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Abstract 
 

In the field of parallel computing, the popularity of Distributed Shared Memory (DSM) sys-
tems is believed to be increasing. The idea of distributed shared memory is to provide an envi-
ronment where computers support a shared address space that is made by physically dispersed 
memories. Distributed shared memory received much attention because it offers the power of 
parallel computing using multiple processors as well as a single system memory view which 
makes the programming task easy.  
 

Consistency in a distributed shared memory system is an important issue because there might 
be some potential consistency problems when different processors access, cache and update the 
shared single memory space. In order to improve performance and get correct result of computa-
tion, distributed shared memory systems designers should choose the proper paradigm of mem-
ory coherence semantics and consistency protocols.   
 

The purpose of this paper is to provide an introductory overview of distributed shared mem-
ory systems and point out the consistency problems and the possible solutions. We will also 
study the cases of several state-of-the-art implementations and their contribution in maintaining 
system memory consistency. 
 
 
1. Introduction 
 

1.1. Overview 
 

In 1986, Kai Li published his PhD dissertation entitled, “Shared Virtual Memory on Loosely 
Coupled Microprocessors,” thus opening up the field of research that is now known as Distrib-
uted Shared Memory (DSM) systems. [1] Since then, lots of researches in distributed shared 
memory systems have been proposed. In distributed shared memory systems, processes share 
data across node boundaries transparently. All nodes in the distributed shared memory system 
perceive the same illusion of a single address space (Figure 1). Any processor can access any 
memory location in the address space directly. Memory mapping managers is responsible for 
mapping between local memories and the shared memory address space. Other than mapping, 
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their chief responsibility is to keep the address space coherent at tall times; that is, the value re-
turned by a read operation is always the same as the value written by the most recent write opera-
tion to the same address. [2] There advantages of distributed shared memory systems including:  
 

• Processes can run on different processors in parallel 
 

• Memory mapping, page faulting, data movement are managed by distributed shared 
memory without user intervention 

 
• Single address space simplifies programming tasks 

 
                               

 
 

Figure 1 A single image illusion of distributed shared memory systems 

 
 
 

1.2. Design Issues 
 

Several design issues need to be addressed before we go further into this survey. Each of 
these factors significantly affects the performance of the system.  

 
• Virtual memory and distributed shared memory:  

 
Modern computer systems employ the concept of virtual memory to achieve better 

performance. The virtual memory management mechanism is responsible for page re-
placement, swapping and flushing. Similarly, in satisfying a remote memory request, the 
distributed shared memory would have to consult the virtual memory manager to get a 

Node 1 Node 2 Node 3

CPU 1 CPU 2 CPU 3

Memory1 Memory2 Memory3 

Shared Memory 
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page frame, etc [3]. The effectiveness of the distributed shared memory paradigm de-
pends crucially on how quickly a remote memory access request is serviced and the com-
putation is allowed to continue. 

 
• Granularity:  

 
Computation granularity refers to the size of the sharing unit. It can be a byte, a word, 

a page or other type of unit. Choosing the right granularity is a major issue in distributed 
shared memory because it deals with the amount of computation done between synchro-
nization or communication points. Moving around code and data in the networks involves 
latency and overhead from network protocols. Therefore, such remote memory accesses 
need to be integrated somehow with the memory management at each node. This often 
forces the granularity of access to be an integral multiple of the fundamental unit of 
memory management (usually a page) or simply transfer part of the page to reduce the la-
tency [3]. 

 
• Memory Model and Coherence Protocols:  

 
To ensure correct multiprocessor execution, memory models should be employed 

with care. Two conventional memory models are utilized in many distributed shared 
memory systems. Sequential Consistency memory model ensures that the view of the 
memory is consistent at all times from all the processors. The other is Release Consis-
tency, which distinguishes between kinds of synchronization accesses, namely, acquire 
and release, establishing a consistent view of shared memory at the release point [3]. 
Several coherence protocols are used to maintain memory consistency and will be identi-
fied in detail in later sections. 

 
 

1.3. Consistency Problems in Distributed Shared Memory  
 
To get acceptable performance from a Distributed Shared Memory System, data have to be 

placed near the processors who are using it. This is done by replicating and replacing data for 
read and write operations at a number of processors. Since several copies of data are stored in the 
local cache, read and write access can be performed efficiently. The caching technique increases 
the efficiency of Distributed Shared Memory Systems, but it also raises the consistency problems, 
which happens when a processor writes (modifies) the replicated shared data. How and when this 
change is visible by other processors who also have a copy of the shared data becomes an impor-
tant issue. 

 
 A memory is consistent if the value returned by a read operation is always the same as the 

value written by the most recent write operation to the same address [2]. In a distributed shared 
memory system, a processor has to access the shared virtual memory when page faults happen. 
To reduce the communication cost initiated by this reason, it seems naturally to increase the page 
size. However, large page size produces the contention problem when a number of processes try 
to access the same page and it also triggers the false sharing problem, which, in turn, may in-
crease the number of messages because of aggregation. [4]. 
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False sharing is caused by the large size of the memory page and considered to be a perform-

ance bottleneck to distributed shared memory systems. False sharing occurs when two unrelated 
variables (each used by different processes) are placed in the same page. The page appears 
shared, even though the original variables were not [5]. Conventional programming usually re-
quires processes to gain exclusive access to a page before it starts modification. Therefore, false 
sharing leads to a race condition where multiple processors compete for ownership of a page 
while actually they are modifying totally different sets of data.  

 
Several techniques are introduced to reduce the effect of false sharing including: Relaxed 

memory consistency model and write-shared protocols. We will investigate these solutions and 
the implementations in later sections.  

 
A cache coherence problem can be illustrated as follows. It occurs when processors get dif-

ferent view of memory when accessing and updating at different time. For example, if two proc-
essors, X and Y, cache two different variables, A and B, locally, the value in the cache may not 
be coherent when one of them modified the value of the variable and the other processor is not 
notified (Figure 2). This memory inconsistency may leads to serious computation problems.  

 
 
 

 
Time 

 
Processor X 

 
Processor Y 

A = 0 B = 0 
A = 1 B = 1 

A = A + B  

 
 
 

 B = A + B 
 

(Figure 2) 
 

1) Variables A and B are initialized to 0. 
2) A and B are updated to the value 1 
3) Because of the lack of memory coherency  

mechanism, X still thinks that B is 0 and Y 
still thinks that A is 0 

4) Finally, X and Y will both think A and B 
to be 1, which is the wrong answer. The correct 
answer for A and B should be 2 
 

 
Many solutions are proposed to reduce or even eliminate these consistency problems. We 

will investigate some of them in later sections 
 
 
 
 

2. Memory Coherence Models 
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2.1. Sequential Consistency 
 

Lamport defined the system to be sequentially (strictly) consistent if [7]: 
 

The result of any execution is the same as if the operations 
of all the processors were executed in some sequential or-
der, and the operations of each individual processor ap-
pear in this sequence in the order specified by its program. 

 
The system ensures that all accesses of the shared memory from different processors inter-

leave in a certain manner so that the consequential execution is the same as if these accesses are 
executed in some sequential order. While this model guarantees that every write is immediately 
seen by all processors in the system, it also generates more messages for maintaining this kind of 
consistency and, thus, higher latency. Moreover, determining sequential consistency is an NP-
complete problem [7], which may leads to serious system slowdown in large-scale distributed 
shared memory systems. 

 
2.2. Processor Consistency 

 
Processor consistency allows writes from different processors to be seen in different orders, 

although writes from a single processor must be executed in the order that they occurred. Explicit 
synchronization operations must be used for accesses that should be globally ordered. The main 
advantage of processor consistency is that it allows a processor’s reads to bypass its writes and 
hence increase the system performance. 
 

2.3. Relaxed Consistency  
 

Relaxed (weak) consistency does not require changes to be visible to other processors imme-
diately. When certain synchronization accesses occur, all the previous writes have to be seen in 
the program order. Two processes are said to be competing if at least one of them is a write. 
Shared memory accesses are categorized either as ordinary or synchronization accesses, with the 
latter category further divide into acquire and release accesses [8].  

 
Two well-know approaches implementing the relaxed consistency are: 
 

• Release Consistency (RC):  
 

Release consistency is a form of relaxed memory consistency. A system is release 
consistent if: 

 
o Before an ordinary access is allowed to perform with respect to any other 

processor, all previous acquires must be performed 
 

o Before a release is allowed to perform with respect to any other processor, all 
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previous ordinary reads and writes must be performed 
 

o Special accesses are sequentially consistent with respect to one another. 
 

The advantage of this form of consistency is that it delays the consistency update 
with synchronization events. Therefore, updates occur only when needed by applica-
tion and unnecessary messages will be reduced.  However, most release consistent 
systems require the programmer to make explicit use of acquire and release opera-
tions. 

 
 

• Lazy-Release Consistency (LRC):  
 

In Lazy-Release Consistency, the propagation of modifications is further post-
poned until the time of the acquire [10]. A system in LRC has to satisfy the following 
conditions [11]: 
 

o Before an ordinary read or write access is allowed to perform with respect to 
another process, all previous acquire accesses must be performed with respect 
to that other process 

 
o Before a release access is allowed to perform with respect to any other process, 

all previous ordinary read and store accesses must be performed with respect 
to that other process, and 

 
o Sync are sequentially consistent with respect to one another 

 
 

2.4. Entry Consistency 
 

In entry consistency, data must be explicitly declared as such in the program text, and associ-
ated with a synchronization object that protects access to that shared data. Entry consistency 
takes advantage of the relationship between specific synchronization variables which protect 
critical sections and the shared data accessed within those critical sections. Processes must syn-
chronize via system-supplied primitives. Synchronization operations are divided into acquires 
and releases. After completing an acquire, entry consistency ensures that a process sees the most 
recent version of the data associated with the acquired synchronization variable. [16] 

 
 
The above consistency models can be summarized and illustrated in the following table. 
 
 
 
 
 

Strictness Consistency Models 
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(Table 1) Summery of consistency 

 
 
 

3. Consistency Protocols 
 

Caching shared data introduces increases the system performance in distributed shared mem-
ory systems. However, to maintain memory consistency, special designed protocols needed to be 
implemented to 1) propagate a newly written value to all cached copies of the modified location, 
2) detect when a write is completed and 3) preserve the atomicity for writes with respect to other 
operations [12].  

 
 

3.1.  Write-Shared Protocol 
 

The write-shared protocol buffers the write accesses thus allows multiple writers update con-
currently.  Two or more writers can modify their local copies of the same shared data at the same 
time and the modified copies are merged in the next synchronization event. 

 
 The distributed shared memory software initially write-protect the memory page containing 

the write-shared data. When some processor wants to modify this page, distributed shared mem-
ory software makes a copy of the page containing the write-shared data and take off the write 
protection so that further update operations can be done without distributed shared memory 
software intervention.  

 
The original data page is put in a delayed-update queue. At release time, the system performs 

a comparison of the original page and its copy and run-length encodes the results of this differ-
ence into the space allocated to the copy. Each encoded update consists of a count of identical 
words, the number of differing words that follow, and the data associated with those differing 
words. Then each node that has a copy of a shared object that has been modified is sent a list of 
the available updates. The receiving nodes will then decode the updates and merge the changes 
into their version of the shared data. This protocol eliminates the ill effects of false-sharing and 
hence lowers the communication associated with it [14]. 

Sequential consistency 

Processor consistency 

Weak consistency 

Release consistency 

More Strict 
 
 
 
 
 
 
 
 

Less Strict Entry consistency 
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3.2. Lazy Diff Creation Protocol 
 

Basically, LDC is identical to write-shared protocol is the sense of create diffs for merging 
further update. The time of creating diff in LDC is postponed until the modifications are re-
quested, which differs from that of write-shared protocol. This significantly reduced the number 
of diffs created and improved performance. 

 
3.3. Eager Invalidate Protocol: 

 
Eager protocols push modifications to all nodes that cache the data at synchronization vari-

able releases. If remote copy is read-only, it is simply invalidated; if the copy is marked as read-
write, the remote node appends the diff to the reply and then invalidates the page. When the 
locking processor releases its writes, all other caching nodes are notified that they must invali-
date their copies. The acquisition latency is long when lock request pending at release, short oth-
erwise. 
 

3.4. Lazy Invalidate Protocol 
 

In lazy invalidate, the propagation of modifications is delayed until the time of the acquire. 
The releaser notifies the acquirer, of which pages have been modified, causing the acquirer to 
invalidate its local copies of these pages. A processor incurs a page fault on the first access to an 
invalidated page, and gets diffs for that page from previous releasers. The execution of each 
process is divided into partially ordered intervals, which is usually represented by timestamps. 
Every time a process performs a release or an acquire, a new interval begins. Local copies of 
pages for which a write notice with a larger timestamp is received are invalidated. This protocol 
has shortest lock acquisition latency (single message) when request pending, also good when not 
pending.  

 
3.5. Lazy Hybrid Protocol:  

 
This protocol is similar to lazy invalidate protocol except that lazy hybrid updates some of 

the pages at the time of an acquire instead of invalidating the modified page. The releaser sends 
to the acquirer all the modifications that it thinks that the acquirer is interested in. The acquirer 
invalidates pages for which write notices were received but no modifications were included in 
the lock grant message. Single pair of messages between acquirer and releaser, only have over-
head of piggybacks. Amount of data is smaller than for the update protocol. Reduced number of 
access misses.  
 

The trade-off between these protocols can be illustrated in the following table. 
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Lock  
Latency 

Remote 
Access 
Misses 

Messages Data Diffs Protocol 
Complixity

Eager 
Invalidation Low High High High Low Low 

Lazy 
Invalidation Low Medium Medium Low Medium Medium 

Lazy 
Hybrid Medium Low Low Medium High Medium 

 
(Table 2) Protocol Trade-offs [8] 

 
 

4. Examples 
 

4.1. TreadMarks 
 

TreadMarks is a distributed shared memory system for standard UNIX systems in 
the network environment consist of ATM and Ethernet. To get communication 
speedup, it utilized the standard low-level protocol, AAL3/4, on ATM networks, by-
passing the TCP/IP protocol stack. Its developers at Rice University extended the 
concept of release consistency to propose lazy release consistency and employed an 
invalidate protocol. TreadMarks implements shared memory entirely in software and 
use threads to express parallelism. Both data movement and memory coherence are 
performed by software using the message passing and virtual memory management 
hardware. TreadMarks uses the virtual memory protection mechanism in modern mi-
croprocessors to communicate information about memory operations.  

 
4.2. Midway 

 
Midway is a software-based distributed shared memory system which optimizes 

the propagation of updates by using Entry Consistency. In Midway, there is an ex-
plicit binding of locks to the data that is logically guarded by each lock. As the appli-
cation acquires a lock for its own synchronization, Midway piggybacks the memory 
updates on the lock acquisition message, thus no extra messages sent. Furthermore, 
the updates are sent only to the acquiring processor and only for the data explicitly 
guarded by the acquired lock. This serves to batch together updates and minimize the 
total amount of data transmitted.  Local memories on each processor cache recently 
used data and synchronization variables. Midway’s entry consistency takes into ac-
count both synchronization behavior and the relationship between synchronization 
objects and data. This allows the runtime system to hide the network overhead of 
memory references by folding all memory updates into synchronization operations 
[16]. 
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5. Discussion and Conclusion 
 

From the discussion above, we can find that distributed shared memory system 
provides an environment for easy programming and parallel computing. But the 
communication cost inherited in the underlying network is very expensive, thus limits 
the scalability of distributed shared memory systems and create other problems. Due 
to this characteristic, the granularity of memory unit is restricted in a certain range to 
prevent false-sharing or excessive message-passing. However, the inflexibility of 
granularity has a negative effect on computation speedup for some program with high 
communication requirement [10]. 
 

For the comparison of the system design, memory models and protocols used in 
TreadMarks and Midway, the result can be concluded as follows:  
 

• For the programming ease, TreadMarks needs no special requirement while 
Midway requires the programmers to explicitly associate a lock with a shared 
data object. 

 
• For write detection, TreadMarks system has to scan the entire shared data re-

gion, although only a small portion of it may have been updated. In Midway, 
system only scans the dirty bits of the shared data object. 

 
• Midway only make those data associated with the lock consistent at a lock ac-

quire stage. In contrast, TreadMarks needs to ensure consistency for all data 
objects, which results in less data being transferred in Midway than in Tread-
Marks. 

 
• The avoidance of TCP/IP protocol stack hurts the portability of TreadMarks, 

especially in the Internet era where TCP/IP is a dominant protocol. 
 
 

Obviously, there is no dominant system between these two discussed in the paper. 
For example, Entry Consistency outperforms Lazy Release Consistency if its coher-
ence unit is larger than a page. If Entry Consistency’s coherence unit is smaller than a 
page, then Entry Consistency outperforms Lazy Release Consistency if there is a 
false-sharing while Lazy Release Consistency outperforms Entry Consistency if there 
is spatial locality resulting in a prefetch effect [15]. Therefore, the choice of imple-
mentation has to be made according to the need of users or programmers as well as 
other conditions. 

 
In addition to the algorithms, protocols and memory models, new network tech-

nologies may play an important role in improving Distributed Shared Memory Sys-
tems efficiency since the communication cost is still the major factor that affects sys-
tem performance.  
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