(n): there exist positive constants c1, c2, and n0 such

that 0 ≤ c1g(n) ≤ f (n) ≤ c2 g (n) for all n≥ n0.

O, Ω, and Θ correspond (loosely) to “≤”, “≥”, and “=”.

8/25/2008 CSE5311 FALL 2008
MKUMAR

32

Running Times and Space

• How many times each statement is executed?
• Are there loops in the algorithm?
• Is the algorithm iterative, repetitive, recursive etc.
• How much memory is used in executing the algorithm?

We should endeavor to design algorithms that run fast and use least
possible memory.

17

8/25/2008 CSE5311 FALL 2008
MKUMAR

33

Constant Time

• Constant number of statements
e.g., Let X = 4;

Y = 6;
if A[j] < A[small] then A[j] = SMALL

The complexity (or running time) is O(1)

8/25/2008 CSE5311 FALL 2008
MKUMAR

34

Logarithmic time

• Divide and conquer algorithm
• Problem divided into two or more equal parts

and each part solved recursively
• Binary search tree

T (n) = c • T (n/2) + O(1)

Time to solve problem of size n is equal to time to solve
problem of size n/2 (multiplied by a constant) PLUS constant
time

Please note: we use Log to base 2, unless
specified

18

8/25/2008 CSE5311 FALL 2008
MKUMAR

35

Linear Time
• The running time increases linearly with the size of the

problem
• Computing the minimum of n numbers

• T (n) = O (n)

MIN = A[1]

FOR i = 2 to n

IF A[i] < MIN then

MIN = A[i]

8/25/2008 CSE5311 FALL 2008
MKUMAR

36

O (n log2 n) time

• Some sorting algorithms have this complexity
• e.g. Merge sort

– Divide the input into two equal parts
– Sort each part and merge the two parts

together, recursively
• T(n) = c •T (n/2) + O(n)

= O (n logn)

19

8/25/2008 CSE5311 FALL 2008
MKUMAR

37

Quadratic Time
• The selection sort algorithm

T(n) = T(n-1) + O (n)

During each big step,
Problem is reduced from size i to i-1
Each big step takes O(n) time

8/25/2008 CSE5311 FALL 2008
MKUMAR

38

Polynomial Time

• Problems that can be solved in polynomial time
– Algorithms when implemented, can be

executed in polynomial time – O(nk)

20

8/25/2008 CSE5311 FALL 2008
MKUMAR

39

Beyond Polynomial Time

• Some problems cannot be solved in polynomial
time

• There are NO known polynomial solutions for
these problems

• Traveling Salesperson is a classic example of
such a problem

• We will study such problems and approximate
solutions to these problems

8/25/2008 CSE5311 FALL 2008
MKUMAR

40

Presenting algorithms
• Description : The algorithm will be described in English, with the

help of one or more examples

• Specification : The algorithm will be presented as pseudocode
(We don't use any programming language)

• Validation : The algorithm will be proved to be correct for all
problem cases

• Analysis: The running time or time complexity of the algorithm
will be evaluated

21

8/25/2008 CSE5311 FALL 2008
MKUMAR

41

SELECTION SORT Algorithm (Iterative method)

Procedure SELECTION_SORT (A [1,…,n])
Input : unsorted array A
Output : Sorted array A

1. for i ← 1 to n-1
2. small ← i;
3. for j ← i+1 to n
4. if A[j] < A[small] then
5. small ← j;
6. temp ← A[small];
7. A[small] ← A[i];
8. A[i] ← temp;
9. end

O(n2)

8/25/2008 CSE5311 FALL 2008
MKUMAR

42

Recursive Selection Sort Algorithm
Given an array A[i, …,n], selection sort picks the smallest element in the
array and swaps it with A[i], then sorts the remainder A[i+1, …, n]
recursively.

Example :
Given A [26, 93, 36, 76, 85, 09, 42, 64]

Swap 09 with 23 -- A[1] = 09; A[2,…, 8] = [93,36,76,85,26,42,64]
Swap 26 with 93 -- A[1,2]= [09,26]; A[3,…,8] = [36,76,85,93,42,64]
No swapping -- A[1,2,3] = [09,26,36]; A[4,…,8] =[76,85,93,42,64]
Swap 42 with 76 -- A[1,…,4] =[09,26,36,42]; A[5,…,8] = [85,93,76,64]
Swap 64 with85 -- A[1,…,5] =[09,26,36,42,64]; A[6,7,8] = [93,76,85]
Swap 76 with 93 -- A[1,…,6]=[09,26,36,42,64,76]; A[7,8] = [93,85]
Swap 85 with 93 -- A[1,…,7]=[09,26,36,42,64,76,85]; A[8] = 93

Sorted list : A[1,…,8] = [09,26,36,42,64,76,85,93]

22

8/25/2008 CSE5311 FALL 2008
MKUMAR

43

Procedure RECURSIVE_SELECTION_SORT (A[1,…,n],i,n)
Input : Unsorted array A
Output : Sorted array A

while i < n
do small ← i;

for j ← i+1 to n
if A[j] < A[small] then

small ← j;
temp ← A[small];
A[small] ← A[i];
A[i] ← temp;
RECURSIVE_SELECTION_SORT(A,i+1,n)

End

8/25/2008 CSE5311 FALL 2008
MKUMAR

44

The two Algorithms

• SELECTION SORT Algorithm (Iterative method)
• Input : Unsorted array A
• Output : Sorted array A
• Procedure SELECTION_SORT (A [1,…,n])
• Input : unsorted array A
• Output : Sorted array A

• 1. for i ← 1 to n-1
• 2. small ← i;
• 3. for j ← i+1 to n
• 4. if A[j] < A[small] then
• 5. small ← j;
• 6. temp ← A[small];
• 7. A[small] ← A[i];
• 8. A[i] ← temp;
• 9. end

• Procedure SELECTION_SORT (A[1,…,n],i,n)
• Input : Unsorted array A
• Output : Sorted array A

• while i < n
• do small ← i;
• for j ← i+1 to n
• if A[j] < A[small] then
• small ← j;
• temp ← A[small];
• A[small] ← A[i];
• A[i] ← temp;
•

RECURSIVE_SELECTION_SORT(A,i+1,n)
• End

23

8/25/2008 CSE5311 FALL 2008
MKUMAR

45

Analysis of Recursive selection sort algorithm
Basis: If i = n, then only the last element of the array
needs to be sorted, takes Θ (1) time.
Therefore, T(1) = a, a constant
Induction : if i < n, then,
1. we find the smallest element in A[i,…,n],

takes at most (n-1) steps
swap the smallest element with A[i], one step
recursively sort A[i+1, …, n],
takes T(n-1) time

Therefore, T(n) is given by,
T(n) = T(n-1) + b. n (1)
It is required to solve the recursive equation,

T(1) = a; for n =1
T(n) = T(n-1) + b n; for n >1, where b is a constant

8/25/2008 CSE5311 FALL 2008
MKUMAR

46

T(n-1) = T(n-2) + (n-1)b (2)
T(n-2) = T(n-3) + (n-2) b (3)
. . .
T(n-i) = T(n-(i+1)) + (n-i)b (4)
Using (2) in (1)
T(n) = T(n-2) + b [n+(n-1)]

= T(n-3) + b [n+(n-1)+(n-2)
= T(n-(n-1)) + b[n+(n-1)+(n-2) + . . . +(n-(n-2))]

T(n) = O(n2)

24

8/25/2008 CSE5311 FALL 2008
MKUMAR

47

Questions:
What is an algorithm?
Why should we study algorithms?
Why should we evaluate running time of algorithms?
What is a recursive function?
What are the basic differences among O, Ω, and

Θ notations?
Did you understand selection sort algorithm

and its running time evaluation?
Can you write pseudocode for selecting the

largest element in a given array?
Please write the algorithm in the class.

Home work: Please read

Chapters 1 and 2, Algorithm Design Kleinberg and Tardos

8/25/2008 CSE5311 FALL 2008
MKUMAR

48

Compare the following pairs of functions in terms of order of magnitude. In each case,
say whether f(n) = O(g(n), f(n) = Ω (g(n)), and/or f(n) = Θ (g(n))

f(n) g(n)
a. 100n +log n n + (log n)2

b. log n log(n2)
c. n2/log n n(log n)2

d. (log n)log n n/log n
e. √n (log n)5

f. n 2n 3n

25

8/25/2008 CSE5311 FALL 2008
MKUMAR

49

Next Class: Wednesday (08/27)

• Overview of Mathematical Induction
• Complexities of problems
• Recursive equations
• Problems will be solved in the class on the board

8/25/2008 CSE5311 FALL 2008
MKUMAR

50

