CSE 5311 Design and Analysis of Algorithms

Fall 2008 Instructor: Dr. Mohan Kumar Venue: 110NH Time: M/W 1:00 – 2:20 PM

8/25/2008

CSE5311 FALL 2008 MKUMAR 1

1. 2. 3. 4. 5. 6. 7. 8. 9.	for i \leftarrow 1 to n- small \leftarrow i; for j \leftarrow i if A s temp \leftarrow A[small] A[i] \leftarrow te end	1 -[j] < A[small] then mall ← j; A[small]; ← A[i]; emp;	
Complexi The stateme The outer lo 3-5 is execu The upper b i ranges fror	ty: ents 2,6,7,8, and 5 op 1-9 is executed uted (n-i) times. ound on the time n 1 to n-1 is given	5 take O(1) or constant time d n-1 times and the inner lo taken by all iterations as h by, O(n²)	e. Dop
8/25/2008		CSE5311 FALL 2008 MKUMAR	23

Recursive Selection Sort Algorithm Given an array A[i, ...,n], selection sort picks the smallest element in the array and swaps it with A[i], then sorts the remainder A[i+1, ..., n] recursively. Example : Given A [26, 93, 36, 76, 85, 09, 42, 64] Swap 09 with 23 -- A[1] = 09; A[2,..., 8] = [93,36,76,85,26,42,64] Swap 26 with 93 -- A[1,2]= [09,26]; A[3,...,8] = [36,76,85,93,42,64] No swapping -- A[1,2,3] = [09,26,36]; A[4,...,8] = [76,85,93,42,64] Swap 42 with 76 -- A[1,...,4] =[09,26,36,42]; A[5,...,8] = [85,93,76,64] Swap 64 with 85 -- A[1,...,5] =[09,26,36,42,64]; A[6,7,8] = [93,76,85] Swap 76 with 93 -- A[1,...,6]=[09,26,36,42,64,76]; A[7,8] = [93,85] Swap 85 with 93 -- A[1,...,7]=[09,26,36,42,64,76,85]; A[8] = 93 Sorted list : A[1,...,8] = [09,26,36,42,64,76,85,93] 8/25/2008 CSE5311 FALL 2008 42 MKUMAR

$$\begin{aligned} & \Gamma(n-1) = \Gamma(n-2) + (n-1)b \quad (2) \\ & \Gamma(n-2) = T(n-3) + (n-2)b \quad (3) \\ & \cdots \\ & \Gamma(n-i) = T(n-(i+1)) + (n-i)b \quad (4) \\ & \text{Using } (2) \text{ in } (1) \\ & \Gamma(n) = T(n-2) + b \quad [n+(n-1)] \\ & = T(n-3) + b \quad [n+(n-1)+(n-2) \\ & = T(n-(n-1)) + b [n+(n-1)+(n-2) + \dots + (n-(n-2))] \\ & \Pi(n) = O(n^2) \end{aligned}$$

8/25/2008	CSE5311 FALL 2008 MKUMAR	50