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CSE 5311 Design and Analysis of 
Algorithms 

Fall 2008
Instructor: Dr. Mohan Kumar

Venue: 110NH
Time: M/W 1:00 – 2:20 PM
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Algorithms

• An algorithm is a precise and unambiguous specification of a 
sequence of steps that can be carried out to solve a given problem 
or to achieve a given condition.

• An algorithm accepts some value or set of values as input and 
produces a value or set of values as output.

• An algorithm transforms the input to the output.
• Algorithms are closely intertwined with the nature of the data 

structure of the input and output values. 
• A computer algorithm is a computational procedure to solve a well 

defined computational problem. 

Hereafter, we mean computer algorithm when we say ‘algorithm’
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Algorithms

• An algorithm is designed to solve a given problem
• An algorithm does not take into account the intricacies and limitations of any 

programming language. In other words, we are free to express ourselves 
when designing an algorithm. 

• An algorithm should be unambiguous, it should have precise steps
• An algorithm has three main components: 

– The input
– the algorithm itself and 
– the output.

• An algorithm will be implemented using a programming language
• (An algorithm designer is like an architect while programmers are like 

masons, carpenters, plumbers etc.)
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Algorithms

• The algorithms we design should be 
– Simple

• Unambiguous (e.g. The students should understand algorithms 
the instructor gives in the class and the GTA should 
understand the algorithms students write in a test or exam)

– Feasible
• Should be implementable using a programming language and 

executable on a computer. 
– Cost effective

• CPU time
• Memory used
• Communication
• Energy
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Where do we use algorithms? 
• Everyday Life

Going from Point A to Point B
A recipe for preparing a food item
Decision making

• Computer Science
AI
Databases
Networks
Multimedia
Systems

• Biology
Bioinformatics
Ant colonies

• Economics
• Marketing
• Running a Business
• Music
• Games
• Others … please add 
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Example Algorithm: 1

A man needs to transport a wolf, a goat and a head of cabbage across a 
river. The boat has room only for the man and one other item (either 
the wolf, the goat or the cabbage). In the absence of the man the wolf 
would eat the goat and the goat would eat the cabbage. Solve this 
problem for the man. 

All on LB
Man and Goat cross (Cabbage and Wolf on left bank)
Man returns (Goat on right bank)
Wolf and Man cross (Cabbage on LB and Goat on RB)
Man and Goat return (Wolf on RB and Cabbage on LB)
Man  and Cabbage cross (Goat and LB, Wolf on RB)
Man returns (Cabbage and Wolf  on right bank)
Man and Goat cross (All on RB)

Input

Output

Resources

Conditions

Limitations
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Example Algorithm: 2
• Four persons A,B, C, and D wish to cross a bridge. It is dark at night and they 

need to use the only flashlight in their possession, that has a battery life only 
17 mins.  A maximum of two people can cross the bridge at any given time. 
Each person walks at a different pace and a pair must walk at the slower 
person’s pace. The times taken by the four persons (if allowed to cross 
individually) are given as: A- 1 min;  B – 2 mins; C – 5 mins; and D-10 mins;

Input

Output

Resources

Conditions

Limitations

A,B cross bridge ( 2mins)

A returns with FL (1 min)

C,D cross bridge ( 10 mins)

B returns (2 mins)

A, B cross bridge ( 2mins)

Processor

Memory

Time
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Konigsberg bridges

A

B

C D
B

A

C D

The town of Konigsberg (now Kaliningrad) lay on the banks and on
two islands of the Pregel river. The city was connected by 7 bridges. 
The puzzle  (as encountered by Leonhard Euler in 1736) :  
Whether it was possible to start walking from anywhere in town and 
return to the starting point by crossing all bridges exactly once. 

Example Algorithm: 3
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Course Syllabus

• Review of Asymptotic Analysis and Growth of Functions, Recurrences
• Trees, Heaps, and Graphs;.
• Greedy Algorithms: 

– Minimum spanning tree,Union-Find algorithms, Kruskal's Algorithm, 
– Clustering, 
– Huffman Codes, and 
– Multiphase greedy algorithms. 

• Dynamic Programming: 
– Shortest paths, negative cycles, matrix chain multiplications, sequence alignment, RNA secondary 

structure, application examples.

• Network Flow: 
– Maximum flow problem, Ford-Fulkerson algorithm, augmenting paths, Bipartite matching problem, 

disjoint paths and application problems.

• NP and Computational tractability: 
– Polynomial time reductions; The Satisfiability problem; NP-Complete problems; and Extending 

limits of tractability.

• Approximation Algorithms, Local Search and Randomized Algorithms
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Course Info

• Instructor: Mohan Kumar, 333 NH Email: 
mailto:kumar@cse.uta.edu Phone: (817) 272-3610

• Class: Mon/Wed   - 1:00 to 2:20 PM
• Office Hrs.: Mon – 2:30 to 4:00 PM and

Wed - 2:30 to 4:00 PM 
• Course site: http://crystal.uta.edu/~kumar/cse5311_08FALL
• GTA: TBA
•
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Books

• Text book 
• Algorithm Design

by Jon Kleinberg, Éva Tardos
• Pearson Addison-Wesley
• ISBN 0-321-29535-8
• References 
• Class Notes, Power point slides, and Exercise Problems
• The Design and Analysis of Algorithms 1974 

– AV Aho, JE Hopcroft and JD Ullman, Addison-Wesley Publishing Company
• Introduction to Algorithms: A Creative Approach, Reprinted 1989 

– Udi Manber, Addison-Wesley Publishing Company 
• Introduction to Algorithms, Second Edition, 2001 

– T Cormen, C E Leiserson, R L Rivest and C Stein McGraw Hill and MIT Press 
• Graph Algorithms, 1979 

– Shimon Even, Computer Science Press 
• Introduction to the Theory of Computation, 1992 

– Michael Sipser, PWS Publishing Company 
• The Art of Computer Programming, Vols. 1 and 3 

– Knuth, Addison Wesley Publishing Company
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Assessment

• Quizzes and class participation: 40% 
• The structure of the quizzes will be discussed in class, at least one 

week prior to the quiz. 
• Quiz 1 (10%): September 10, 2008 
• Quiz 2 (10%): September 24, 2008
• Quiz 3 (10%): October 08, 2008
• Quiz 4 (10%): October 29, 2008
• Final Exam (25 %): December 03, 2008
• Quizzes 1 thru 4 are of duration 30 minutes and the Final Exam is of 

duration 2 hours.
• Group Project: 35%
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Group Project: 35%

• Students will have the option of doing a group study or 
group project.

• Project problems will be handed out by September 15, 
2008 and the expected date of Completion is November 
30, 2008. The students will be required to write  
programs and run experiments.

• Presentation and demonstration of the projects/research 
problem will be during the first week of December 2008.
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Homework and Class Participation

• Homework Assignments: No Grades awarded 
directly!

• Class participation: ACTIVE Participation will 
prepare you well for Quizzes and Exams 
Students are expected to interact actively during 
lectures. All students are expected to solve 
homework problems and discuss solutions in the 
class. 
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CSE5311 Design and Analysis of Algorithms

• This Class
– What is an algorithm?
– Asymptotic Analysis
– Iterative algorithms
– Recursive algorithms

• At the  end of the class
Difference between an 
algorithm and a program
O, Ω, and Θ notations

How to use them
Determine complexity of a 
given algorithm 

Write recurrence relations for 
your algorithms

Chapters 1 and 2 

Algorithm Design  Kleinberg and Tardos
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Course Syllabus

• Review of Asymptotic Analysis and Growth of Functions, Recurrences
• Trees, Heaps, and Graphs;.
• Greedy Algorithms: 

– Minimum spanning tree,Union-Find algorithms, Kruskal's Algorithm, 
– Clustering, 
– Huffman Codes, and 
– Multiphase greedy algorithms. 

• Dynamic Programming: 
– Shortest paths, negative cycles, matrix chain multiplications, sequence alignment, RNA secondary 

structure, application examples.

• Network Flow: 
– Maximum flow problem, Ford-Fulkerson algorithm, augmenting paths, Bipartite matching problem, 

disjoint paths and application problems.

• NP and Computational tractability: 
– Polynomial time reductions; The Satisfiability problem; NP-Complete problems; and Extending 

limits of tractability.

• Approximation Algorithms, Local Search and Randomized Algorithms
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What are Algorithms ?

• An algorithm is a precise and 
unambiguous specification of a 
sequence of steps that can be 
carried out to solve a given 
problem or to achieve a given 
condition.

• An algorithm is a computational 
procedure to solve a well defined 
computational problem. 

• An algorithm accepts some 
value or set of values as input 
and produces a value or set of 
values as output.

• An algorithm transforms the 
input to the output.

• Algorithms are closely 
intertwined with the nature of 
the data structure of the input 
and output values.

Data structures are methods for representing the data models on a 
computer whereas data models are abstractions used to formulate 
problems. 
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Problem types

• Sorting
• Searching
• String processing
• Graph problems
• Combinatorial problems
• Geometric problems
• Numerical problems
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What are these algorithms?
Input? Output? Complexity?

ALGO_IMPROVED (A[1,…,n],i,n)

•while i < n  
• do small ← i;
• for j ← i+1 to n 
• if A[j] < A[small] then
• small ← j;
• temp ← A[small];
• A[small] ← A[i];
• A[i] ← temp;
• ALGO_IMPROVED(A,i+1,n)
•End

ALGO_DO_SOMETHING (A [1,…,n],1,n) )

•1.for i ← 1 to n-1
•2. small ← i;
•3.                  for j ← i+1 to n
•4. if A[j] < A[small] then
•5. small ← j;
•6. temp ← A[small];
•7. A[small] ← A[i];
•8. A[i] ← temp;
•9.end
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Examples 
An algorithm to sort a sequence of numbers in nondecreasing order.

Application : lexicographical ordering

An algorithm to find the shortest path from a source node to a destination 

node in a  graph

Application: To find the shortest path from one city to another.

An algorithm to fill a knapsack with the most cost effective objects

Application: An algorithm to increase the ‘hit ratio’ of a cache
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• Data Models:
Lists, Trees, Sets, Relations, Graphs 

• Data Structures :
Linked List is a data structure used to 

represent a List
Graph is a data structure used to 

represent various cities in a map.
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SELECTION SORT Algorithm (Iterative method)

Procedure SELECTION_SORT (A [1,…,n])
Input : unsorted array A
Output : Sorted array A

1. for i ← 1 to n-1
2. small ← i;
3.                    for j ← i+1 to n
4. if A[j] < A[small] then
5. small ← j;
6. temp ← A[small];
7. A[small] ← A[i];
8. A[i] ← temp;
9.          end

Example: Given sequence  
5    2 4    6 1    3

i=1 1    2 4    6 5    3
i=2 1    2 4    6 5    3
i=3 1    2  3    6 5    4
i=4 1    2 3    4 5    6
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Complexity:
The statements 2,6,7,8, and 5 take O(1) or constant time.
The outer loop 1-9 is executed n-1 times and the inner loop 
3-5 is  executed (n-i) times. 
The upper bound on the time taken by all iterations as
i ranges from 1 to n-1 is given by, O(n2)

1. for i ← 1 to n-1
2. small ← i;
3.                    for j ← i+1 to n
4. if A[j] < A[small] then
5. small ← j;
6. temp ← A[small];
7. A[small] ← A[i];
8. A[i] ← temp;
9.          end
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• Study of algorithms involves,
designing algorithms
expressing algorithms
algorithm validation
algorithm analysis
Study of algorithmic techniques
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Algorithms and Design of Programs

• An algorithm is  composed of a finite set of steps,
∗ each step may require one or more operations,
∗ each operation must be definite and effective

• An algorithm,
∗ is an abstraction of an actual program
∗ is a computational procedure that terminates

*A program is an expression of an algorithm in a programming 
language. 
*Choice of proper data models and hence data  structures is      
important for expressing algorithms and implementation.
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• We evaluate the performance of 

algorithms based on 

– Time (CPU-time) and 

– Space (semiconductor memory) 

• Both are expensive 

– computer scientists should 

endeavour to minimize time 

taken and space required.

• The time taken to execute an algorithm 

is dependent on one or more of the 

following, 
• number of data elements
• the degree of a polynomial
• the size of a file to be sorted
• the number of nodes in a graph
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Asymptotic Notations

– O-notation

» Asymptotic upper bound

• A given function f(n), is O (g(n)) if there exist 

positive constants c and n0 such that                      

0 ≤ f(n) ≤ c g(n) for all n≥ n0. 

• O (g(n)) represents a set of functions, and

O (g(n)) = {f(n): there exist positive constants c and 

n0 such that 0 ≤ f(n) ≤ c g(n) for all n≥ n0}. 
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O Notation

0
5

10
15
20
25
30
35
40

1 2 3 4 5 6 7 8 9

f(n) = 2n+6
cg(n) = 4n

c = 4

n0 = 3.5

f(n), is O (g(n)) if there exist 

positive constants c and n0

such that    0 ≤ f(n) ≤ c g(n)

for all  n≥ n0. 
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0
5000
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20000
25000
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35000
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45000

1 10 100 1000 10000

log n
n
n logn
n^2
2^n
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Ω-notation
Asymptotic lower bound

• A given function f(n), is Ω (g(n)) if there exist positive 

constants c and n0 such that  0 ≤ c g(n) ≤ f(n) for all n≥ n0. 

• Ω (g(n)) represents a set of functions, and

Ω(g(n)) = {f(n): there exist positive constants c and n0 such 

that 0 ≤ c g(n) ≤ f(n) for all n≥ n0}
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Θ-notation
Asymptotic tight bound

• A given function f(n), is Θ (g(n)) if there exist positive constants 

c1, c2,and n0 such that   0 ≤ c1g(n) ≤ f(n) ≤ c2 g(n) for all n≥ n0. 

• Θ (g(n)) represents a set of functions, and

Θ (g(n)) = {f(n): there exist positive constants c1, c2, and n0 such 

that 0 ≤ c1g(n) ≤ f (n) ≤ c2 g (n) for all n≥ n0. 

O, Ω, and Θ correspond  (loosely) to “≤”, “≥”, and “=”. 
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Running Times and Space

• How many times each statement is executed?
• Are there loops in the algorithm? 
• Is the algorithm iterative, repetitive, recursive etc. 
• How much memory is used in executing the algorithm? 

We should endeavor to design algorithms that run fast and use least 
possible memory. 
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Constant Time

• Constant number of statements
e.g.,  Let X = 4; 

Y = 6;
if A[j] < A[small] then A[j] = SMALL

The complexity (or running time) is O(1)
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Logarithmic time

• Divide and conquer algorithm
• Problem divided into two or more equal parts 

and each part solved recursively
• Binary search tree

T (n) = c • T (n/2) + O(1)

Time to solve problem of size n is equal to time to solve 
problem of size n/2 (multiplied by a constant) PLUS constant 
time

Please note: we use Log to base 2, unless 
specified
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Linear Time
• The running time increases linearly with the size of the 

problem
• Computing the minimum of n numbers

• T (n) = O (n)

MIN = A[1]

FOR i = 2 to n

IF A[i] < MIN then

MIN = A[i]
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O (n log2 n) time

• Some sorting algorithms have this complexity
• e.g. Merge sort

– Divide the input into two equal parts
– Sort each part and merge the two parts 

together, recursively
• T(n) = c •T (n/2) + O(n)

= O (n logn)
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Quadratic Time
• The selection sort algorithm

T(n) = T(n-1) + O (n)

During each big step,
Problem is reduced from size i to i-1
Each big step takes O(n) time  
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Polynomial Time

• Problems that can be solved in polynomial time 
– Algorithms when implemented, can be 

executed in polynomial time – O(nk)
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Beyond Polynomial Time

• Some problems cannot be solved in polynomial 
time

• There are NO known polynomial solutions for 
these problems

• Traveling Salesperson is a classic example of 
such a problem

• We will study such problems and approximate 
solutions to these problems 
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Presenting algorithms
• Description : The algorithm will be described in English, with the 

help of one or more examples

• Specification : The algorithm will be presented as pseudocode  
(We don't use any programming language)

• Validation  : The algorithm will be proved to be correct for all 
problem cases

• Analysis:  The running time or time complexity of the algorithm 
will be evaluated
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SELECTION SORT Algorithm (Iterative method)

Procedure SELECTION_SORT (A [1,…,n])
Input : unsorted array A
Output : Sorted array A

1. for i ← 1 to n-1
2. small ← i;
3.                    for j ← i+1 to n
4. if A[j] < A[small] then
5. small ← j;
6. temp ← A[small];
7. A[small] ← A[i];
8. A[i] ← temp;
9.          end

O(n2) 
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Recursive Selection Sort Algorithm
Given an array A[i, …,n], selection sort picks the smallest  element in the 
array and swaps it with A[i], then sorts the  remainder A[i+1, …, n] 
recursively.

Example :
Given A [26, 93, 36, 76, 85, 09, 42, 64]

Swap 09 with 23 -- A[1] = 09; A[2,…, 8] = [93,36,76,85,26,42,64]
Swap 26 with 93 -- A[1,2]= [09,26]; A[3,…,8] = [36,76,85,93,42,64]
No swapping -- A[1,2,3] = [09,26,36]; A[4,…,8] =[76,85,93,42,64]
Swap 42 with 76 -- A[1,…,4] =[09,26,36,42]; A[5,…,8] = [85,93,76,64]
Swap 64 with85  -- A[1,…,5] =[09,26,36,42,64]; A[6,7,8] = [93,76,85]
Swap 76 with 93 -- A[1,…,6]=[09,26,36,42,64,76]; A[7,8] = [93,85]
Swap 85 with 93 -- A[1,…,7]=[09,26,36,42,64,76,85]; A[8] = 93

Sorted list : A[1,…,8] = [09,26,36,42,64,76,85,93]
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Procedure RECURSIVE_SELECTION_SORT (A[1,…,n],i,n)
Input : Unsorted array A
Output : Sorted array A

while i < n  
do small ← i;

for j ← i+1 to n 
if A[j] < A[small] then

small ← j;
temp ← A[small];
A[small] ← A[i];
A[i] ← temp;
RECURSIVE_SELECTION_SORT(A,i+1,n)

End
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The two Algorithms

• SELECTION SORT Algorithm (Iterative method)
• Input : Unsorted array A
• Output : Sorted array A
• Procedure SELECTION_SORT (A [1,…,n])
• Input : unsorted array A
• Output : Sorted array A

• 1. for i ← 1 to n-1
• 2. small ← i;
• 3.                    for j ← i+1 to n
• 4. if A[j] < A[small] then
• 5. small ← j;
• 6. temp ← A[small];
• 7. A[small] ← A[i];
• 8. A[i] ← temp;
• 9.          end

• Procedure SELECTION_SORT (A[1,…,n],i,n)
• Input : Unsorted array A
• Output : Sorted array A

• while i < n  
• do small ← i;
• for j ← i+1 to n 
• if A[j] < A[small] then
• small ← j;
• temp ← A[small];
• A[small] ← A[i];
• A[i] ← temp;
•

RECURSIVE_SELECTION_SORT(A,i+1,n)
• End
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Analysis of Recursive selection sort algorithm
Basis: If i = n, then only the last element of the array 
needs to be sorted, takes Θ (1) time. 
Therefore, T(1) = a, a constant
Induction : if i < n, then,
1. we find the smallest element in A[i,…,n], 

takes at most (n-1)  steps 
swap the smallest element with A[i], one step
recursively sort A[i+1, …, n], 
takes T(n-1) time

Therefore, T(n)  is given by,
T(n) = T(n-1) + b. n (1)
It is required to solve the recursive equation,

T(1) = a; for n =1
T(n) = T(n-1) + b n; for n >1, where b is a constant
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T(n-1) = T(n-2) + (n-1)b (2) 
T(n-2) = T(n-3) + (n-2) b (3)
. . .
T(n-i) = T(n-(i+1)) + (n-i)b (4)
Using (2) in (1)
T(n) = T(n-2) + b [n+(n-1)]

= T(n-3) + b [n+(n-1)+(n-2)
= T(n-(n-1)) + b[n+(n-1)+(n-2) + . . . +(n-(n-2))]

T(n) = O(n2)
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Questions:
What is an algorithm?
Why should we study algorithms?
Why should we evaluate running time of algorithms?
What is a recursive function?
What are the basic differences among O, Ω, and

Θ notations?
Did you understand selection sort algorithm 

and its running time evaluation?
Can you write pseudocode for selecting the 

largest element in a given array? 
Please write the algorithm in the class.

Home work: Please read 

Chapters 1 and 2, Algorithm Design Kleinberg and Tardos
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Compare the following pairs of functions in terms of order of magnitude. In each case, 
say whether f(n) = O(g(n), f(n) = Ω (g(n)), and/or           f(n) = Θ (g(n))

f(n) g(n)
a. 100n +log n n + (log n)2

b. log n log(n2)
c. n2/log n n(log n)2

d. (log n)log n n/log n
e. √n (log n)5

f. n 2n 3n
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Next Class: Wednesday (08/27)

• Overview of Mathematical Induction
• Complexities of problems
• Recursive equations
• Problems will be solved in the class on the board
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