
52 1092-3063/98/$10.00 © 1998 IEEE IEEE Concurrency

Design Issues in
Mobile-Agent
Programming Systems

ising among the new paradigms is the
mobile agent. In this article, we discuss the
mobile-agent paradigm and survey its
requirements in terms of language-level
features and system-level support.

In a broad sense, an agent is any program
that acts on behalf of a (human) user. A
mobile agent then is a program that repre-
sents a user in a computer network and can
migrate autonomously from node to node,
to perform some computation on behalf of
the user. Its tasks, which are determined by
the agent application, can range from on-
line shopping to real-time device control
to distributed scientific computing. Appli-
cations can inject mobile agents into a net-
work, allowing them to roam the network,
either on a predetermined path or one that
the agents themselves determine based on
dynamically gathered information. Having
accomplished their goals, the agents can
return to their home site to report their
results to the user.

Applications of mobile
agents
The mobile-agent paradigm offers several
advantages.1 (See the “Historical perspec-

tive” sidebar for a discussion of this para-
digm’s evolution.) These advantages stem
from the paradigm’s capability to reduce
network use, increase asynchrony between
clients and servers, add client-specified
functionality to servers, and introduce con-
currency. (The “Web references” sidebar
lists pointers to prominent mobile-agent
projects.)

Information search and filtering appli-
cations often download and process large
amounts of server-resident information
while generating comparatively small
amounts of result data. Using mobile agents
instead, which execute on server machines
and access server data without using the net-
work, reduces the bandwidth requirements.
Some applications involve repeated client-
server interactions, which require either
maintaining a network connection over an
extended period or making several separate
requests. With mobile agents, the client
need not maintain a network connection
while its agents access and process infor-
mation, which permits increased asyn-
chrony between the client and server. This
feature is especially useful for mobile com-
puters, which typically have unreliable, low-

This article

discusses system-level

issues and language-

level requirements that

arise in the design of

mobile-agent systems.

The authors describe

several mobile-agent

systems to illustrate

different approaches

designers have taken in

addressing these

challenges.

Actors & Agents

I
nterest in network-centric programming and applications has surged

in recent months thanks to the exponential growth of the Internet

user base and the widespread popularity of the World Wide Web. In

response, new techniques, languages, and paradigms have evolved

to facilitate the creation of such applications. Perhaps the most prom-

Neeran M. Karnik and Anand R. Tripathi
Department of Computer Science, University of Minnesota

.

July–September 1998 53

bandwidth network connections and are
often switched off to reduce power con-
sumption. Also, using mobile agents
reduces the repeated client-server inter-
actions to two agent-transfer operations,
thus reducing the frequency of network
use as well.

In client-server applications, servers
typically provide a public interface with
a fixed set of primitives. Clients might
need higher-level functionality com-
posed of these primitives, and their
requirements can change over time.
Rather than modifying the server inter-
face to support such requirements for
every client, a client can maintain its own
interface at the server node, using a
mobile agent. This feature also reduces
the number of network-based inter-
actions that are required. Service pro-
viders can exploit this same feature
to dynamically enhance server capabili-
ties. Because they execute concurrently,
mobile agents also serve as a mechanism

for introducing parallel activities. A cli-
ent can decompose its task among mul-
tiple agents to provide parallelism or
fault tolerance.

Users can exploit the mobile-agent
paradigm in various ways, ranging from
low-level system-administration tasks to
middleware to user-level applications. An

Historical perspective
Traditionally, distributed applications have relied on the
client-server paradigm, in which client and server pro-
cesses communicate either through message-passing or
remote-procedure calls. This communications model is
usually synchronous: the client suspends itself after send-
ing a request to the server, waiting for the results of the
call. In 1990, James Stamos and David Gifford proposed
an alternative architecture called Remote Evaluation
(REV).1 In REV, instead of invoking a remote procedure,
the client sends its own procedure code to a server,
requesting that the server execute it and return the
results. Earlier systems such as R2D22 and Chorus3 intro-
duced the concept of active messages, which could
migrate from node to node, carrying program code to
be executed at these nodes. A more generic concept is a
mobile object, which encapsulates data along with the
set of operations on that data and which can be trans-
ported from one network node to another. Emerald4 was
an early system that provided object mobility, but it was
limited to homogeneous local area networks.

The mobile-agent paradigm has evolved from these
antecedents. Figure A illustrates how it differs from
remote-procedure calls and REV. In RPC, data travels
between the client and server, in both directions. In REV,
code goes from the client to the server and data returns. In
contrast, a mobile agent is a program (encapsulating code,
data, and context) sent by a client to a server. Unlike a pro-
cedure call, it need not return its results to the client. It
could migrate to other servers, transmit information back
to its origin, or migrate back to the client, if appropriate.
A mobile agent thus has more autonomy than a simple pro-
cedure call.

References
1. J.W. Stamos and D.K. Gifford, “Remote Evaluation,” ACM Trans.

Programming Languages and Systems, Vol. 12, No. 4, Oct. 1990,
pp. 537–565.

2. J. Vittal, “Active Message Processing: Messages as Messengers,”
Computer Message System, R.P. Uhlig, ed., North-Holland, Ams-
terdam, 1981, pp. 175–195.

3. M. Guillemont, “The Chorus Distributed Operating System:
Design and Implementation,” in Local Computer Networks, P.
Ravasio, G. Hopkins, and N. Naffah, eds., North-Holland, 1982,
pp. 207–223.

4. E. Jul et al., “Fine-Grained Mobility in the Emerald System,”
ACM Trans. Computer Systems, Vol. 6, No. 1, Feb. 1988, pp.
109–133.

Web references for mobile-agent research
System URL
Agent Tcl http://www.cs.dartmouth.edu/~agent
Aglets http://aglets.trl.ibm.co.jp
Ajanta http://www.cs.umn.edu/Ajanta
Ara http://www.uni-kl.de/AG-Nehmer/Projekte/Ara/index_e.html
Concordia http://www.meitca.com/HSL/Projects/Concordia
Knowbots http://www.cnri.reston.va.us/home/koe
Messengers http://www.ics.uci.edu/~bic/messengers
MOA http://www.camb.opengroup.org/RI/java/moa
Mole http://www.informatik.uni-stuttgart.de/ipvr/vs/projekte/mole.html
Odyssey http://www.genmagic.com/technology/odyssey.html
Tacoma http://www.cs.uit.no/DOS/Tacoma
Voyager http://www.objectspace.com/voyager

2. Agent migration

4. Agent migration

Results (data)

Results (data)

RPC

REV

Mobile
agent

Agent
(code, data,
and context)

Server 1

1. Agent
dispatch

Client

Server 2

3. Agent
migration

Server 3

Parameters (data)

Procedure (code)

Client

Client

Server

Server

Figure A. Evolution of the mobile-agent paradigm.

.

54 IEEE Concurrency

example of a system-level application is
in real time control.1 If the application
uses remote procedure calls to control a
device, guaranteeing that the application
will meet the real-time deadlines associ-
ated with the device might be difficult, if
not impossible. This is because commu-
nication delays are not accurately pre-
dictable, unless the underlying network
provides quality-of-service guarantees.
Instead, the application can send an agent
to the device and control the device
locally, resulting in better predictability.
Other examples of system-level applica-
tions include network maintenance, test-
ing and fault diagnosis, and installing and
upgrading software on remote machines.

Mobile agents can be useful in build-
ing middleware services such as active-
mail systems and distributed-collabora-
tion systems. An active-mail message is a
program that interacts with its recipient
using a multimedia interface, adapting
the interaction session, based on the
recipient’s responses. The mobile-agent
paradigm is well-suited to this type of
application, because it can carry a
sender-defined session protocol along
with the multimedia message.

An electronic marketplace is an example
of a user-level application. Vendors can
set up online shops, with products, ser-
vices, or information for sale. A cus-
tomer’s agent would carry a shopping list
along with a set of preferences, visit var-
ious sellers, find the best deal based on
the preferences, and purchase products
using digital forms of cash. This appli-
cation imposes a broad spectrum of
requirements on mobile-agent systems.
Apart from mobility, it needs mecha-
nisms for restricted-resource access,
secure electronic commerce, agent-data
protection, robustness, and user control
over roving agents.

Applications that monitor events on
remote machines—such as whether a
particular stock’s price has fallen below
a threshold—also benefit from mobile
agents, because agents need not use the
network for polling. Instead of periodi-
cally downloading stock quote data, an
agent goes to the quotes service to mon-
itor the stock price, informing the user
when a specified event occurs.

System-level issues
A mobile-agent system is an infrastruc-
ture that implements the agent paradigm.
Each machine that intends to host mobile
agents must provide a protected agent-
execution environment. Such agent ser-
vers execute agent code and provide
primitive operations to agent program-
mers, such as those that allow agents to
migrate, communicate, or access host
resources. A logical network of agent
servers implements the mobile-agent sys-
tem. Vendors can specialize agent servers
to provide application-specific services.
For example, in an electronic market-
place, each vendor runs an agent server
that provides a shop-front interface to
customers’ agents. The shop front in-
cludes product descriptions, price lists,
and mechanisms for agents to look
through catalogs and order products.

Many useful agent applications will
require Internetwide access to resources.
Because users will need to dispatch
agents from their laptops, regardless of
their physical location, the mechanisms
used in the agent infrastructure should
scale up to wide-area networks. Agents
can execute on many different hosts dur-
ing their lifetimes. Because we cannot
assume that these hosts will have identi-
cal architectures or even run the same
operating system, agents must be pro-
grammed in a widely available, machine-
independent language.

Agent mobility
A mobile agent’s primary identifying
characteristic is its ability to autono-
mously migrate from host to host. Thus,
support for agent mobility is a funda-
mental requirement of the agent infra-
structure. An agent can request that its
host server transport it to some remote
destination. The agent server must then
deactivate the agent, capture its state,
and transmit it to the server at the
remote host. The destination server
must restore the agent state and reacti-
vate it at the remote host, thus complet-
ing the migration.

An agent’s state includes all its data, as
well as the execution state of its thread,
which, at the lowest level, is represented
by its execution context and call stack. If

this can be captured and transmitted
along with the agent, the destination
server can reactivate the thread at pre-
cisely the point where migration was ini-
tiated, which can be useful for transpar-
ent load balancing or for fault-tolerant
programs. Capturing execution state at a
higher level, in terms of application-
defined agent data, offers an alternative.
The agent code then can direct the con-
trol flow appropriately when the state is
restored at the destination. However, this
approach only captures execution state at
a coarse granularity (such as the function
level), in contrast to the instruction-level
state the thread context provides.

Most agent systems execute agents
using commonly available virtual ma-
chines or language environments, which
usually do not provide thread-level state
capture. The agent-system developer
could modify these virtual machines
for this purpose, but such modification
renders the system incompatible with
standard installations of those virtual ma-
chines. Because mobile agents are auton-
omous, migration occurs only under
explicit programmer control; thus state
capture at arbitrary points is usually
unnecessary. Most current systems there-
fore rely on coarse-grained execution-
state capture to maintain portability.

Another issue in implementing agent
mobility is the transfer of agent code. In
one approach, the agent carries all its
code as it migrates, which lets it run on
any server that can execute the code.
Some systems do not transfer any code
at all and require that the agent’s code
be preinstalled on the destination server.
In a third approach, the agent does not
carry any code but contains a reference
to its code base—a server that provides its
code on request. During the agent’s exe-
cution, if it needs to use some code not
already installed on the agent’s current
server, the server can contact the code
base and download the required code.
This is sometimes called code on demand.

Naming
Various entities in the system—such as
agents, agent servers, resources, and
users—need names that uniquely iden-
tify them. An agent should be uniquely

.

July–September 1998 55

named, so that its owner can communi-
cate with or control it while it travels on
its itinerary. For example, a user might
need to contact her shopper agent to
update some preferences it is carrying.
Agent servers need names so that an
agent can specify its desired destination
when it migrates. Some namespaces
might be common to different entities;
for example, agents and agent servers
might share a namespace. Such common
namespaces let agents uniformly request
either migration to a particular server or
collocation with another agent with which
it needs to communicate.

Next, the system must provide a mech-
anism to find the current location of an
entity, given its name. This process is
called name resolution. The names assigned
to entities can be location-dependent,

which allows easier implementation of
name resolution. Systems such as Agent
Tcl, Aglets, and Tacoma use such names,
based on hostnames and port numbers,
and resolve them using DNS. In such sys-
tems, when an agent migrates, its name
changes, making the application’s task of
tracking its agents more cumbersome.

Therefore, having location-transpar-
ent names at the application level is desir-
able and can take two forms. The first
approach provides local proxies for re-
mote entities, which encapsulate their
current location. The system updates this
location information when the entity
moves, thus providing location trans-
parency at the application level. For
example, Voyager uses this approach for
agent names, although it identifies servers
using DNS names. The alternative ap-

proach uses global, location-independent
names that do not change when the entity
relocates. This approach requires the pro-
vision of a name service, which maps a sym-
bolic name to the current location of the
named entity. Ajanta uniformly uses such
global names for all types of entities.
Moreover, some systems (such as Con-
cordia and Voyager) can interoperate
with the Corba model for locating and
accessing remote objects.

The “Examples of mobile-agent sys-
tems” sidebar highlights several mobile-
agent systems under development.

Security issues
The introduction of mobile code in a net-
work raises several security issues. In a
completely closed local-area network—
contained entirely within one organiza-

Several academic and industrial research groups are cur-
rently investigating and building mobile-agent systems. This
sidebar provides an overview of a representative subset of
these, listed in approximately chronological order of their
development.

Telescript
Telescript, developed by General Magic in the early 1990s as
the first system designed expressly to support mobile agents
in commercial applications, includes an object-oriented, type-
safe language for agent programming.1 Telescript servers,
which are called places, offer services, usually by installing
stationary agents to interact with visiting agents. Agents use
the go primitive for absolute migration to places, specified
using DNS-based hostnames. The system captures execution
state at the thread level, so the agent resumes operation
immediately after the go statement. Relative migration is
also possible using the meet primitive. Collocated agents can
invoke each other’s methods for communication. An event-
signaling facility is also available.

Telescript extensively supports security and access control.
Each agent and place has an associated authority, which is
the principal responsible for it. A place can query an incom-
ing agent’s authority and potentially deny entry to the agent
or restrict its access rights. The agent receives a permit, which
encodes its access rights and resource-consumption quotas,
among other things. The system terminates agents that
exceed their quotas and raises exceptions when they attempt
unauthorized operations.

Telescript was not commercially successful, primarily
because it required programmers to learn a completely new
language. General Magic has now shelved the Telescript
project and embarked on a similar, Java-based system called
Odyssey that uses the same design framework. In common
with most other Java-based systems, it lacks thread-level
state capture.

Tacoma
Tacoma is a joint project of Norway’s University of Tromsø
and Cornell University.2 Agents are written in Tcl, although
they can technically carry scripts written in other languages,
too. An agent’s state must be explicitly stored in folders,
which are aggregated into briefcases. A programmer creates
an agent by packing the program into a distinguished folder
called CODE, after which it stores the agent’s intended host’s
name in the HOST folder. Absolute migration to this desti-
nation is requested using the meet primitive. The meet com-
mand names among its parameters an agent on the desti-
nation host that can execute the incoming code (such as the
system-supplied ag_tcl,which executes Tcl scripts). The sys-
tem sends a briefcase containing the CODE, HOST, and other
application-defined folders to this agent. The system does
not capture thread-level state when an agent migrates.
Therefore, the ag_tcl script restarts the agent program at
the destination.

Agents can also use the meet primitive to communicate
by collocating and exchanging briefcases. Tacoma supports
both synchronous and asynchronous communication. An
alternative communication mechanism is the use of cabinets,
which are immobile repositories for shared state. Agents can
store application-specific data in cabinets, which other agents
then can access. No security mechanisms are implemented.
For fault tolerance, Tacoma uses checkpointing and provides
rearguard agents for tracking mobile agents as they migrate.

Agent Tcl
Developed at Dartmouth, Agent Tcl allows Tcl scripts to
migrate between servers that support agent execution, com-
munication, status queries, and nonvolatile storage.3 A mod-
ified Tcl interpreter executes the scripts, allowing the capture
of execution state at the thread level. When an agent
migrates, its entire source code, data, and execution state
are carried along. Migration is absolute, with a location-

Examples of mobile-agent systems

.

56 IEEE Concurrency

tion—it is possible to trust all machines
and the software installed on them. Users
might be willing to allow arbitrary agent
programs to execute on their machines
and their agents to execute on arbitrary
machines. In an open network such as the
Internet, however, the agent and server
might belong to different administrative
domains. In such cases, users will have
much lower levels of mutual trust. Servers
run the risk of system penetration by mali-
cious agents, analogous to viruses and
Trojan horses. Malicious (or just buggy)
agents can cause inordinate consumption
of resources, thereby denying their use to
other agents and legitimate users of the
server. The security-related requirements
fall into these categories:

• Agent privacy and integrity;

• Agent and server authentication;
• Authorization and access control; and
• Metering, charging, and payment

mechanisms.

Privacy and integrity
Agents carry their own code and data as
they traverse the network. Parts of their
state might be sensitive and might need
to be kept secret when they travel on the
network. For example, a shopper agent
might carry its owner’s credit card num-
ber or personal preferences. The agent-
transport protocol needs to provide pri-
vacy, to prevent eavesdroppers from
acquiring sensitive information. Also, an
agent might not trust all servers equally.
We need a mechanism to selectively
reveal different portions of the agent
state to different servers. For example, a

shopping agent might solicit quotations
from various vendors. To ensure fair-
ness, one vendor’s quotation must not be
readable or modifiable by others.

A security breach could result in the
modification of the agent’s code as it tra-
verses the network. Most experts consider
it impossible to prevent such modification
(especially by hostile servers), but it is pos-
sible to detect it.2 Thus we need some
means of verifying that an agent’s code is
unaltered during transit across an un-
trusted network or after visiting an un-
trusted server. On the other hand, an
agent’s state typically needs to be updated
during its journey, so that it can collect
information from servers, for example.
Because we cannot assume that all servers
visited are benign, we cannot guarantee
that the agent’s state will not be maliciously

dependent name specifying the destination. It is also possi-
ble to clone an agent and dispatch it to the desired server.
Agents have location-dependent identifiers based on DNS
hostnames, which therefore change upon migration. Inter-
agent communication is accomplished either by exchanging
messages or setting up a stream connection. Event-signal-
ing primitives are available, but events are currently identi-
cal to messages.

Agent Tcl uses the Safe Tcl execution environment to pro-
vide restricted resource access. This environment ensures that
agents cannot execute dangerous operations without the
appropriate security mediation. The system maintains access-
control lists at a coarse granularity—all agents arriving from
a particular machine are subjected to the same access rules.
Agent Tcl calls upon an external program (PGP) to perform
authentication checks when necessary and for encrypting data
in transit. However, cryptographic primitives are not available
to agent programmers.

Aglets
Aglets is a Java-based system developed by IBM. Agents—
which are called aglets in this system—migrate between
agent servers (called aglet contexts) on different network
hosts.4 A distinguishing feature of Aglets is its callback-based
programming model. The system invokes specific methods
on the agent when certain events in its life cycle occur. For
example, when an agent arrives at a server, its onArrival
method automatically executes. The programmer imple-
ments an agent class by inheriting default implementations
of these callback methods from the Aglet class and overrid-
ing them with application-specific code.

Agent migration is absolute, because it requires specify-
ing location-dependent URLs for destination servers. Aglets
implements mobility using Java’s object serialization and
does not capture thread-level execution state. When an
agent is reactivated at its destination, its run method exe-
cutes. The programmer must implement further control
flow in this method. Agents are shielded by proxy objects,

which provide language-level protection as well as location
transparency. Message-passing is the only mode of com-
munication supported—aglets cannot invoke each other’s
methods. Messages are tagged objects and can be syn-
chronous, one-way, or future-reply. While the system pro-
vides a retract primitive that recalls an aglet to the caller’s
server, there is no access control on this primitive. Aglets
currently have limited security support; however, a more
comprehensive authorization framework is under devel-
opment.4

Voyager
This Java-based agent system developed by ObjectSpace fea-
tures a novel utility called vcc that takes any Java class and
creates a remotely accessible equivalent, called a virtual class.5

Voyager can create an instance of a virtual class on a remote
host, resulting in a virtual reference that provides location-
independent access to the instance. Programmers use this
mechanism for implementing agents.

Voyager assigns an agent a globally unique identifier and
an optional symbolic name during object construction. A
name service is available, which can locate the agent, given
its identifier or name. The virtual class provides a moveTo
primitive that lets the agent migrate to the desired loca-
tion. The destination is specified either using the server’s
DNS hostname and port number or as a virtual reference to
another object with which the agent wishes to be collo-
cated. Execution state is not captured at the thread level,
but the moveTo call specifies a particular method, which
executes when the migration is complete. A forwarder
object remains in the original location and ensures that
attempts to contact the agent at that site are redirected to
its new location.

Agent communication is possible via method invocation on
virtual references. Agents can make synchronous, one-way, or
future-reply type invocations. Multicasting is also possible,
because agents can be aggregated hierarchically into groups.
A simple checkpointing facility has also been implemented.

.

July–September 1998 57

modified, but we can provide mechanisms
that let us detect such tampering.

Cryptographic mechanisms can pro-
vide a secure communication facility,
which an agent can use to communicate
with its home site or servers can use to
transport agents safely across untrusted
networks. To selectively reveal state, we
can encrypt different parts of the state
with different public keys belonging to
the servers allowed to access those parts
of the state. Seals or message digests can
detect tampering of agent code.

Authentication
When an agent attempts to transport itself
to a remote server, the server needs to
ascertain the identity of the agent’s owner,
so that it can decide what rights and priv-
ileges to grant the agent in the server’s

environment. A vendor’s server needs to
know the visiting agent’s identity to deter-
mine which user to charge for services
rendered. Conversely, when an agent
migrates to a server, it needs some assur-
ance of the server’s identity before reveal-
ing any of its sensitive data to that server.

Cryptographers have used digital-
signature systems to create mutual authen-
tication schemes.3 These systems must be
adapted to the mobile-agent domain and
integrated into agent-transport protocols.
To verify signatures, agents and servers
need to reliably know the signing entity’s
public key. This requires a key-certifica-
tion infrastructure. Public keys certified
by trusted agencies can be posted in net-
work-wide directories that agents and
servers can access. This infrastructure
could be integrated with the name-

resolution service, so that a name lookup
can return a public key in addition to the
object location. In general, agents cannot
carry secret or private keys for authenti-
cation purposes, because this leaves them
vulnerable to malicious hosts.

Authorization and access
control
Authorization is the granting of specific
resource-access rights to specific princi-
pals (such as owners of agents). Because
some principals are more trusted than
others are, their agents can be granted
less restrictive access. For this, resource
owners must specify policies for granting
access to their resources, based either on
identities of principals, their roles in an
organization, or their security classifica-
tions. A user might place additional

Concordia
Developed by Mitsubishi Electric, Concordia supports mobile
agents written in Java.6 Like most Java-based systems, it pro-
vides agent mobility using Java’s serialization and class-load-
ing mechanisms, and does not capture execution state at the
thread level. Each agent object is associated with a separate
itinerary object, which specifies the agent’s migration path
(using DNS hostnames) and the method to be executed at
each host.

Concordia extensively supports agent communication, pro-
viding for asynchronous event signaling as well as a special-
ized group-collaboration mechanism. It also addresses fault-
tolerance requirements via an object-persistence mechanism
that is used for reliable agent transfer and can be used by
agents or servers to create checkpoints for recovery purposes.
Concordia protects agent state during transit, as well as in
persistent stores, using encryption protocols. Servers can pro-
tect their resources using statically specified access-control
lists based on user identities. Each agent is associated with a
particular user and carries a one-way hash of that user’s pass-
word. It is not clear how this hash is securely bound to a spe-
cific agent. Also, this mechanism only applies to closed sys-
tems, because each agent server must have access to a global
password file for verifying the agent’s password.

Ajanta
This Java-based system developed at the University of Min-
nesota provides agent mobility using Java’s serialization for
state capture.7 Thus, Ajanta does not capture thread-level
execution state. Agent code is loaded on demand, from an
agent-specified server. Ajanta encrypts and authenticates
these transmissions of agent code and state using public-key
protocols. It uniformly supports absolute and relative migra-
tion and uses a name service to translate global location-
independent names to network addresses. The name service
also supports a public-key infrastructure.

In Ajanta, an agent executes in an isolated protection
domain, to prevent any interference by other agents. A server

protects its resources by encapsulating them in proxy objects,
which are created dynamically and customized for specific
client agents. The same mechanism can allow secure intera-
gent communication via method invocation. Communication
across the network is also possible using remote-method invo-
cation. Authenticated control functions allow applications
to recall or terminate their remote agents at any time. Ajanta
also addresses the problem of protecting agent state from
malicious servers. It provides cryptographic mechanisms that
let an agent’s owner secure parts of the agent’s state and
detect any subsequent tampering. Agents can also keep parts
of their state private and selectively reveal certain objects to
specific servers.

References
1. J.E. White, Mobile Agents, tech. report, General Magic, Los

Angeles, 1995.

2. D. Johansen, R. van Renesse, and F.B. Schneider, “Operating Sys-
tem Support for Mobile Agents,” Proc. Fifth IEEE Workshop Hot
Topics in Operating Systems (HotOS–V), IEEE Computer Society
Press, Los Alamitos, Calif., 1995, pp. 42–45.

3. R.S. Gray, “Agent Tcl: A Flexible and Secure Mobile-Agent Sys-
tem,” Proc. Fourth Ann. Tcl/Tk Workshop, Usenix Assoc., Berke-
ley, Calif., 1996, pp. 9–23.

4. G. Karjoth, D. Lange, and M. Oshima, “A Security Model for
Aglets,” IEEE Internet Computing, Vol. 1, No. 4, July–Aug. 1997,
pp. 68–77.

5. ObjectSpace: ObjectSpace Voyager Core Package Technical
Overview, tech. report, ObjectSpace Inc., Dallas, 1997;
http://www.objectspace.com/.

6. “Concordia: An Infrastructure for Collaborating Mobile Agents,”
Proc. First Int’l Workshop on Mobile Agents, AAAI Press, Menlo
Prk, Calif.,1997.

7. N. Karnik and A. Tripathi, “Agent Server Architecture for the
Ajanta Mobile-Agent System, Proc. Int’l Conf. Parallel and Dis-
tributed Processing Techniques and Applications (PDPTA ’98),
CSREA Press, 1998, pp. 63–73.

.

58 IEEE Concurrency

restrictions on her agent’s rights, so as to
limit the damage caused by buggy code.
These restrictions can be encoded into
the agent’s state and enforced by the
server.

Because the agent server needs to
protect its resources from unauthorized
access, in addition to authorization
mechanisms, the server must have some
enforcement mechanism that implements
the access-control policy. The autho-
rization and enforcement mechanisms
can operate at different levels—for
example, at the level of individual
objects (“the agent is granted read/write
access to a particular file”), at a site-wide
level (“the agent can create any network
connections”), or something in between
(“the agent can use 1 Mbyte of disk
space and create connections only to
hosts in the foo.com domain”). The
infrastructure must provide convenient
means of encoding such rules. Tradi-
tional mechanisms such as access-con-
trol lists, capabilities, and security labels
must be adapted for this purpose. These
mechanisms do not take into account,
for example, the length of time for
which an entity might access a resource.
Mobile-agent systems must have the
ability to prevent “denial of service”
attacks by agents that acquire but never
release resources, thus preventing other
agents from using them. Similarly, a
malicious server could repeatedly re-
transmit an agent to another server,
thus tying up its resources. The agent

server must detect and foil such
retransmissions.

Metering and charging
mechanisms
When agents travel on a network, they
consume resources such as CPU time and
disk space at different servers, which might
legitimately expect monetary reimburse-
ment for providing such resources. Also,
agents might access value-added services
or information provided by other agents,
which could also expect payment. In our
marketplace example, users can send agents
to conduct purchases on their behalf.
Thus, mechanisms must be available so
that an agent can carry digital cash and use
it to pay for resources it uses. Operating-
system-level support might be needed for
metering of resource use, such as the CPU
time an agent uses or the amount of disk
space it needed during its visit. Alterna-
tively, a server might implement more
coarse-grained charging—for example, it
could levy a fixed charge per visit by an
agent. Subscription-based services are also
possible, in which a server would allow an
incoming agent only if its owner had
already paid a monthly fee. Table 1 sum-
maries the security features supported by
selected mobile-agent systems.

Language-level issues
These fall into the categories of agent
programming languages and models, and
programming primitives.

Agent programming
languages and models
Because an agent might execute on het-
erogeneous machines with varying oper-
ating-system environments, the portabil-
ity of agent code is a prime requirement.
Therefore, most agent systems are based
on interpreted programming languages4

that provide portable virtual machines for
executing agent code. Safety is another
important criterion in selecting an agent
language. Languages that support type
checking, encapsulation, and restricted
memory access are particularly suitable
for implementing protected servers.

Several systems use scripting languages
such as Tcl, Python, and Perl for coding
agents. These relatively simple languages
allow rapid prototyping for small to
moderate-size agent programs. They have
mature interpreter environments, which
permit efficient, high-level access to local
resources and operating-system facilities.
However, because script programs often
suffer from poor modularization, encap-
sulation, and performance, some agent
systems use object-oriented languages
such as Java, Telescript, or Obliq.4 These
systems define agents as first-class objects
that encapsulate their state as well as code,
while the system supports object migra-
tion in the network. Such systems offer
the natural advantages of object-orienta-
tion in building agent-based applications.
Complex agent programs are easier
to write and maintain using object-
oriented languages. A few systems have

Table 1. Security features.

SYSTEM SECURE COMMUNICATION SERVER RESOURCE PROTECTION AGENT PROTECTION

Telescript Agent transfer is authenticated using Capability-based resource access. Quotas can be Not supported.
RSA and encrypted using RC4. imposed. Authorization based on agent’s authority.

Tacoma Not supported. Not supported. Not supported.

Agent Tcl Uses PGP for authentication and Uses Safe Tcl as its secure execution environment. Not supported.
encryption. No support for authorization based on agent’s

owner.

Aglets Not supported. Statically specified access rights, based on only Not supported.
two security categories—trusted and untrusted.

Voyager Not supported. Programmer must extend SecurityManager. Only Not supported.
two security categories—native and foreign.

Concordia Agent transfer is encrypted and SecurityManager screens accesses using a Agents protected from other
authenticated using SSL. statically configured ACL based on agent owner agents via the resource-

identity. access mechanism.

Ajanta Transfer is encrypted using DES and Capability-based resource access. Authorization Mechanisms to detect tamper-
authenticated using ElGamal protocol. based on agent’s owner. ing of agent state and code.

.

July–September 1998 59

also used interpreted versions of tradi-
tional procedural languages such as C for
agent programming.

Mobile-agent systems can differ sig-
nificantly in the programming model
used for coding agents. In some cases, the
agent program is merely a script, often
with little or no flow control. In others,
the script language (for example, Python)
borrows features from object-oriented
programming and extensively supports
procedural flow control. Some systems
model the agent-based application as a
set of distributed interacting objects, each
having its own thread of control and thus
able to migrate autonomously across the
network. Others use a callback-based
programming model in which the system
signals certain events at different times
in the agent’s life cycle. The agent then is
programmed as a set of event-handling
procedures.

Programming primitives
In this section, we identify the primi-
tive language-level operations program-
mers require for implementing agent-
based applications. We categorize agent-
programming primitives into

• Basic agent management: creation, dis-
patching, cloning, and migration.

• Agent-to-agent communication and syn-
chronization.

• Agent monitoring and control: status
queries, and recall and termination of
agents.

• Fault tolerance: checkpointing, excep-
tion handling, and audit trails.

• Security-related: encryption, signing,
and data sealing.

Basic agent-management
primitives
An agent-creation primitive lets the pro-
grammer create instances of agents,
thereby partitioning the application’s
task among its roving components. This
also introduces concurrency into the sys-
tem. Agent creation involves submitting
the entity to be treated as an agent to the
system. This could be a single procedure
to be evaluated remotely, a script, or a
language-level object. In object-oriented
systems, programmers usually create an

agent by instantiating a class that pro-
vides the agent abstraction. The system
can inspect the submitted code to ensure
that it conforms to the relevant proto-
cols and doesn’t violate security policy.
Based on the agent creator’s identity, the
system might also generate a set of cre-
dentials for the agent at this time. These
are transmitted as part of the agent, to
allow other entities to identify it unam-
biguously. Thus a shopping agent’s cre-
dentials would allow vendors to charge
the appropriate user for items sold or
services rendered.

A newly created agent is just passive
code, because it has not yet been as-
signed a thread to execute it. For activa-
tion, it must be dispatched to a specific
agent server. The server authenticates
the incoming agent using its credentials
and determines the privileges to grant it.
It then assigns a thread to execute the
agent code.

A variant of the creation primitive
allows an agent to create identical copies
of itself, which can execute in parallel
with it and potentially visit other hosts
performing the same task as their cre-
ator. Aglets supports such agent cloning.
Agent forking (supported by Agent Tcl,
for example), in which the newly created
agent retains a parent-child relationship
with its creator, is another variant that
lets programmers create agents that

inherit their ownership and privileges
from their parents.

During an agent program’s execution,
it might determine that it needs to visit
another site on the network. To achieve
this, it invokes a migration primitive.
The destination specified by the agent
can either be absolute—the name of the
server it needs to migrate to—or rela-
tive—the name of another agent or
resource it needs to collocate with. Most
systems provide absolute migration
primitives. Systems such as Telescript,
Tacoma, and Ajanta also support rela-
tive migration. Some systems build on
their migration primitives to provide
higher-level abstractions, such as an Itin-
erary, which contains a list of servers to
visit and the corresponding code to exe-
cute at those locations. Table 2 summa-
rizes the basic mobility support provided
by the seven mobile-agent systems we
surveyed in the “Examples” sidebar.

Agent communication and
synchronization primitives
To accomplish useful work, agents often
must communicate or synchronize with
each other. For example, a user might
dispatch several agents to query vendors’
catalogs in parallel. These agents need to
collaboratively identify the best deal
available. Suitable interagent communi-
cation primitives therefore must be pro-

Table 2. Agent-mobility support.

SYSTEM NAMING AGENT MIGRATION

Telescript Location-dependent Both absolute (go) and relative
(based on DNS). (meet) migration primitives.

Tacoma Location-dependent Single primitive (meet) supports
(based on DNS). both absolute and relative migration.

Agent Tcl Location-dependent name Only absolute, using agent_jump
based on DNS, and optional primitive. The agent_fork primitive
symbolic alias. sends a clone agent instead.

Aglets URLs based on DNS names. Only absolute, using the dispatch
primitive. Supports Itinerary
abstraction.

Voyager Location-independent global Single primitive (moveTo) supports
ID, as well as local proxy. both absolute and relative migration.

Concordia Location-dependent (based Only absolute, based on the contents
on DNS). Directory service of agent’s Itinerary.
available.

Ajanta Location-independent Single primitive (go) supports both
global names. absolute and relative migration.

Supports Itinerary abstraction.

.

60 IEEE Concurrency

vided. Systems use varying mechanisms
for establishing interagent communica-
tion. One approach is to provide mes-
sage-passing primitives, which allow
agents to either send asynchronous data-
gram-style messages or to set up stream-
based connections to each other. Aglets
only supports datagrams (which can be
tagged with string values), whereas Agent
Tcl provides both types of messages.

Method invocation is another ap-
proach for communication in object-
based systems. If two agent objects are
collocated on a server, they can be pro-
vided references to each other, which they
use to invoke operations. For example,
Ajanta and Telescript allow agents to
acquire safe references to collocated
agents. For agents that are not collocated,
the system can provide remote-method
invocation. Voyager supports several vari-
ants, such as synchronous, one-way, and
future-reply invocations.

Collective communication primitives
can be useful in applications that use
groups of agents for collaborative tasks.
Such primitives can provide for commu-
nicating with or within an agent group.
Other group-coordination mechanisms
such as barriers can be built on these
primitives. Concordia supports group
communication that is limited to event
delivery. Voyager uses a hierarchical

object-grouping mechanism to deliver
invocation messages to groups. Most
other systems, however, do not support
agent grouping.

Communication can also be imple-
mented using shared data. For example,
in Ajanta, two or more agents can gain
access to a shared object, which they can
then use to exchange information. Simi-
larly in Tacoma, each server provides a
cabinet in which visiting agents can store
data, allowing them to share state even if
they are not simultaneously present at the
server. Concordia uses a shared object to
provide a barrier for agent groups.

Another metaphor for agent commu-
nication is event signaling. Events are usu-
ally implemented as asynchronous mes-
sages. In the publish-subscribe model of
event delivery, an agent might request
the system to notify it when certain
events of interest occur, such as agent
creation, arrivals, departures, or check-
pointing. Another model is to broadcast
events to all agents in a group. Concor-
dia and Voyager provide such primitives.

Agent monitoring and
control primitives
An agent’s parent application might need
to monitor the agent’s status while it exe-
cutes on a remote host. If exceptions or
errors occur during the agent’s execution,

the application might need to terminate
the agent, which involves tracking the
agent’s current location and requesting
its host server to kill it. Ajanta provides a
terminate primitive for this purpose.

Similarly, the agent owner might sim-
ply recall its agent back to its home site
and allow it to continue executing there.
This is equivalent to forcing the agent to
execute a migrate call to its home site. The
owner can use an event mechanism to sig-
nal the agent or to raise an exception
remotely. The agent’s event/exception
handler can respond by migrating home.
Aglets and Ajanta provide a retract
operation that a user could employ, for
example, to recall her agents from the
electronic mall if they run out of digital
cash.

This capability of remotely terminat-
ing and recalling agents raises security
issues. Because only an agent’s owner
should have the authority to terminate
it, these primitives should incorporate
authentication functions. The system
must ensure that the entity attempting
to control the agent is indeed its owner
or has been authorized by the owner to
do so. Ajanta is the only system that per-
forms such authentication.

To determine whether she needs to
recall or abort an agent, the owner must
be able to query the agent’s status from

Table 3. Communication and control primitives.

SYSTEM COMMUNICATION PRIMITIVES EVENTS AND MONITORING AGENT CONTROL

Telescript Local method invocation after collocation. Events supported at Not supported.
language level.

Tacoma Agents can collocate and exchange briefcases (data), Not supported. Not supported.
using meet.

Agent Tcl Message passing using agent_send and agent_ Events are identical to Not supported.
receive. Stream-based communication using agent_ messages
meet and agent_accept.

Aglets Send/receive Message objects. Supports synchronous, Not supported. Force agents to return
one-way, future-reply communication modes. using retractprimitive. No

access control provided.

Voyager Supports RMI/Corba/DCOM. Synchronous, one-way, JavaBeans-compliant Not supported.
future, and multicast invocations. event model.

Concordia Local method invocation after collocation. Integrates Publish-subscribe as well Not supported.
with Corba. Multicast possible using the AgentGroup as multicast events.
construct.

Ajanta Local method invocation via proxy after collocation, Agent status queries Request agent to return using
RMI via proxy. supported by servers. recall primitive. Force immediate

return using retract. Kill agent
using terminate. Access
control provided.

.

July–September 1998 61

time to time. The agent’s host server,
which keeps track of status information
(such as active/inactive status, error con-
ditions, and resource consumption) for all
agents executing on its site, can answer
such queries. If the owner needs to make
a more application-specific query that only
the agent can answer, she simply commu-
nicates with the agent via the usual agent-
communication primitives. Table 3 sum-
marizes the communication and control
primitives supported by various systems.

Primitives for fault
tolerance
A checkpoint primitive creates a repre-
sentation of the agent’s state that can
reside in nonvolatile memory. If an agent
(or its host node/server) crashes, the
owner can initiate recovery, which can
determine the agent’s last-known check-
point and request the server to restart the
agent from that state. In addition to the
checkpoints themselves, agent servers
can also maintain an audit trail to let the
owner trace the agent’s progress along
its itinerary and potentially determine
the cause of the crash. Systems such as
Tacoma, Voyager, and Concordia sup-
port checkpointing for fault tolerance.

If an agent encounters an exception
that it cannot handle, its server can take
suitable actions to assist the application
with recovery. For example, the server
can send a notification to the agent’s
owner, which can recall the agent or ter-
minate it. Alternatively, the server can
simply transfer the agent back to the
owner, which lets the owner inspect the
agent’s state locally and restart it with
appropriately corrected state. Ajanta
supports the latter approach.

Security-related primitives
Because agents might pass through un-
trusted hosts or networks, the agent pro-
grammer needs primitive operations for
protecting sensitive data. This includes
primitives for encryption and decryption
that protect the privacy of data, as well as
message sealing or message digests that
will detect any tampering of the code or
data. Digital signatures and signature-ver-
ification primitives might also be needed
to establish authenticated communication

channels. If public-key cryptography is
used, the programmer needs to have a
secure key-pair generation primitive, as
well as a key-certification infrastructure.
Primitives related to the encoding, alloca-
tion, and disbursement of digital cash
might also be required. An agent’s owner
could use suitable system-provided oper-
ations to encode an agent’s identity, its
certified public key, digital cash allocation,
and constraints on its access rights into its
credentials. None of the mobile-agent sys-
tems surveyed support such primitives.

THE MAJOR OBSTACLE PREVENTING THE

widespread acceptance of the mobile-
agent paradigm is the security problems
it raises. These include the potential for
system penetration by malicious agents,
as well as the converse problem of expo-
sure of agents to malicious servers. We
find that no current system solves these
security problems satisfactorily, so
mobile-agent security remains an open
research area. Ad hoc integration of
security mechanisms into the mobile-
agent framework is unlikely to work;
therefore, a design that integrates secu-
rity into the basic agent infrastructure
would be preferable.

Thus far, designers have paid little
attention to application-level issues such
as the ease of agent programming, con-
trol and management of agents, and
dynamic discovery of resources. Litera-
ture on the use of basic templates for
composing agent itineraries is only just
starting to appear. Yellow-pages services
with standardized interfaces will be nec-
essary to let user agents dynamically
locate the resources they need. Most
systems require the programmer to
know beforehand the network addresses
of these resources. Uniform, location-
independent resource-naming schemes
will help simplify the programmer’s task.
As larger and more complex systems of
roving agents are deployed, program-
mers will need reliable control primitives
for starting, stopping, and issuing com-
mands to agents. The agent system itself
will have to incorporate robustness and
fault-tolerance mechanisms to allow
such applications to operate over unreli-

able networks. Very little work has been
done so far in quantifying the perfor-
mance trade-offs of the mobile-agent
paradigm. We find that mobile-agent
systems have yet to reach maturity. More
work is needed, especially to address
security and robustness concerns.

Acknowledgments
We thank the anonymous referees, whose
comments were very helpful in improving our
presentation.

References

1. C.G. Harrison, D.M. Chess, and A. Ker-
shenbaum, Mobile Agents: Are They
a Good Idea? tech. report, IBM T.J.
Watson Research Center, Yorktown
Heights, N.Y., 1995; http://www. research.
ibm.com/massdist/mobag.ps.

2. W.F. Farmer, J.D. Guttman, and V.
Swarup, “Security for Mobile Agents:
Issues and Requirements,” Proc. 19th
Nat’l Information Security Conf., NIST,
Baltimore, 1996, pp. 591–597.

3. B. Schneier, Applied Cryptography, 2nd
ed., John Wiley, New York, 1996.

4. T. Thorn, “Programming Languages for
Mobile Code,” ACM Computing Surveys,
Vol. 29, No. 3, Sept. 1997, pp. 213–239.

Neeran M. Karnik is a PhD candidate in
computer science at the University of Min-
nesota. His research interests include distrib-
uted-object systems, mobile code, security,
and cryptography. He holds an MS in com-
puter science from the University of Min-
nesota and a BE in computer engineering
from the University of Bombay. Contact
him at the Dept. of Computer Science, Univ.
of Minnesota, EECS Building 4-192, 200
Union St. SE, Minneapolis, MN 55455;
karnik@cs.umn.edu; http://www.cs.umn.edu/
~karnik/

Anand R. Tripathi is an associate professor
in the Computer Science Department at the
University of Minnesota, Minneapolis. His
research interests are in distributed systems,
fault-tolerant computing, and object-oriented
programming. He received his PhD in elec-
trical engineering from the University of
Texas, Austin, and a BTech in electrical engi-
neering from the Indian Institute of Tech-
nology, Bombay. He is a member of the ACM
and the IEEE. Contact him at the Dept. of
Computer Science, EECS Building 4-192,
200 Union St. SE, Univ. of Minnesota, Min-
neapolis MN 55455; tripathi@cs.umn.edu;
http://www.cs.umn.edu/~tripathi.

.

