
362 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 5, MAY 1998

Coordinating Multiagent Applications
on the WWW: A Reference Architecture

Paolo Ciancarini, Member, IEEE Computer Society, Robert Tolksdorf, Member,
IEEE Computer Society, Fabio Vitali, Davide Rossi, and Andreas Knoche

Abstract—The original Web did not support multiuser, interactive applications. This shortcoming is being studied, and several
approaches have been proposed to use the Web as a platform for programming Internet applications. However, most existing
approaches are oriented to centralized applications at servers, or local programs within clients. To overcome this deficit, we
introduce PageSpace, that is a reference architecture for designing interactive multiagent applications. In this paper we describe how
we control agents in PageSpace, using variants of the coordination language Linda to guide their interactions. Coordination
technology is integrated with the standard Web technology and the programming language Java. Several kinds of agents live in the
PageSpace: user interface agents, personal homeagents, agents that implement applications, and agents which interoperate with
legacy systems. Within our architecture, it is possible to support fault-tolerance and mobile agents as well.

Index Terms—Distributed programming systems, Java, Linda, coordination, Internet, Web applications, open distributed systems.

——————————���F���——————————

1 INTRODUCTION

he Web has evolved into the dominating software ar-
chitecture for information systems on the Internet.

There is increasing demand to use it as a platform for pro-
gramming distributed applications in which processing of
information occurs. For instance, the application domains
of project and workflow management [1] and electronic
commerce [2] include classes of applications that require
distributed access and processing due to the distributed
nature of the work these applications support.

Currently there is no widely accepted reference archi-
tecture for implementing interactive distributed applica-
tions on top of the Web. Web browsers supporting Internet
programming languages such as Java allow activity at user
interface level in the form of applets. However, languages
like Java need integrated middleware (e.g., CORBA) to co-
ordinate activities tied to multiple, distributed clients [3].
Coordination has to be centralized at some server to which
all users participating in an application have to connect to.
Thereby, the activity located at the browser does not really
make the application distributed, as applets at the browser
cannot connect to other applets providing services to them
directly. In fact, providers of Java technology are develop-
ing middleware in the form of Java libraries called Java
RMI (Remote Methods Invocation), to interface (new) re-
mote applications written in Java as well, and JavaIDL (In-
terface Description Language), to interface via CORBA leg-
acy applications written with other languages.

We have developed an original solution to this problem.
In fact, the PageSpace [4] is a reference architeture to sup-
port distributed applications on the WWW. It is based on
the core Web technology for access and presentation, on
Java as the execution mechanism, and on coordination tech-
nology [5] to manage the interaction of agents in a distrib-
uted application. This paper describes the rationale of
PageSpace, its design, and the implementation strategies
currently applied.

Currently, the field of electronic commerce is of particu-
lar interest for the application of platforms like PageSpace.
In fact, electronic commerce should serve as a benchmark
for the validation of our approach wrt. applications re-
quirements. Section 4.6 describes a case study.

This paper is organized as follows. In Section 2.1 we re-
view the main approaches to implement applications that
require active processing on the Web. In Section 2.2 we then
describe our specific approach to coordination of distributed
applications. Section 3 describes the PageSpace and the vari-
ous kinds of agents it includes. Then, in Section 4 we outline
our approach in engineering and implementing PageSpace
and describe a case study. Finally in Section 5 we compare
our approach to a number of alternative solutions introduced
to design interactive multiagent WWW applications.

2 PROGRAMMING THE WEB

Since 1993 the Web as the dominating Internet service has
evolved into the most popular and widespread platform for
world wide accessible information systems. The software
for accessing and offering information on the Web is avail-
able in the public domain for all hardware and operating
system platforms in use.

2.1 Existing Approaches for Programming the Web
At its core, the Web is a static hypertext graph in which
documents marked up in HTML are offered by servers,

0098-5589/98/$10.00 © 1998 IEEE

²²²²²²²²²²²²²²²²

•� P. Ciancarini, F. Vitali, and D. Rossi are with the Department of Computer
Science, University of Bologna, Via Mura A. Zamboni, 7, I-40127 Bologna,
Italy. E-mail: {cianca, vitali, rossi}@cs.unibo.it.

•� R. Tolksdorf and A. Knoche are with the Technische Universität Berlin,
Fachbereich 13, Informatik, FLP/KIT, FR 6–10, Franklinstr. 28/29,
D-10587 Berlin, Germany. E-mail: {tolk, knoche}@cs.tu-berlin.de.

Manuscript received 1 July 1997; revised 17 Dec. 1997.
Recommended for acceptance by G.-C. Roman and C. Ghezzi.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 106412.

T

CIANCARINI ET AL.: COORDINATING MULTIAGENT APPLICATIONS ON THE WWW: A REFERENCE ARCHITECTURE 363

retrieved by clients with the HTTP protocol, and displayed
by graphical interface that is very easy to use. Because of its
diffusion, it is desirable to use the Web as a platform for
dynamic, distributed applications. The support offfered by
the core Web platform for applications is very rudimentary
—only the CGI mechanism allows for processing of infor-
mation that is entered by the user in forms, or retrieved
from auxiliary systems, such as database servers.

Several mechanisms have been proposed in order to
make the Web a more effective platform for multiuser dis-
tributed applications. The following classification is struc-
tured according to the loci of activity where these mecha-
nisms act.

2.1.1 Activity Located at Web Servers
The CGI mechanism can be used to access other application
servers from the Web. A typical example is database access,
where some form allows the formulation of a query in a
browser and a CGI script at the server passes that query—
probably in a translated form—to some database server.
The results of the query then are converted to HTML and
sent back to the users browser. Fig. 1a shows the structure
of such a distribution of activity.

This approach turns out to have nothing in common
with distributed paradigms like client-server interaction. In
fact, interfacing an application via CGI to the Web does not
mean to offer a distributed application. There is no proc-
essing at the client besides displaying results. Moreover,
there is only one central location of activity—the server.
Thus, such an application is basically a mainframe/ termi-
nal system on the Internet. The Web server is comparable to
a mainframe—the only location of processing. The Web
browsers are nothing but graphical, easy-to-use terminals,
interpreting HTML as the display language.

2.1.2 Activity Located at Web Clients
When a Java applet is executed within the browser, again it
usually performs no distributed application. The applet is
just a program that is run locally on the user’s machine.
There is no generally accepted way to connect applets run-
ning on different machines; the remote method invocation
(RMI) mechanisms lead to security problems that are not
solved yet. Some applets and plug-ins—such as RealAudio
players—connect to other proprietary servers and thereby
abandon core Web technology.

Fig. 1b shows this structure of activity focused on clients,
which contains no generally accepted framework for dis-
tributed applications on the Web.

2.1.3 Activity Located in Middleware
A third approach to distributed applications on the Web is to
use middleware to connect the active parts in an application,
which can be located in clients and/or servers. Here, the Web
technology takes the role of providing a uniform access and
presentation mechanisms. Fig. 1c depicts that structure. The
paper [6] discusses which kind of coordination interactions
need modern distributed applications. These include di-
rect/indirect service requests, explicit/implicit invocations of
multiple servers, blocking/nonblocking primitives for re-
ceiving responses.

(a)

(b)

(c)

Fig. 1. Activity in Web applications.

Implementing this approach requires language mecha-
nisms like Remote Procedure Calls or Message Passing,
which typically provide an Application Programming Inter-
face for posting messages and retrieve responses. The ap-
proach we follow instead consists of using a coordination
language. The key concept is the use of Linda-like coordi-
nation to manage the interaction among agents. This is the
topic of the next section.

2.2 Coordination Technology for the Web
The PageSpace software architecture ([4]) is based on the
notion of agents that use coordination technology for their
interactions. We use the term agent reflecting that process-
ing is performed in such an entity. Each user has a homea-
gent that provides the interface to the PageSpace and its
agents. Applications are composed by a set of distributed
agents therein. We rely on Java as the implementation lan-
guage for our agents. The main focus of PageSpace is the
issue of coordination amongst these distributed, concurrent
agents. We explored the use of Linda-like coordination
technology to solve that coordination problem.

Three issues are important in a distributed, concurrent
application: 1) how agents synchronize their work, 2) how
agents communicate, and 3) how agents’ activities are
started. Among the various approaches to solve these coor-
dination problems, there is a specific line of research called
coordination technology that is based on the concepts intro-
duced by the language Linda [7].

Linda provides an abstraction for programming concur-
rent agents and defines a very small set of coordination op-
erations. In a Linda-based system, an ensemble of agents work
on a task within a shared environment, called the tuplespace. A

364 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 5, MAY 1998

tuplespace contains tuples, which are structured containers
of information relevant for the application. Many variants of
tuplespaces, like distributed, or hierarchically structured
ones, have been studied over the past 15 years.

Linda’s primitives provide means for agents to manipu-
late that shared tuplespace, thereby introducing coordina-
tion operations. A tuple can be emitted to the tuplespace by
an agent performing the out-primitive. As an example,
out(“amount,”10, a) emits a tuple with three fields, that
contain a string, an integer, and the contents of the program
variable a. This operation is nonblocking.

Two blocking primitives are provided to retrieve data
from the tuplespace: in and rd. Both take a template as ar-
gument—for example in(“amount, ”?int, ?b).

A matching rule defined in Linda governs the selection of
a tuple from the tuplespace: The template and the tuple
must have the same length, the types of the fields must be
the same, and the values of constant fields (called actuals)
have to be identical.

The example template retrieves a tuple that contains the
string amount as the first field, followed by an integer, fol-
lowed by a value of the same type as the program variable
b. The notation ?b indicates that the retrieved value is to be
bound to the variable b after retrieval.

The difference between in and rd is that the former re-
moves the matching tuple, while rd leaves it untouched in
the tuplespace. Both operations are blocking—while there is
no matching tuple found in the tuplespace, they do not re-
turn. Linda makes no further guarantees on the selection of
matching tuples and waiting operations.

It has been demonstrated [8] that Linda is capable to ex-
press all major styles of coordination in parallel programs. in
is a very powerful operation—it combines synchronization
(the operation blocks until a matching tuple it found) with
communication (the binding of values to program variables).

All together, Linda’s operations form a so-called coordi-
nation language [9], which, when combined with a sequen-
tial programming language, generates a new language for
concurrent systems. Such a combination is called embedding
and can be implemented by changes to the sequential pro-
gramming language syntax and runtime [10], by preproc-
essing source code [11], by libraries [12], or can be provided
as an extended operating system [13].

Linda-like coordination is attractive for programming
distributed applications on the Web because it allows for
several unique characteristics not found in other similar
technologies, such as Parallel Virtual Machines (PVM [14]):

2.2.1 Uncoupling of Agents
PVM is based on message passing, that means that agents
must know each other to communicate. Instead, a tu-
plespace uncouples the coordinating agents in space and
time. An agent can perform an out even when a “destina-
tion” agent does not yet exist, and can terminate before the
out-ed tuple is retrieved. The tuplespace abstracts away
from locality issues.

2.2.2 Associative Addressing
PVM agents use direct naming. In a Linda program, the
template used to retrieve a tuple specifies what kind of tu-

ple is sought, rather than how to find such a tuple. This
addressing is more abstract and declarative than specifying
a given message from/for a given correspondent.

2.2.3 Separation of Concerns
A coordination model like Linda focuses on the issue of
coordination only: a derived coordination language ideally
is not influenced by features specific of a host programming
language. Interestingly, PVM can be used to implement
Linda-like coordination (a project named Glenda did ex-
actly this), however at a high price, in terms of syntactic
complexity and lack of semantic optimization.

Linda-like coordination is available for a number of dif-
ferent programming languages and hardware architec-
tures. All implementations usually offer an abstraction of
shared tuple space and primitives based on associative
addressing. We consider and use here Jada and Laura, two
specific Linda-like coordination packages that are de-
scribed in Section 4.

Coordination can be added to the WWW in at least three
different ways as illustrated in Fig. 2.

Fig. 2. Three ways to enhance the WWW with Linda-like coordination.
Top: client-side coordination. Middle: server side coordination. Bottom:
application-wide coordination.

Such a picture illustrates three different ways of using
Linda-like coordination to enhance the current WWW
softeare architecture. It shows that the introduction of a
tuplespace can be useful at all the three layers of a WWW-
based distributed application:

2.2.4 Client-Layer
Several clients (or several applets in a client) can coordinate
themselves through a shared tuplespace. It is not difficult to
coordinate (e.g., synchronize) browsers running on differ-
ent machines or devices. Alternatively, the browser itself
can be composed of several independent modules that are
coordinated through a shared tuplespace.

CIANCARINI ET AL.: COORDINATING MULTIAGENT APPLICATIONS ON THE WWW: A REFERENCE ARCHITECTURE 365

For instance, the WWWinda approach is based on a
modular browser The WWWinda approach demonstrates
this with a design for a modular browser [15]. To facilitate a
tighter integration of browsers and their helper applications,
the WWWinda research team designed a flexible, modular
browser architecture based on the Linda coordination model.
It is composed of several independent tools, each imple-
menting a different part of the Web browser or a helper ap-
plication. This allows for a highly modular architecture,
where new components can be added without modifications
to the others. The collaboration among components is im-
plemented with Linda coordination technology: all modules
make use of a “software bus” that is a shared tuple space.
Current examples include a musical orchestration system
(called “distributed karaoke”), in which several independent
instruments (possibly even running on different machines)
extract from the shared tuplespace the tune to be played note
by note. No instrument is aware of how many other instru-
ments are present, and new ones can be added on the fly,
even in the middle of a note.

2.2.5 Server-Layer
Different components of a server-side application (or sev-
eral different applications) can coordinate and communi-
cate through a tuplespace. In this case the HTTP protocol
acts as the interface to the modules seen as a whole and is
the default access mechanism used to manage the compo-
nents of the application via a CGI interface. The tuplespace
may be used as a connection mechanism for applications
running on different machines.

An obvious application consists of distributing the load
among several HTTP servers. The WU Linda Toolkit [16] is
an example of such an interface to a Linda tuplespace im-
plementation using a WWW browser and an HTTP server.
Users can fill out HTML forms with Linda commands that
are executed at a shared tuplespace at the server. The main
application on show is a disc-load viewer that allows a first
glance check of current disk usage of the computers of a
cluster. Each computer posts tuples describing its current
load. These tuples are then collected and sent to the
browser in a graphical HTML display.

2.2.6 Application-Layer
Client/server reference architectures define how an appli-
cation obtains a service from another. In several situations
such architectures put strong constraints on designers, who
actually need extended model architectures able to coordi-
nate multiple, independent programs to provide complex
services to components which sometimes play the role of
clients and sometimes play the role of servers [6].

Coordination architectures [5] are useful to design this
kind of applications, because they offer a way to handle
coherently and uniformly diverse design issues, like locat-
ing resources, supporting interprogram communication,
and coordinating the distributed execution.

This paper presents PageSpace, which is an example of a
multiagent reference architecture useful to design distrib-
uted multiuser WWW applications. In Section 5, we will
compare PageSpace with other architectures proposed to
build distributed WWW applications.

3 THE PAGESPACE ARCHITECTURE

PageSpace is a reference software architecture for coordi-
nating applications such that:

1)�Applications can be seen as the combination of sev-
eral independent agents whose interaction defines the
application behavior.

2)�The applications can serve several users independ-
ently accessing the shared environment. The users are
using the current generation HTML browsers.

3)�The applications can all be transparently distributed
across several computers or centralized on a single
host. The actual settings of each shared workspace
should have no influence on the implementation of
the applications.

4)�Several independent applications that run independ-
ently can interact. Coordination and communication
may happen not just among different modules of a
single, complex application, but may arise naturally
from independent applications dealing with the same
types of information.

5)�The configuration of users, applications, and hosts
can change and evolve dynamically with none or
minimal disruption of the services of the shared envi-
ronment. In particular, users are supposed to log in
the system using standard HTML browsers on possi-
bly unreliable and/or nonpersistent connections. A
user therefore may need or want to change the page
currently displayed in the browser, may be subject to
network interruptions, or may opt to close a dial-up
connection during the run-time of the application,
and log back in some time later. These situations
should not interrupt the regular functioning of the
environment and of the applications, and should
gracefully allow the disappearance and reappearance
of the users.

In the PageSpace reference architecture, therefore, we
distinguish several kinds of agents:

1)�User interface agents are the interfaces of applications.
They are manifested as a display in the users browser
and are delivered to the client by the other agents of
the application according to the requests of the user.
Depending on the complexity of the application and
the capabilities of the user’s browser, there may be
different instantiations of user interface agents (in
HTML, JavaScript, Java, etc.) that are displayed or
executed on the browser. User interface agents are
displayed within a general interface framework that
provides support for the stable interface elements to
manage the interaction with the homeagent.

2)�Homeagents are a persistent representation (avatar) of
users in the PageSpace. Since at any moment users
can be either present or absent in the shared work-
space, it is necessary to collect, deliver, and possibly
act on the messages and requests of the other agents.
The homeagent receives all the messages bound to the
user, and delivers them orderly to the user on request.
Evoluted homeagents can in some circumstances ac-
tively perform actions or provide answers on behalf
of the user in her absence.

366 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 5, MAY 1998

3)�The coordination architecture is not an agent: it is the
operating environment, a shared workspace, where
the agents live and communicate. Different coordina-
tion architectures may provide different capabilities
and, ultimately, a different paradigm for creating the
agents of the application. In Section 4 we will mention
two different coordination architectures we are using,
Jada and Laura.

4)�Application agents are the agents that actually perform
the working of the coordinated application. They are
specific of one application, and can be started and in-
terrupted according to the needs of the application.
They live and communicate on the coordination ar-
chitecture, offer and use each other’s services, interact
with the shared data, and realize useful computations
within the PageSpace.

Some application agents will not interact directly
with a human in any way, and therefore will have no
need for a user interface. They will just use and offer
services to other agents. Some other application
agents, on the other hand, will have to be controlled
and monitored by a human. In this case, they will
provide on request the user interface agent, in the
form of an HTML document, a Java applet, etc., which
will be delivered to the requesting user as a normal
message and will be displayed or executed on the
user’s machine.

5)�Gateway agents provide access to the external world for
PageSpace applications. Applications needing to access
other coordination environments, network services,
legacy applications, middleware platforms, etc., may
do so by requesting services to the appropriate gate-
way agent. Each gateway agent is specialized for deal-
ing with one type of external environment, and will
translate and deliver externally the services requests of
the application agents, and will deliver the corre-
sponding response back to the appropriate agent.

6)�Kernel agents provide sensible services to the applica-
tion agents. They perform management and control
task on the agents active within the PageSpace envi-
ronment. They deal with the activation, interruption
and movement of the agents within the physical con-

figuration of connected nodes. Ideally, there would be
one kernel agent for each participating machine, pro-
viding access to the local workspace. Kernels maintain
the illusion of a single shared PageSpace when it is ac-
tually distributed on several computers, and provide
mobility of the agents on the different machines for
load balancing and application grouping as needed.

We call “agents” the entities present in the PageSpace ar-
chitecture since they are more than pure objects: The appli-
cation agents are autonomous and can be active, homea-
gents work on behalf of the user, etc.

The selected set of agents can be considered a reference
architecture since they provide a definite set of components
and interactions among them that correspond naturally
with the set of requirements seen previously [17].

In Fig. 3 we summarize the PageSpace architecture. We
foresee a user interface agent in each user browser, which is
connected to a homeagent providing stable access to the
PageSpace. A set of application agents implement the func-
tionality of a distributed application, and a gateway agent
provides access to a external environment, for instance, a
CORBA-based interoperability environment, or some leg-
acy application, like a spreadsheet, or e-mail and news.

The PageSpace environment is maintained by a set of
kernel agents on different nodes. Note that application and
gateway agents are location independent, the user interface
agent is located at the user’s machine, the homeagent is at
some fixed location, and kernels are present on each par-
ticipating machine.

In the following, we describe these agents in more detail.

3.1 User Interfaces and Homeagents
The PageSpace and its applications are accessible to the
user from any Web browser. This browser may usually be
located on a different machine than the actual agents per-
forming the applications. The user activities are not tied to
the applications running on the PageSpace. For instance,
he/she can display other pages, activate other applications,
even disconnect him/herself from the network for some
time. Also, the user can move from one browser and ma-
chine to others during the lifetime of the applications.

Fig. 3. An application in PageSpace.

CIANCARINI ET AL.: COORDINATING MULTIAGENT APPLICATIONS ON THE WWW: A REFERENCE ARCHITECTURE 367

Access to the applications of the PageSpace is performed
through the user interface agents. User interface agents are
delivered by the application agents whenever the user re-
quests to interact with the application. The interface, in the
form of a plain HTML document or a Java applet embed-
ded in an HTML document, is delivered to the user’s
browser through the homeagent.

Given the unpredictable behavior of the user activities,
the unpredictable availability of the user’s machine, and the
unpredictable type of connection that has been established
between the user’s machine and the rest of the PageSpace,
user agents can not be considered fully participants to the
shared workspace.

In the simplest situation, the user interface agent is an
HTML document (e.g., a form) delivering messages through
an HTTP connection to the homeagent, which in turn deliv-
ers them to the appropriate application agents of the running
computations, and returns back the relevant responses.

More sophisticated user agents are interactive Java applets
that may even establish a proper connection to the closest
machine hosting an instance of PageSpace. In this case the
local computer establishes a local instance of the PageSpace
where application agents can perform useful computations.
These agents will nonetheless be required to gracefully de-
grade their participation in the PageSpace according to the
user’s behavior (e.g., when the user leaves the current HTML
page), and to the state of the connection. Furthermore, the
user may request the current display to be interrupted and
reinstated on a different browser on a different machine.

These reasons imply that as little local state as possible is
stored on the user agent, and that it is possible to suspend a
running user agent and restore it anew at any moment,
with no harm to the running applications.

These characteristics show the potential of PageSpace to
support any of the structures for applications on the Web as
outlined in Section 2.1:

1)�Server located activity is trivially supported by having
all the application agents running on a remote host,
and interacting with the user through the homeagent
and a plain HTML page as the interface.

2)�Client located activity is obtained by activating from a
client a local (i.e., in the same host) instance of the
PageSpace where application agents can be trans-
ferred and run. Communication between the local
application agents and their interfaces is, therefore,
faster and more direct.

3)�Middleware mediated activity is obtained distributing
several independent application agents somewhere
on a LAN. They cooperate and communicate with us-
ers’ clients (on different hosts as well) through their
homeagents.

A homeagent is a persistent representation of the user in
the PageSpace. From the active interface, a user can use ap-
plications and start agents. However, she does not have to be
online while the application is running. Consider as an ex-
ample a groupware application in which users all around the
world participate in some work. It would be unacceptable to
force the users to be logged all the time, as their tasks are
asynchronous in nature. Thus, a user is free to log in and out.
While a user is not connected, her homeagent can still receive

messages from one of the applications she joined in.
To the PageSpace, the homeagent looks like an autono-

mous agent. It has full access to the coordination architec-
ture, and sends and receives messages. For application
agents, the homeagent is the default destination of all the
messages meant for the human user. That is, only the
homeagent “knows” whether the user is currently present
or absent from the PageSpace.

The homeagent stores all the incoming messages in a
persistent store until the user retrieves them and reacts to
them. If there is a bidirectional connection in place between
the homeagent and the user interface agent, then the
homeagent can deliver the messages to the user as soon as
they come in. If the user accesses the PageSpace through an
HTTP connection, on the other hand, the application agent
queues all messages and delivers them as soon as the user
agents opens an HTTP connection to the homeagent. We are
exploring mechanisms to give homeagents a limited auton-
omy in responding automatically to incoming messages
whenever possible.

Since the homeagent is the collector of the messages
bound to the user agent (and, ultimately, to the user
him/herself), the user agents interacts directly only with it.
A stable part of the user interface should therefore be as-
signed to interacting with the homeagent.

In Fig. 4 we show a prototype interface for a Poker ap-
plication. The interface is divided in three parts: the lower
part contains the specific interface for the application cur-
rently considered by the user. The top right side contains a
form whereby the user, through a plain HTTP connection if
necessary, can instruct the homeagent to perform some op-
erations, such as activating or destroying an application, get
a list of the latest incoming messages, etc. On the top left
side, a list of recent messages is displayed from some of the
currently active application agents around the PageSpace.

This list is updated by the homeagent on receiving a new
message if a persistent, bidirectional connection is in place,
or, if relying on standard HTTP connections, either auto-
matically by the browser at regular intervals through client
pull technologies, or manually by the user whenever
he/she asks for an immediate connection.

Fig. 4. An interface to PageSpace for the user.

368 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 5, MAY 1998

3.2 Applications and Agents
Applications in the PageSpace are composed of agents. In
an application in use, three sorts of them are involved:

1)�Application agents, which provide the specific user-
interface of the application. As described in Section
3.1, we separate the user interface and the application
in order to give access to it via a Web browser. Thus,
an application agent can define a user interface, for
example as an HTML document or a Java applet,
which is then passed to the homeagent of a user of the
application. From there, it is retrieved and displayed
as part of the user interface agent in a browser.

2)�Agents that implement the actual application specific
functionality. A subset of a distributed application
consists of agents that share an application specific
context, which is of no use for other agents.

3)�Agents that are used by an application, but that of-
fer services to any application. These services are
generic in that they can be used in the context of
any application.

All agents are started by users within the PageSpace.
They remain therein and answer to service requests by
other agents until they are withdrawn by their owner. Sev-
eral kinds of accounting for the use of agents and services
can be introduced here.

Agents are programmed using specific classes. With the
inheritance mechanisms of Java, a default behavior is pro-
vided and a mandatory minimal functionality enforced.
The programmer of an application agent focuses on the
implementation of the functionality of the service offered.

A designer using PageSpace should take care of the fol-
lowing:

•�Users’ interaction with the PageSpace;
•�Instantiation of user interfaces;
•�Management of coordination by offering an API for the

interaction with other agents;
•�Management of distribution and concurrency;
•�Provision of a skeleton functionality for application

agents.

The integration of legacy applications and gateways to
other coordination environments can be achieved by wrap-
ping and gateway agents. They are similar to application
agents in that they offer services to the PageSpace, however,
they implement them by interacting with a closed applica-
tion or via some middleware protocol to other middleware
specific object.

A gateway agent that wraps a legacy application offers
its services to the PageSpace just like other application
agents. However, the implementation of the functionality is
embodied in the application being wrapped. The gateway
agents passes this functionality as services.

A gateway agent which interfaces to another environ-
ment is concerned with mediating requests from the
PageSpace environment to appropriate services found
elsewhere and translating requests and answers. It may
use certain knowledge to ensure semantic correctness of
this translation.

4 IMPLEMENTATIONS OF THE PAGESPACE PLATFORM

The PageSpace architecture has currently been imple-
mented in a few prototypes used for demonstration pur-
poses and for the exploration of further concepts. Our pro-
totypes follow the implementation strategy outlined in the
previous section. While work remains to be done on the
engineering of the architecture, we believe that its main
principles can remain unchanged. Some of the prototypes
we built are available on line (see the last section for links).

4.1 Basic Coordination Technology in PageSpace:
Jada

Jada is a language which extends Java with the Linda coor-
dination language [18]. Jada is based on a set of Java classes
to be used to access shared object spaces.

An ObjectSpace is an object container offering a set of
methods for accessing its contents using a Linda-like coor-
dination model. An object space can be shared among mul-
tiple threads since its access is thread-safe, because the ac-
cessing methods manage critical sections. To create an ob-
ject space we write ObjectSpace my_object_space =
new ObjectSpace();

Following the Linda coordination model, out is the
method to put an object in the ObjectSpace, whereas in
and read are the methods to get an object from the Ob-
jectSpace. Actually Jada implements several variants of
these basic operations. For instance, to put an object in the
object space we write my_object_space.out(new

String(“foo”));

To access the ObjectSpace searching for objects an as-
sociative matching mechanism is used: a call to the in (or
read method includes an object to be used as a matching
pattern. The object returned by the in method (if any) is an
object found in the the object space that matches the given
pattern. The same applies to the read method, although
only in removes the matching object from the object space.

Tuple-matching is based on the concepts of formal and ac-
tual objects: a formal object is an instance of the Class class
(the meta-class used by Java). Any other object is an actual
object. Then the Jada matching rules are:

1)� actual-actual: two actual items match if:
•� they implement the JadaItem interface: the

method matchesItem, applied to the object in the
object space, passing as parameter the other object,
returns true.

•� they do not implement the JadaItem interface: the
method equals, applied to the object in the object
space, passing as parameter the other object, re-
turns true.

2)� actual-formal: a formal item matches any object which
is an instance of it.

3)� formal-formal: two formal items match if they repre-
sent the same class.

The matching mechanism in Jada is thus object-oriented;
this means that inheritance is applied when checking for
two objects to be of the same type: the returned type from
an in or read operation can then be a subclass of the speci-
fied object. Note that inheritance is not applied to formal-

CIANCARINI ET AL.: COORDINATING MULTIAGENT APPLICATIONS ON THE WWW: A REFERENCE ARCHITECTURE 369

formal-matching. So, for example, object_space.in(new
Object().getClass()) collects a nonformal object
stored in the object space.

The Jada matching rules are quite simple yet powerful.
Since the actual-actual matching is customizable (using ei-
ther equals or matchesItem methods) the mechanism is
also very flexible: we can, for example, write an Integer
wrapper class with ad-hoc matching rules so that an object
matches any object whose contents is less that the one given
in the in or read call. However, sometimes is necessary a
way to associate values, like an integer with a string that
represents the meaning of the integer, such as "counter."
Thus, like in Linda, we introduce the Tuple class, an object
container class with an extended matching mechanism.

In Jada a tuple is a set of objects (also referred as items)
and it is implemented via the jada.Tuple class. This is an
example of Jada tuple:
Tuple my_tuple = new Tuple(new Integer (10),
”test”);

Such a tuple includes two items (we say that its cardi-
nality is two): the first item is an Integer object, the second
one is a String object. We define actual and formal items
within a tuple the same way we defined them for Jada.

To use the associative object space access with tuples we
can use the tuple matching mechanism: two tuples a and b
match if they have the same cardinality and each item of a
matches the corresponding item of b. The usual Jada
mechanism is used to check if the items match.

Thus, the tuple:
Tuple a = new Tuple (new Integer (10),” test”);

matches the tuple:
Tuple b = new Tuple (new Integer (10), new
String().getClass());.

Note that to exchange a tuple (and generally any kind of
object) two threads do not need to perform synchronous
out and read operations (Jada does not need rendezvous
communication). In fact, suppose the threads ta and tb
have to exchange a message: ta will put a message inside
the object space, tb will read the message from the object
space. If ta performs the out operation before tb performs
the read operation it does not have to wait for tb: It simply
continues its execution, and the tuple is now stored into the
object space. When tb performs the read operation it will
be able to read it.

Instead, if tb performs the read operation before ta per-
forms the out operation, tb will be blocked until an object
that satisfies the read request will become available (i.e.,
until ta performs the out operation).

The in and read methods are blocking. To avoid blocking
a thread when a matching object for the in and read opera-
tions is not available we can use the in_nb and read_nb
methods. They access the object space the same way as in
and read, but return null if no matching object is available.

A more sophisticated flavor of in and read that aborts
after a time-out is also available. It is also possible to associ-
ate a time-out to each object put in the object space: when
the time-out is over the object can be garbage-collected and
deleted from the object space.

To allow remote access to an object space, the
jada.net.ObjectServer and jada.net.ObjectClient

classes are provided. We used a client/server architecture
to manage the object spaces; in fact, each object space is a
shared remote resource accessed through an object space
server.

The object space server is addressed using the IP address
of the host it runs on and with its own port number for a
socket connection. This way we can run almost as many
object space servers as we like in a network, so that appli-
cations can independently operate on several, distributed
object spaces. ObjectServer is a multithreaded server
class which translates requests received from the Ob-
jectClient class in calls to the methods of the Ob-
jectSpace class.

In fact, both ObjectServer and ObjectClient are
based on ObjectSpace. ObjectServer and ObjectCli-
ent communicate using sockets. ObjectServer uses Ob-
jectSpace to perform the requested operations.

The ObjectClient class extends ObjectSpace chang-
ing its internals but keeping its interface and behavior
(apart from some new constructor and some new methods).
Thus, a ObjectClient object is used just like an Ob-
jectSpace, except that it provides access to a remote object
space which can run in any host of the network. What Ob-
jectClient does is to interface with a remote Ob-
jectServer object (which holds the real object space) and
requests it to perform the in, read, and out operations and
(eventually) to return the result.

4.2 Service Interoperability in PageSpace: Laura
Laura is a coordination model based on Linda where the
“tuplespace” is enhanced into the concept of a service-space
which is a collection of forms, special tuples shared by all
agents. A form can contain a description of a service-offer, a
service-request with arguments, or a service-result with
results.

In Laura, a service is described as an interface consisting
of a set of operation signatures. The signatures describe the
types of the operations in terms of their names and their
argument- and result-types. It is, therefore, a record of
function-types. A form contains a description of this inter-
face-type for service-identification. Putting a service-
request form into the service-space triggers the search for a
service-offer form so that the interface-type of the offer is in
a matching relation to that of the request.

In Laura, no names for interfaces are used to identify
services or for the types of data involved in an operation.
Instead, a service offered or requested is described solely by
an unnamed interface signature consisting of a set of op-
erations signatures. The operation signatures consist of a
name and the types of arguments and parameters.

Laura, therefore, emphasizes what service is requested,
not which agent is requested to perform it. A crucial point
therefore is the identification of services.

In Laura interfaces are notated in a service type lan-
guage. In [19] we formally defined a type-system which is
used in the definition of the semantics of such interface
definitions. Such a type system includes rules for subtyping
and this subtyping is the key for Laura’s identification of
services: given the interface descriptions in forms, a service
offer matches a service request, if the type of the offered
interface is a subtype of the requested one.

370 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 5, MAY 1998

Subtyping in Laura is defined so that a type A is a sub-
type of B if all values of type A can be substituted when a
value of type B is requested; the “values” we type are serv-
ices. Such a subtyping enables us to use a service of type A
if a service of type B is requested.

Specific of Laura’s type system is that it deviates from
approaches to the management of types in open systems in
three ways. First, it abolishes global names for interfaces for
services and relies on matching of interface types only. Sec-
ond, it ignores names of structured types. Finally, it uses
syntactic equivalence only for the names of operations ap-
pearing in an interface.

A service is the result of an interaction between a serv-
ice-provider and a service-user. In Laura, two operations
coordinate this interaction for the service-provider, serve
and result.

An agent willing to offer a service to other agents puts a
serve-form into the service-space. It does so by executing
serve, which takes as parameters the type of the service
offered and a list of binding rules that define to which pro-
gram variables arguments for the service should be bound.

When a serve is executed, a serve-form is built from the
arguments. Then, the service-space is scanned for a service-
request form whose service-type matches the offered service
by being a supertype. The provided arguments are copied to
the serve-form and finally bound to program variables.
serve blocks as long as no matching request-form is found.

After performing the requested service, the service-
provider uses result to deliver a result-form to the serv-
ice-space. A result-form is built which consists of the serv-
ice-interface and—depending on operation—a list of re-
sult values according to the binding list. The agent is re-
sponsible to store the results of the service properly in those
variables. The operation is performed immediately and the
form is put into the service-space. An agent offering serv-
ices usually operates in a loop consisting of the sequence
serve-perform the service-result.

An agent that wants to use a service has to execute
Laura’s third and last operation, service. Its arguments
are the service-type requested, the operation requested,
arguments for the operation, and a binding-list.

When executing service, two forms are involved: a
service-put form and a service-get form. The first is con-
structed from the service-interface and the arguments and
then inserted to the service-space. If another agent performs
a serve-operation and the service-put- and serve-forms
match, the arguments are copied as described above and the
service-provider starts processing the requested operation.

The service-get form is constructed from the service in-
terface and the binding list for the results. Then, a matching
result-form is sought in the service-space and—when avail-
able—the results are copied and bound to the program
variables. When the request-form is entered to the service-
space, it is matched with some serve-form. When the result-
form is retrieved, the results are bound to program vari-
ables of the requesting agent.

The interaction of agents coordinating services with
Laura consists either of putting a request for a service to the
service-space, finding a matching offer form and copying of
arguments or of trying to get the results of a service, by

finding a matching result-form and copying of the results.
This interaction is uncoupled, as service-provider and
service-user remain completely anonymous to each other.

Laura provides the basic means to implement the service
exchange among application agents. We adapt the para-
digm of exchanging form within the Laura API. With the
reflection API in Java 1.1, we could well change from our
service description language to Java interfaces in forms.

4.3 The PageSpace Kernel Agents
Every implementation of the PageSpace architecture will
have to provide a way for agents to be able to be started,
blocked, moved, and generally managed within the se-
lected coordination environment. We have designed a spe-
cific class of agents to deal with these tasks, the kernel
agents. Our implementation runs on a Java virtual machine
and manages multiple threads. It requires that one kernel
agent runs on each machine participating to the PageSpace.
The kernel agents provides several services:

4.3.1 Provision of Access to the PageSpace
A user accesses PageSpace via her homeagent that is con-
tacted by HTTP from a browser. Thus, a Web server has to
be co-located with a kernel. As there are several imple-
mentations of Web servers in Java—like Jigsaw from the
W3C—the HTTP server could be integrated as a thread of
the kernel, thus avoiding the CGI mechanism to pass in-
formation to homeagents.

4.3.2 Management of Homeagents
Homeagents are in fact implemented as a single object
within a kernel. They are parameterized with the identifi-
cation of a PageSpace user. Thus, after passing a login form
in which a PageSpace user name and password is entered,
each user receives the same user interface agent compo-
nents, but each one is based on a different message queue
stored persistently in a database on the kernel.

Besides interacting with messages, the user can use ap-
plications, and start application agents from its homeagent.
Both result in the execution of a thread within the homea-
gent object. To use an application, that thread issues the
appropriate coordination operation, waits for the results,
stores it in the database and terminates. To start an agent, a
method of the kernel object is invoked which starts an ap-
plication agent.

4.3.3 Management of Application Agents
Each application agent is executed as a thread. This is rea-
sonable, as we can make use of the native interaction
mechanisms within one Java virtual machine for threads,
and to not have to execute multiple virtual machines on the
node that participates in PageSpace.

The kernel agent manages program exceptions and
monitors the operation of the agent threads. Thus, it estab-
lishes an operating environment for coordinated application
agents within a Java virtual machine. We inherit all aspects of
thread management from Java, and add the “multiagent”
interaction mechanisms by coordination technology.

4.3.4 Implementation of the Coordination Operations
Several flavors of coordination environments can be used
in PageSpace. All of these have in common that they are

CIANCARINI ET AL.: COORDINATING MULTIAGENT APPLICATIONS ON THE WWW: A REFERENCE ARCHITECTURE 371

centered around the use of a shared space of element of
some kind, and that some matching rule guides the coor-
dination primitives.

Thus, each kernel contains instances of a generic compo-
nent, the repository. A repository is a collection of elements
of some type. Each repository implements the specific op-
erations of a coordination language with a specific match-
ing routine, thus it may be optimized, but it is based on the
management of a pool of elements of some type. Within the
kernel architecture, multiple repositories can be integrated
to the internal control and data streams.

4.3.5 Implementation of the Distribution Architecture
Each kernel has an interface to other kernel agents, through
which the distribution protocol is spoken. We foresee the
possibility of different distribution architectures integrated
via a set of interconnected sub-PageSpaces.

Fig. 5 shows an excerpt of the logical structure of our
implementation of the kernel agents. All the objects that
run in threads are connected by sets of streams for both
data exchange and agent management.

Fig. 5. An outline of the logical structure of a kernel agent.

A kernel agent includes: a kernel console, to control its ac-
tivity; an agent store, which stores application agents pro-
grams; a homeagent server, which stores homeagents; some
agent connectors, to let agents interoperate with agents in
other kernels; some repositories, which persistently imple-
ment some flavor of coordination tuplespace; some kernel
connectors, to implement distributed PageSpaces.

In middleware platforms, the issues of discovering,
naming, and accessing services are central. In PageSpace we
do not enforce a (distributed) registry of existing agents, but
take a different approach similar to the way of accessing
pages in the Web.

Web pages are named and referenced by URLs and ac-
cessed by contacting the corresponding Web server. Simi-
larly, information about agents is offered via HTTP by the
kernel agent at a given site. This meta information consists

of formal data, like the interfaces of services offered by an
agent, and nonformal parts, like a natural language de-
scription of the agent.

An agent can thus be accessed by retrieving this meta in-
formation via a URL and using it appropriately in coordi-
nation operations. The meta information will be generated
dynamically by the kernel agent.

The discovery of information in Web pages is currently
mediated by catalog services and search engines. In anal-
ogy, we foresee catalogs of links to agent meta data and
search services on them. Users collect links on Web pages of
interest in personal catalogs as bookmarks. By the same
analogy, homeagents can offer the user such personal lists
of interesting agents and applications.

4.4 Distributed PageSpaces
We have extended our prototype kernel implementation to
handle distributed PageSpaces.

Our implementation of the kernel agents manage and co-
ordinate agents on one machine. For distributed applications,
these kernels have to have a distribution architecture and a
communication protocol. A special concern with such a pro-
tocol is scalability – the ability to provide efficient coordina-
tion for a platform involving a large number of machines.

The approach of establishing a shared repository of in-
formation can lead to scalability problems due to the amount
of overhead for replication. We can take a flexible approach
to structuring the system to overcome these problems.

We follow the approach of the Internet to scalability: the
machines that participate in the PageSpace are organized in a
loose federation. Locally connected machines follow a repli-
cation schema in a logical sub-PageSpace and one machine is
defined as the gateway to other sub-PageSpaces. Thereby, we
imitate the interconnected subnets of the Internet.

The specific organization of kernels within one sub-
PageSpace is a local decision. Known architectures for dis-
tributed implementation of Linda-like systems include full
replication of a repository to all nodes, no replication with a
single, centralized repository, or a partial replication as in
[20]. As long as there is one defined node that follows a
gateway protocol to other sub-PageSpaces, our architecture
supports all of them. In fact, the current Jada implementa-
tion uses a centralized or fully replicated repository,
whereas Laura implements a partial replication scheme.

For a gateway, a “routing-table” exists that instructs the
gateway as to which other sub-PageSpaces should be for-
warded the requests for matching elements. Thus, the
distribution structure can be configured statically or dy-
namically.

This configuration will be based on the structure and be-
havior of the agents within a sub-PageSpace, and supports
them in their coordination requirements. All the flavors of
coordination employed in PageSpace give way to several
intelligent optimizations that are yet to be evaluated.

4.5 Options for Fault Tolerance and Mobility in
PageSpace

The PageSpace architecture has several features that are yet
to be explored. We discuss two of them, namely fault toler-
ance and mobility. We show how these features have been
introduced to the platform, and how they are enabled by
the design of the platform.

372 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 5, MAY 1998

4.5.1 Fault Tolerance
What happens when agents in our architecture fail? Fail-
ures of the user interface agents—because of a crashing
browser, or a fault in the users machine—do not affect the
PageSpace at all. The failure of a homeagent does not intro-
duce problems, insofar as the queue of messages for a user
is kept persistent.

Homeagents, application, and gateway agents are man-
aged by the coordination kernel. This means that the kernel
can keep a log of their external interactions and request
state information that is stored persistently. A kernel thus
can monitor the managed agents, and restart them in case
they crashed with a given state. We foresee that any man-
aged agent can provide a method that transfers state infor-
mation to the kernel agent.

In the case of an kernel failure, the kernel and all man-
aged objects are lost. The log of external interactions can be
used to reestablish the repositories after restart; the man-
aged agents can be restarted accordingly.

4.5.2 Mobile PageSpace Agents
As application agents interact transparently with respect to
their location, they are candidates to support mobility of
agents within PageSpace. In order to do so, they have to be
able to pass their internal state to a kernel, which can start it.

Application agents may want to be moved because they
detect that they interact with each other and try to make the
coordination more efficient by “meeting” at a specific loca-
tion. They can be asked to move by an authoritative kernel,
because of a specific policy applies to their current location
(eg. workload management, or dedicated machines). It has
yet to be evaluated what protocols are most efficient to per-
form such operations, and what strategies for mobility
should be followed.

4.6 Using PageSpace to Design an Application
The PageSpace has been introduced for interactive multi-
user applications, so usually we start designing a
PageSpace application from defining which user roles need
a specific user interface agent.

For instance, we realized an auction bidding system
within the PageSpace project as a case study in electronic
commerce. The auction system has three types of users: the
Auctioneer, who sells items to the highest offer, the Partici-
pants, who buy items sold during the auction, and the Ob-
servers, passive audience to the auction. The auctioneer and
the participants communicate during the bidding, whereas
the observers simply follow the bidding.

The activities of the users can be divided in the following
phases:

Phase 0. The auctioneer provides information about the
auction using messages to newsgroups and mailing lists, and
setting up a WWW site. The auctioneer provides for an in-
formation package explaining the modalities for the users
interested in the auction. Users can either simply observe the
auction, or actively participate to the bidding. In the first
case, they are informed of the bids, but they are not allowed
to place a bid and buy an item. In the second case, they can
actively participate to the bidding, sending bids for an item.

The auctioneer then starts an application agent building

the environment for the auction. All participants and ob-
servers activate their own application agents to handle their
bids. To do so, they ask their homeagent to start up a new
specialized application agent. All messages relevant to the
auction are exchanged among these agents. If a user is not
online at bidding time, he can be represented by an
autonomous agent, which may follow some bidding policy
that does not require a direct user intervention.

Phase 1. The auctioneer puts an item up for auction and
starts a timeout for receiving bids. He notifies to all con-
nected users the new item and its base price. As soon as the
new item is put on sale, the auction agent notifies all par-
ticipants and observers.

Phase 2. As soon as the information about the new auc-
tion item is made available to the participants, they can
submit the auctioneer a new bid, or request to unsubscribe
from the current item, i.e. by stopping to receive updates
for the current item and waiting for the next one.

Phase 3.The auctioneer accepts any valid bid (i.e., larger
than the current bid) from registered participants, and re-
sets the timeout value. Every new bid causes a broadcast of
the new value to all participants and observers. When no
new valid offer is received within the time out period, the
auction stops and the item is considered sold. The auction-
eer notifies all users that the sale is closed, and starts a new
auction for the next item, resetting the list of participants.

The user interface agent for the auction system is shown
in Fig. 6.

It is divided into three frames containing a number of
applets. The top left frame displays the item currently of-
fered. The top right frame allows users to place bids, and on
the bottom the currently valid bid is displayed. Every time
a new valid bid is received by the auctioneer, all bottom
frames are updated with the new value. After a time out, an
animation of a mallet hitting a surface is displayed to sig-
nify a final sale.

Fig. 7 shows the applets which compose a user agent:
they coordinate via Jada both locally and remotely.

The agent bid is interactive: it allows a customer to place
a bid. This applet is always active, waiting for user input.

The customer has to choose an amount to increment the
current bid (displayed by applet display). The customer
must insert in TextField the username; the amount is cho-
sen by the (Choice) button (in Fig. 6 this shows $550) fi-
nally, the user has to press another button to send the offer.

Agent next_item is a button which allows to skip the
current item on auction to another one.

Agent cartoon animates a gavel representing that the
current auction is still in progress, or it is finished (the gavel
falls). The animation is based on a sequence of five images.

Agent display shows the current bid and its owner.
This agent is especially critical, because it must show the
same information to all bidders.

The most critical agent is the auctioneer which is the
logic coordinator of the whole system and can run on any
host: it decides when an offer is valid; it tells agent dis-
play about the current bid; it sells an item, etc. This agent is
not displayed by an applet. The tuple space has to run on a
server machine running also the auctioneer for security
constrains imposed by Java. Other agents have no con-
strains at all.

CIANCARINI ET AL.: COORDINATING MULTIAGENT APPLICATIONS ON THE WWW: A REFERENCE ARCHITECTURE 373

Fig. 6. The interface agent of the auction system.

Fig. 7. Applets in useragents.

This is a simple yet realistic example of using the
PageSpace reference architecture in a context of electronic
commerce. In the application we have developed, we allow
customers to participate offline to the auction, and we in-
teroperate via a gateway agent with a database containing
images and descriptions of auction items. The behavior of
agents representing customers is defined by rules in a man-
ner very similar to that described in [2].

As another case study we developed a distributed
WWW-based card game. The game itself is a variant of the
well-known Hearts card game. The components of this in-
teractive distributed application are:

•�the players,
•�the table server,
•�the hearts servers, and
•�the chat servers.

The table server manages the arrangement for the tables:
players can join/leave a table sending a request to the table
server. When a table has four players the game starts. Once
the game is started the players have to talk with a hearts
server, created on the fly by the table server, in order to
compete in the game. While the players are arranging the
table or playing they can exchange text messages using the
chat server.

5 RELATED APPROACHES

Several research and commercial efforts are currently con-
cerned with adding various functional features to the Web.
Being based on a client-server software architecture, the
WWW can be extended in three different parts: either the
server, or the client, or the communication protocol, or a
combination of them. Here we present a few academic and
industrial projects that show examples of these extensions.

Middleware standards such as CORBA and DCE are the
results of the effort of industry committees consecrated to
making commercial applications interoperate as smoothly
and as painlessly as possible for the application designer,
the system developers, and for the final users. These plat-
forms provide standard ways to define, locate and request
computational services from participating applications,
both locally and remotely. Middleware solutions may help
the WWW define a standard and unique way to access and
execute remote services, letting it potentially become the
standard interface to all networked services available now
and in the future.

For instance, ANSA is pursuing the integration of WWW
technologies and CORBA-related standards [21]. Their ap-
proach is two-sided: on the one hand, they are creating a
standard set of CGI gateways to allow bidirectional inter-
action between a CORBA based environment and HTTP
tools (CORBA clients accessing to HTTP resources and
HTTP software accessing CORBA distributed objects). On
the other hand, they are building a set of WWW tools to
integrate and replace HTTP: a server that can provide serv-
ices using both HTTP and IIOP (the Internet Inter-ORB
Protocol providing the connection layer to all CORBA 2.0
compliant platforms) and an Arena-based browser using
IIOP as its connection mechanism.

On the other hand, Marco is a CGI gateway to OSF’s
DCE servers [22] developed as a demonstration of a pro-
posed general architecture for integrating generic middle-
ware components into the WWW through CGI. Two mod-
ules are identified: a “type manager,” which knows about
data contained in the middleware services connected, and a
“trader,” which knows about the details of service instances
and interface descriptions of the services connected. A gen-
eral interaction protocol is defined, allowing clients to
identify the service through a two-step request, receive an
HTML form document suited to the kind of service re-
quested, and perform the most efficient request.

374 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 5, MAY 1998

These two projects are examples for server-centered ar-
chitectures for Web-applications. They provide only a Web
interface to an otherwise not Web-enabled infrastructure
such as CORBA and DCE. In contrast, PageSpace is not a
mere gateway, it is a reference architecture integrated with
the Web and allowing for applications that are in part dis-
tributed to the users client.

Two recent developments enable applets to become parts
of truly distributed applications. With Netscape Communi-
cator 4, a CORBA interface is available for applets with the
inclusion of the Visigenic ORB and the respective Java inter-
face. The revision 1.1 of Java introduced a standardized
way of communication amongst distributed Java objects,
the Remote Method Invocation API.

Similar to PageSpace, both enable truly distributed ap-
plications, either in an open CORBA world, or within the
Java paradigm. In contrast to PageSpace, both rely on cli-
ent-server technology. PageSpace is different in the charac-
teristics of the coordination technology applied. The main
specific difference is that any remote invocation in CORBA
or Java RMI is directed towards a specific, existing object,
whereas PageSpace employs undirected coordination
which is decoupled in space and time.

Jada applets are similar to Oblets, or “distributed active
objects” [23]. An oblet is a program written in Obliq and
executed on a Obliq-aware browser. Each oblet can use
high-level primitives to communicate with other oblets
running on possibly remote browsers. Instead of Obliq,
Jada uses original, pure Java enhanced with simple coordi-
nation primitives.

We know of two projects directly based on Linda-like
coordination: Bauhaus and JavaSpaces.

The Bauhaus “Turingware Web” [24] designed in Yale
University, the homeland of Linda, is similar at least in
spirit to the WU Linda toolkit. The main idea consists of
using a standard browser to access a Bauhaus server.
Bauhaus is a coordination language based on nested multi-
ple tuplespaces which can be used in this case for both
controlling the hierarchical structure of the pages of a web
site, and for associating agents and their activities to the
pages themselves. For instance, one attribute of a page
could be the list of users “acting” in such a page, who are
displayed by a graphic icon and can interact using some ad-
hoc cooperation services.

Sun has announced but at moment not yet released
JavaSpaces, a Java library which uses Linda-like coordination
for supporting distributed applications [25]. It focuses on
transactional Linda operations and is intended as a platform
to provide distributed persistence for exchangeable objects.

Both systems are within the same line of research as
PageSpace, combining coordination technology and the
Web. However, both focus on single issues. The Bauhaus
approach is possibly less general, insofar as it redefines the
basic WWW software architecture. Instead, JavaSpaces is
advertised as a layer added on top of Java allowing for
simple programming of applications which require trans-
actional operations. In contrast, PageSpace is a reference
architecture based on coordination technology which de-
fines a multiagent WWW infrastructure for coordination-
based applications.

6 CONCLUSION

The PageSpace integrates three basic building blocks:

1)�Web technology, which provides a uniform communi-
cation and presentation platform: standard (Java-
enabled) browsers are used to access the PageSpace.

2)� Java technology, which provides a uniform host lan-
guage. PageSpace enhances Java with a high level co-
ordination support for distributed agents.

3)�Linda-like coordination technology, which provides a
simple tool to describe and control activities of asyn-
chronous agents.

We remark that the idea of coordination has been subject
to a large variety of research projects, focusing on parallel
or distributed coordination architectures, on theoretical
foundations of coordination languages, and on a number of
implementation oriented research efforts concerning the
embedding of coordination models into practical pro-
gramming platforms. We have shown that combining
Linda-like coordination with Java it is possible to build a
flexible platform to support open distributed applications.
The necessary mechanisms turn out to be simple and re-
quire no extensions to the building blocks used.

More information on PageSpace can be found on the
Web at http://www.cs.tu-berlin.de/~pagespc.

ACKNOWLEDGMENTS

PageSpace has been supported by the EU as ESPRIT Open
LTR Project No. 20179. The authors thank the anonymous
referees for their comments.

REFERENCES

[1]� E. Ly, “Distributed Java Applets for Project Management on the
Web,” IEEE Internet Computing, vol. 1, no. 3, pp. 21–27, May/June
1997.

[2]� J.M. Andreoli, F. Pacull, and R. Pareschi, “XPect: A Framework for
Electronic Commerce,” IEEE Internet Computing, vol. 1, no. 4, pp.
40–48, July/Aug. 1997.

[3]� E. Evans and D. Rogers, “Using Java Applets and CORBA for
Multi-User Distributed Applications,” IEEE Internet Computing,
vol. 1, no. 3, pp. 43–55, May/June 1997.

[4]� P. Ciancarini, A. Knoche, R. Tolksdorf, and F. Vitali, “PageSpace:
An Architecture to Coordinate Distributed Applications on the
Web,” Computer Networks and ISDN Systems, vol. 28, nos. 7-11, pp.
941–952, 1996.

[5]� P. Ciancarini, “Coordination Models and Languages as Software
Integrators,” ACM Computer Surveys, vol. 28, no. 2, pp. 300–302,
1996.

[6]� R. Adler, “Distributed Coordination Models for Client/Server
Computing,” Computer, vol. 28, no. 4, pp. 14–22, Apr. 1995.

[7]� N. Carriero and D. Gelernter, “Linda in Context,” Comm. ACM,
vol. 32, no. 4, pp. 444–458, Apr. 1989.

[8]� N. Carriero and D. Gelernter, “How to Write Parallel Programs: A
Guide to the Perplexed,” ACM Computer Surveys, vol. 21, no. 3,
pp. 323–357, 1989.

[9]� N. Carriero and D. Gelernter, “Coordination Languages and Their
Significance,” Comm. ACM, vol. 35, no. 2, pp. 97–107, Feb. 1992.

[10]� S. Ahuja, N. Carriero, D. Gelernter, and V. Krishnaswamy,
“Matching Language and Hardware for Parallel Computation in
the Linda Machine,” IEEE Trans. Computers, vol. 37, no. 8, pp. 921–
929, Aug. 1988.

[11]� N. Carriero and D. Gelernter, “Tuple Analysis and Partial Evalua-
tion Strategies in the Linda Precompiler,” Languages and Compilers
for Parallel Computing, D. Gelernter, A. Nicolau, and D. Padua,
eds., pp. 114–125. Cambridge, Mass.: MIT Press, 1990.

CIANCARINI ET AL.: COORDINATING MULTIAGENT APPLICATIONS ON THE WWW: A REFERENCE ARCHITECTURE 375

[12]� Scientific Computing Associates, New Haven, Conn., Paradise 4.
Reference Manual, 1996.

[13]� W. Leler, “Linda Meets Unix,” Computer, vol. 23, no. 2, pp. 43–55,
Feb. 1990.

[14]� G. Geist and V. Sunderam, “Network-Based Concurrent Com-
puting on the PVM System,” Concurrency—Practice and Experience,
vol. 4, no. 4, pp. 293–311, June 1992.

[15]� Y. Gutfreund, J. Nicol, R. Sasnett, and V. Phuah, “WWWinda: An
Orchestration Service for WWW Browsers and Accessories,” Proc.
Second Int’l World Wide Web Conf., Chicago, Il., Dec. 1994.

[16]� W. Schoenfeldinger, “WWW Meets Linda: Linda for Global
WWW-Based Transaction,” World Wide Web J., vol. 1, no. 1, pp.
259–276, Dec. 1995.

[17]� M. Shaw and D. Garlan, Software Architecture. Perspectives on An
Emerging Discipline. Prentice Hall, 1996.

[18]� P. Ciancarini and D. Rossi, “Jada: Coordination and Communica-
tion for Java Agents,” Mobile Object Systems: Towards the Program-
mable Internet, J. Vitek and C. Tschudin, eds., Lecture Notes in Com-
puter Science 1,222, pp. 213–228. Berlin: Springer-Verlag, 1997.

[19]� R. Tolksdorf, Coordination in Open Distributed Systems. Number
Reihe 10, 362 in VDI Fortschrittsberichte. VDI Verlag, 1995, ISBN
3-18-336210-4.

[20]� N. Carriero and D. Gelernter, “The S/Net’s Linda Kernel,” ACM
Trans. Computer Systems, vol. 4, no. 2, pp. 110–129, May 1986.

[21]� O. Rees, N. Edwards, M. Madsen, M. Beasley, and A. McClena-
ghan, “A Web of Distributed Objects,” World Wide Web J., vol. 1,
no. 1, pp. 75–88, 1995.

[22]� A. Beitz et al., “Integrating WWW and Middleware,” Proc. First
Australian World Wide Web Conf., R. Debreceny and A. Ellis, eds.,
Lismore, NSW: Norsearch Publishing, 1995.

[23]� M. Brown and M. Najork, “Distributed Active Objects,” Computer
Networks and ISDN Systems, vol. 28, nos. 7–11, pp. 1,037–1,052, 1996.

[24]� N. Carriero, D. Gelernter, and S. Hupfer, “Collaborative Applica-
tions Experience with the Bauhaus Coordination Language,” Proc.
HICSS30, Sw Track, Hawaii, pp. 310–319, IEEE CS Press, 1997.

[25]� J. Waldo et al., “Javaspace Specification—Revision 0.4,” technical
report, Sun Microsystems, JavaSoft Lab., June 1997.

Paolo Ciancarini received the PhD degree in
computer science from the University of Pisa,
Italy, in 1988. Dr. Ciancarini is an associate
professor of computer science at the University
of Bologna, Italy. His research interests include
coordination languages and systems, program-
ming systems based on distributed objects, and
formal methods in software engineering. He has
been a member of ESPRIT BRA Project CO-
ORDINATION on Coordination models and
languages; is a coproponent of the PageSpace

Open LTR project; and is a member of the ESPRIT Working Group
Coordina “From Coordination Models to Applications.” Dr. Ciancarini is
a member of the IEEE Computer Society.

Robert Tolksdorf received his Dr-Ing degree in
computer science from the Technical University
Berlin in 1995. He is an assistant professor at
the study group formal models, logic, and pro-
gramming in the Department for Computer Sci-
ence at the TU Berlin. His research interests
include coordination languages, open distrib-
uted systems, and Web-technology. He is one of
the main proponents and is responsible for
coordinating the TU Berlin site of the ESPRIT
Open LTR project 20179 PageSpace on coordi-

nation in distributed WWW applications. He is a member of the ES-
PRIT Working Group Coordina “From Coordination Models to Applica-
tions.” He is a member of the IEEE Computer Society.

Fabio Vitali received the PhD degree in com-
puter science and law from the University of
Bologna in 1994. He is a research associate of
computer science at the University of Bologna.
His interests include user interface design, hy-
pertext models, markup languages, versioning
systems, and coordination languages.

Davide Rossi is a PhD candidate in computer
science at the University of Bologna. His inter-
ests include object-oriented programming, op-
erating systems design, coordination languages,
mobile agents, and compression algorithms for
graphic formats. He was involved in the design
on one of the earlier packages for JPEG com-
pression.

Andreas Knoche worked in the PageSpace
Open LTR project at the Technical University
Berlin as a research assistant. He now is with
the KIT-ZVLB project at TU Berlin which builds a
VRML-based information system. His research
interests include coordination languages, open
distributed systems, and Web-technology.

