
9/21/2008 CSE 5311 Fall 2008
M Kumar

1

Greedy Algorithms

TOPICS

•Greedy Strategy

•Activity Selection

•Minimum Spanning Tree

•Shortest Paths

•Huffman Codes

•Fractional Knapsack

Chapter 5

Algorithm Design Kleinberg and Tardos

9/21/2008 CSE 5311 Fall 2008
M Kumar

2

The Greedy Principle

• The problem: We are required to find a feasible solution that
either maximizes or minimizes a given objective solution.

• It is easy to determine a feasible solution but not necessarily an
optimal solution.

• The greedy method solves this problem in stages, at each stage, a
decision is made considering inputs in an order determined by the
selection procedure which may be based on an optimization
measure.

• The greedy algorithm always makes the choice that looks best at
the moment.
– For each decision point in the greedy algorithm, the choice that

seems best at the moment is chosen
• It makes a local optimal choice that may lead to a global optimal

choice.

9/21/2008 CSE 5311 Fall 2008
M Kumar

3

Activity Selection Problem

• Scheduling a resource among several competing
activities.

• S = {1,2, 3, …, n} is the set of n proposed activities
• The activities share a resource, which can be used by only

one activity at a time -a Tennis Court, a Lecture Hall etc.,
• Each activity i has a start time, si and a finish time fi , where

si fi .
• When selected, the activity takes place during time (si , fi)
• Activities i and j are compatible if si fj or sj fi
• The activity-selection problem selects the maximum-size

set of mutually compatible activities
• The input activities are in order by increasing finishing

times.
• f1 f2 f3 … fn ; Can be sorted in O (n log n) time

9/21/2008 CSE 5311 Fall 2008
M Kumar

4

Procedure for activity selection (from CLRS)

Procedure GREEDY_ACTIVITY_SELECTOR(s, f)
n length [S]; in order of increasing finishing times;
A {1}; first job to finish
j 1;
for i 2 to n

do if si fj
then A A

{i};

j i;

9/21/2008 CSE 5311 Fall 2008
M Kumar

5

• i si fi
• 1 1 4

• 2 3 5
• 3 0 6
• 4 5 7
• 5 3 8
• 6 5 9
• 7 6 10
• 8 8 11
• 9 8 12
• 10 2 13
• 11 12 14

• Initially we choose activity 1 as
it has the least finish time.

• Then, activities 2 and 3 are not
compatible as s2 < f1 and s3 < f1 .

• We choose activity 4, s4 > f1 ,
and add activity 4 to the set A.

• A = {1, 4}
• Activities 5, 6, and 7 are

incompatible and activity 8 is
chosen

• A = {1,4,8}
• Finally activity 10 is

incompatible and activity 11 is
chosen

• A {1,4,8,11}
• The algorithm can schedule a

set of n activities in

(n) time.

9/21/2008 CSE 5311 Fall 2008
M Kumar

6

Greedy Algorithms

• Minimum Cost Spanning Tree
– Kruskal’s algorithm
– Prim’s Algorithm

• Single Source Shortest Path
• Huffman Codes

9/21/2008 CSE 5311 Fall 2008
M Kumar

15

Prim’s Algorithm

F

E

D

C

B

A

1

2 1

4

5

2 6

3 3

F

D

B

A

2

1

3The equivalent Graph and the MCST

C1
D

A

1

C1
D

A

1

E

2

F

2

C1
D

A

1 E

2

F

2

C1
D

A

1

9/21/2008 CSE 5311 Fall 2008
M Kumar

24

Huffman codes
Huffman codes are used to compress data. We will study
Huffman's greedy algorithm for encoding compressed data.

Data Compression

• A given file can be considered as a string of
characters.

• The work involved in compressing and uncompressing
should justify the savings in terms of storage area and/or
communication costs.

• In ASCII all characters are represented by bit strings of size 7.
• For example if we had 100000 characters in a file

then we need 700000 bits to store the file using ASCII.

9/21/2008 CSE 5311 Fall 2008
M Kumar

25

Example
The file consists of only 6 characters as shown in the table below.
Using the fixed-length binary code, the whole file can be encoded in 300,000
bits.
However using the variable-length code , the file can be encoded in 224,000
bits.

a b c d e f
Frequency 45 13 12 16 9 5
(in thousands)
Fixed-length 000 001 010 011 100 101
codeword
Variable-length 0 101 100 111 1101 1100
codeword

A variable length coding scheme assigns frequent characters, short code
words and infrequent characters, long code words.
In the above variable-length code, 1-bit string represents the most frequent
character a, and a 4-bit string represents the most infrequent character f.

9/21/2008 CSE 5311 Fall 2008
M Kumar

26

Let us denote the characters by C1 , C2 , …, Cn and
denote their frequencies by f1 , f2 , ,,,, fn . Suppose there
is an encoding E in which a bit string Si of length si
represents Ci , the length of the file compressed by
using encoding E is

n

i
ii fsFEL

1
),(

9/21/2008 CSE 5311 Fall 2008
M Kumar

27

Prefix Codes

• The prefixes of an encoding of one character
must not be equal to a complete encoding of
another character.

•1100 and 11001 are not valid codes
•because 1100 is a prefix of 11001

• This constraint is called the prefix constraint.
• Codes in which no codeword is also a prefix of

some other code word are called prefix codes.
• Shortening the encoding of one character may

lengthen the encodings of others.
• To find an encoding E that satisfies the prefix

constraint and minimizes L(E,F).

9/21/2008 CSE 5311 Fall 2008
M Kumar

28

The prefix code for file
can be represented by a
binary tree in which
every non leaf node has
two children. Consider
the variable-length code
of the table above, a tree
corresponding to the
variable-length code of
the table is shown
below.

1

1
1

1

0

00

0

10 100

55

3025

14

a:45
5

c:12 b:13

e:9f:5

d:16Note that the length
of the code for a
character is equal to
the depth of the
character in the tree
shown.

0 101 100 111 1101 1100

9/21/2008 CSE 5311 Fall 2008
M Kumar

29

Greedy Algorithm for Constructing a Huffman Code

The algorithm builds the tree corresponding to the
optimal code in a bottom-up manner.
The algorithm begins with a set of C

leaves and

performs a sequence of 'merging' operations to create
the tree.
C is the set of characters in the alphabet.

9/21/2008 CSE 5311 Fall 2008
M Kumar

30

Procedure Huffman_Encoding(S,f);
Input : S (a string of characters) and f (an array of
frequencies).
Output : T (the Huffman tree for S)

1. insert all characters into a heap H according to
their frequencies;

2. while H is not empty do
3. if H contains only one character x then
4. x root (T);
5. else
6. z ALLOCATE_NODE();
7. x left[T,z] EXTRACT_MIN(H);
8. y right[T,z] EXTRACT_MIN(H);
9. fz fx + fy ;
10. INSERT(H,z);

9/21/2008 CSE 5311 Fall 2008
M Kumar

31

f:5 e:9 c:12 b:13 d:16 a:45

c:12 b:13 d:16 a:45
10

14

f:5 e:9

10
14

f:5 e:9

d:16
10

25

c:12 b:13

a:45

The algorithm is based on a reduction of a problem with n
characters to a problem with n-1 characters.
A new character replaces two existing ones.

9/21/2008 CSE 5311 Fall 2008
M Kumar

32

10
25

c:12 b:13
10

14

f:5 e:9

10
30

d:16

a:45

a:45

10
25

c:12 b:13
10

14

f:5 e:9

10
30

d:16

10
55

Suppose Ci and Cj are two characters with minimal frequency, there
exists a tree that minimizes L (E,F) in which these characters correspond
to leaves with the maximal distance from the root.

9/21/2008 CSE 5311 Fall 2008
M Kumar

33

10
25

c:12 b:13
10

14

f:5 e:9

10
30

d:16

10
55a:45

10
100

0 101 100 111 1101 1100

9/21/2008 CSE 5311 Fall 2008
M Kumar

34

Complexity of the algorithm

Building a heap in step 1 takes O(n) time
Insertions (steps 7 and 8) and
deletions (step 10) on H

take O (log n) time each
Therefore Steps 2 through 10 take O(n logn) time

Thus the overall complexity of the algorithm is
O(n logn).

9/21/2008 CSE 5311 Fall 2008
M Kumar

35

• The fractional knapsack problem
• Limited supply of each item
• Each item has a size and a value per unit (e.g., Pound)

– greedy strategy
• Compute value per Pound for each item
• Arrange these in non-increasing order
• Fill sack with the item of greatest value per pound until either

the item is exhausted or the sack is full
• If sack is not full, fill the remainder with the next item in the

list
• Repeat until sack is full

How about a 0-1 Knapsack?? Can we use Greedy strategy?

9/21/2008 CSE 5311 Fall 2008
M Kumar

36

Problems

1. Suppose that we have a set of k activities to schedule among n
number of lecture halls; activity i starts at time si and terminates at
time fi 1

i

k. We wish to schedule all activities using as few
lecture halls as possible. Give an efficient greedy algorithm to
determine which activity should use which lecture hall.

2. You are required to purchase n different types of items. Currently
each item costs $D. However, the items will become more
expensive according to exponential growth curves. In particular the
cost of item j increases by a factor rj > 1 each month, where rj is a
given parameter. This means that if item j is purchased t months
from now, it will cost Drj

t. Assume that the growth rates are
distinct, that is ri = rj for items i j. Given that you can buy only one
item each month, design an algorithm that takes n rates of growth
r1 , r2, …, rn, and computes an order in which to buy the items so
that the total amount spent is minimized.

	Greedy Algorithms
	The Greedy Principle
	Activity Selection Problem
	Procedure for activity selection (from CLRS)
	Slide Number 5
	Greedy Algorithms
	Prim’s Algorithm
	Huffman codes
	Example
	Slide Number 26
	Prefix Codes
	Slide Number 28
	Greedy Algorithm for Constructing a Huffman Code
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Problems �

