
CSE 6306 Advance Operating Systems  1 

Fault Tolerant Distributed Computing 
 

Mitvin Shah - mshah@cse.uta.edu 
Department of Computer Science and Engineering 

University of Texas at Arlington 
 

 
Abstract 
 

“A distributed system is one in which the failure of a computer you didn’t even 
know existed can render your own computer unusable” Leslie Lamport, May 1987. 

 
Fault tolerance is in the center of distributed system design that covers various 
methodologies. In past there have been cases where critical applications buckled under 
faults because of insufficient level of fault tolerance. Various issues are examined during 
distributed system design and are properly addressed to achieve desired level of fault 
tolerance. This paper defines various terminologies like failure, fault, fault tolerance, 
recovery, redundancy, security, etc and explains basic concepts related to fault tolerance 
in distributed environments.  It also describes four kinds of fault tolerance and ways of 
achieving. The paper presents various solutions and architectures that implements fault 
tolerance in various facets of distributed computing. These solutions also cover few 
ongoing research works. Overall goal of this paper is to give understanding of fault 
tolerant distributed system and to familiarize with current research in this area. 
 
1.  Introduction 
 
  Distributed Computing Systems consists of variety of hardware and software 
components. Failure of any of these components can lead to unanticipated, potentially 
disruptive behavior and to service availability [2]. In past there have been cases where 
critical applications buckled under faults because of insufficient level of fault tolerance. 
Few of them just missed. In one such case the planned lift-off of the space shuttle 
Columbia on Oct. 9, 1981 was delayed due to a minor fuel spill and a few missing tiles, 
upon simulation they found that the code contained an uninitialized counter used in a 
"computed goto" command that resulted in all four of the redundant flight computers 
simultaneously branching off to a memory address containing no code. A subsequent 
investigation of the software using the specific knowledge gathered from this incident led 
to the discovery of 17 other similar systematic bugs in the flight control software, one of 
which could also have caused a catastrophic failure. Important lesson drawn from this 
case was to providing perfect solution to software fault tolerance over and above 
redundancy. Also the distributed systems are vulnerable to security threats because of 
their openness in operating environment. Chow [6] terms both of them as system faults. 
Providing proper fault detection mechanisms along with redundancy in the system by 
replication of data and resources can prevent failures. It also requires recovering by 
rolling back the execution of all the affected processes. Security is mainly concerned with 
issues like authentication and authorization and we drop this issue for discussions in this 



CSE 6306 Advance Operating Systems  2 

paper. Also the aim of fault tolerant distributed computing is to provide proper solutions 
to these system faults upon their occurrence and make the system more dependable by 
increasing its reliability. The solutions to these system faults should be transparent to 
users of the system. Such fault tolerant behavior is extremely necessary in critical 
applications like flight control systems, hazardous industries, nuclear power plants, etc. 
as well as non critical ones like communications and transaction processing.  
 
 The field of fault tolerant computing has ever been specific to applications till 
attempts by Laprie [3] to organize concepts and terminologies. However later on Arora 
and Gouda [4] termed the field to be “fragmented”. Since then more formal and abstract 
approach has led to better understanding of the problems faced and key to developing 
fault resilient systems. Researchers have undergone their work in various paradigms of 
distributed fault tolerance from failure detection to mobile security. One such approach 
by Moorsel [5] specifies action models and path based solution algorithm to provide an 
intuitive, high level, modeling formalism for fault tolerant distributed computing systems 
and to analyze the impact of fault tolerance mechanisms on the user perceived reliability. 
Kienzle [7] in his paper reviews the applicability of transactions and other fault tolerance 
mechanisms in concurrent programming language Ada. Numerous programming 
languages with support for fault tolerance have been developed like Arugus [18] and Plits 
[19]. Some of them are extensions of existing languages such as Fault Tolerant 
Concurrent C (FTCC) [20]. A new implementation of MPI called FT-MPI proposed by 
Fagg [21] allows the semantics and associated failure modes to be completely controlled 
by the application rather than just checkpoint and restart. Implementation of new Log 
Manager by Daniels [13] for shared logging service of the QuickSilver distributed 
operating system solves the problem of logging services shared by multiple resource 
managers. Yang [23] implemented SUVS (Simplified Unmanned Vehicle System) 
distributed real time test bed with system level fault tolerance techniques. Zhou [24] 
describes the design of a model that supports fault tolerant services, based on twin server 
model, of fault tolerant servers for the micro kernel based RHODOS distributed operating 
system. Goldreick [8] proposes a compiler that outputs a fault tolerant protocol given an 
input protocol for n semi-honest parties maintaining its correctness and privacy. Canetti 
[9] explains the relations between security and randomness in context of multiparty 
computations.  
 

Our focus is on understanding basic concepts of fault tolerance and 
implementation with the help of case studies one of them mentioned in Section 7. The 
paper is organized as follows: Section 2 introduces basic concepts and terminologies that 
are used, Section 3 broadly defines four forms of fault tolerances, Section 4 describes 
various phases of achieving fault tolerance like failure detection, redundancy, check 
pointing, etc., Section 5 describes achieving safety and liveness, Section 6 presents an 
overview of rollback and recovery mechanisms Section 7 presents various fault tolerant 
architectures covering various aspects of distributed computing and finally we conclude 
with Section 8.  

 
 
 



CSE 6306 Advance Operating Systems  3 

2. Basic Concepts and Terminologies 
 
Being fault tolerant is very much related to what are called dependable systems. A system 
is dependable when it is trustworthy enough that reliance can be placed on the service 
that it delivers. For a system to be dependable, it must be available (e.g., ready for use 
when we need it), reliable (e.g., able to provide continuity of service while we are using 
it), safe (e.g., does not have a catastrophic consequence on the environment), and secure 
(e.g., able to preserve confidentiality). Following are few terminologies that are very 
closely related to dependability of system and its behavior:  
 
Fault – Can be termed as “defect” at the lowest level of abstraction. It can lead to 
erroneous system state. Faults may be classified as transient, intermittent or permanent. 
They can be of following types [6]: 
 

1. Processor Faults (Node Faults): Processor faults occur when the processor 
behaves in an unexpected manner. It may be of classified into three kinds:  
a) Fail-Stop – Here a processor can both be active and participate in distribute 
protocols or is totally failed and will never respond. In this case the neighboring 
processors can detect the failed processor.  
b) Slowdown – Here a processor might run in degraded fashion or might totally 
fail. 
c) Byzantine – Here a processor can fail, run in degraded fashion for some time or 
execute at normal speed but tries to fail the computation.  

2. Network Faults (Link Faults): Network faults occur when (live and working) 
processors are prevented from communicating with each other. Link faults can 
cause new kinds of problems like:  
a) One way Links – Here one processor can send messages to other is not able to 
receive messages. This kind of problem is similar to that faced due to processor 
slowdown. 
b) Network Partition – Here a portion of network is completely isolated with the 
other. 

 
Error – Undesirable system state that may lead to failure of the system. 
 
Failure – Faults due to unintentional intrusion.  
 

Types of Failure Description 
Crash failure  A server halts, but is working correctly until it halts 
Omission failure  
    Receive omission  
    Send omission  

A server fails to respond to incoming requests  
A server fails to receive incoming messages  
A server fails to send messages 

Timing failure  A server’s response lies outside the specified time interval 
Response failure  
  Value failure  
  State transition failure  

A server’s response is incorrect  
The value of the response is wrong  
The server deviates from the correct flow of control 

Arbitrary failure A server may produce arbitrary responses at arbitrary times 



CSE 6306 Advance Operating Systems  4 

 
Fault Tolerance – Ability of system to behave in a well-defined manner upon occurrence 
of faults. 
 
Recovery – Recovery is a passive approach in which the state of the system is maintained 
and is used to roll back the execution to a predefined checkpoint. 
 
Redundancy – With respect to fault tolerance it is replication of hardware, software 
components or computation. 
 
Security – Robustness of the system characterized by secrecy, integrity, availability, 
reliability and safety during its operation. 
 
3. Types of Fault Tolerance and Failure Detection 
 
3.1 Types of Fault Tolerance 

Lamport [1977] described system behavior with respect to its safety and liveness. 
For a distributed program to behave correctly, it must satisfy both the above properties. 
We will try to explain these concepts before we go ahead with explaining types of fault 
tolerances. 

 
Safety means that some specific “bad thing” never happens within a system [1]. 

Formally, this can be characterized by specifying when an execution e is “not safe” for a 
property p: if e ∉ p there must be an identifiable discrete event e that prohibits all 
possible system executions from being safe. e.g.: simultaneous updating of a shared 
object. Distributed program is safe if system will always remain within set of safe states. 

 
On the other hand, a liveness property claims that some “good thing” will 

eventually happen during the system execution [1]. Formally, a partial execution of a 
system is live for property p, if and only if it can be legally extended to still remain in p. 
“Legally here means that the extension must be allowed by the system itself. e.g. : a 
process waiting for access to a shared object will finally is allowed to do so.  

 
To behave correctly, a distributed program A must satisfy both its safety and its 

liveness property. Now upon occurrence of fault, how is the property of A affected?  
 

Forms of Fault Tolerance 
 

 live not live 
safe masking fail safe 

not safe non-masking none 
 

  
 The masking type of fault tolerance is most desirable but most expensive 

to implement. Applications with this kind of fault tolerance are able to tolerate faults in 



CSE 6306 Advance Operating Systems  5 

transparent manner. While for last case where neither safety nor liveness is guaranteed is 
the most undesirable.  

 
Among the two intermediate fail safe is favorable (and is active area of research) 

over non-masking because of the importance of leaving the system in safe state. In case 
of non-masking type the output of the system may not be desirable or correct but still the 
result is delivered. Recently specialization of non-masking fault tolerance called self-
stabilization is actively worked after. Programs of this kind are able to withstand any 
kinds of transient faults. However programs of such kind are difficult to construct and 
test. 

 
3.2 Failure Detection 

Failure detection as you will see later in Section 5 is extremely essential in 
achieving safety and liveness property of the system. Various researchers for efficiently 
detecting and determining the type of fault in the system have made numerous efforts. 
One of the significant contributors has been Chandra [26] to solving consensus and 
atomic broadcast problem by unreliable failure detectors by use of rigorous formalization. 
Gallet [27] have further investigated their efficiency with measures using longest message chain 
before decision and greatest lower bounds for main class of failure detectors. Yang [28] related 
different system models and failure detectors by converting consensus algorithm proposed for one 
model to another. Beauquier [29] have presented hierarchy of transient failure detectors that 
detect occurrence of transient faults and the resources required for implementing them. 
 

 
4. Redundancy 
 

No matter how well you design your system to tolerate fault, it is always possible 
that is fails under repeated or severe attacks of faults. Gartner [1] claims that redundancy 
is necessary, though not sufficient condition for fault tolerance. It states two forms of 
redundancy, first that in space and second that in time. 

 
Redundancy in space is meant by set of configurations in a program that are never 

reached in absence of faults while redundancy in time is meant by set of actions of a 
program that are never executed in absence of faults.  

 
It is important to note that proper fault detection is very essential for the system to 

lead it to safety. Detection needs information about state space and /or program actions. 
Correction upon detection of fault ensures liveness property of the system. So we can 
understand that ensuring safety (by detection) is easier to achieve than liveness (by 
correction). It is also necessary to add that these detection and correction mechanisms 
should themselves be fault tolerant.  

 
Redundancy in space is achieved by replication of components. Examples of 

space redundancy in hardware it may be tandem systems or in software may be like 
adding parity bits in transmission. Redundancy in time is like repeating the computation 



CSE 6306 Advance Operating Systems  6 

in the same system. Examples of time redundancy might be calculation of result more 
than once. 

 
Hardware redundancy is in the form of replaceable hardware units meaning the 

units that fail independently of other units (or can be added or removed independently) 
[2]. The service provided by the hardware servers in each replaceable unit should have 
very good failure semantics (crash and omission). The replaceable hardware units can be 
having coarse granularity architecture or fine granularity architecture. Prior 
architectures e.g. Tandem, the DEC, VAX Clusters and the IBM MVS/XRF have some 
replaceable units package together several elementary hardware servers such as CPUs, 
memory, I/O controllers and communication controllers. Later architectures e.g. Stratus 
and Sequoia have each elementary hardware server as a replaceable unit by itself. Certain 
assumptions, e.g. memory having read omission failure semantics, regarding hardware 
failure semantics are made by designers to use known hierarchical masking techniques. 
Failure is detected in hardware by either error detection codes (with error detecting 
circuitry is used) or by duplication with comparison (where hardware duplication with 
comparison logic is used). Error detection codes are used in storage and communication 
hardware servers while duplication and matching is used in complex circuitry [2]. 
Hardware server failures are masked in hardware itself by implementing redundancy 
management mechanisms (mostly multiplexing). But such mechanisms are not able to 
eliminate the need for handling at application software levels processor service failure, 
operating system level failures and application level failures. 

 
Software redundancy in similar way to hardware redundancy should provide good 

failure semantics. These failure semantics depends on the persistent state of the service. 
Cristian [2] mention the use of simplicity and clarity during design, hierarchical design 
methods based on information hiding and abstract data types, rigorous design 
specification and verification techniques, systematic identification, detection, and 
handling of all exception occurrences and use of modern inspection and testing methods 
to prevent design faults in program. Software Servers must provide concurrency control 
and recovery support. Software group masking techniques based on Tandum and IBM 
XRF use members with crash/performance failure semantics. Any software service 
should replicate its resources in order to mask service failures. Several issues arise such 
as consistency of states, communication, replication management while maintaining 
software server groups.  

 
System failure semantics is implicit upon failure semantics of all levels of 

abstraction of the system i.e. hardware, operating system and application. The goal is to 
make hardware having crash of omission failure semantics and make software be totally 
or at least partially correct. 

 
5. Safety and Liveness 
 

As we discussed earlier safety and liveness is essential for a program to work 
correctly. In this section we will look at how can we achieve them. 
 



CSE 6306 Advance Operating Systems  7 

5.1 Achieving Safety 
Faults must be detected and actions must be taken to remain safe. Detection is 

easy locally, but in distributed settings it requires intrinsic fault tolerant mechanisms like 
consensus algorithms and failure detectors [1]. Formally detection always includes 
checking whether a certain predicate Q over the extended systems state holds. If the type 
and effect of faults from F are known, it is easy to specify Q. In distributed settings the 
detectability of Q depends on different factors and is constrained by system properties. 
Consensus algorithms are used to detect this predicate Q to be holding. Consensus can be 
viewed as agreement by set of processes on a common value. Fault tolerant consensus 
algorithms “diffuse” initial values within the system to all nodes. All the nodes decide 
upon the next course of action depending upon the diffused information. Different forms 
of unreliable failure detectors are used to solve failure detection problem in asynchronous 
systems [10]. 

 
5.2 Achieving Liveness 

Liveness is essential for a system to be masking fault tolerant apart from safety. It 
involves not only fault detection but also correction. Correction implies recovery from 
bad state to good state. Correction may be achieved by various ways like error correction 
codes, rollback recovery or roll-forward. Formally on detecting a “bad” state through 
detection of predicate Q the system must try to impose a new target predicate R into the 
system. The choice of R is difficult to decide because choice that is good for one process 
may not be same for the other. This problem in generally solved in distributed settings by 
majority voting. A particular node may also take the decision by first received vote. 
Schneider [11] proposed state machine approach to ensure liveness in distributed 
systems. Here servers are replicated and their behavior is coordinated via consensus 
algorithms. Fault tolerant broadcasts also enforce fault tolerant services [12]. 

 
6. Rollback and Recovery 
 
 Rollback and recovery mechanisms are essential for a system to maintain its 
masking fault tolerant property. The recovery manager of the system to bring it back to 
consistent state from where all its processes can start again implements various such 
techniques. A checkpoint is an entry made in the recovery file at specific interval of time 
that will force all the current committed values to the stable storage [25]. Upon failure the 
process will rollback to the latest checkpoint made and will also force all other processes 
depending on it to do so. It is the responsibility of the recovery manager to implement 
proper check pointing algorithm so that system is brought to globally consistent state 
upon recovery from failure. Various check pointing and rollback recovery mechanisms 
are used to ensure reliable distributed environment. We will focus on one of the check 
pointing method proposed by Park [17] that is based on communication pattern of the 
processes. 
 

Park [17] presents check pointing coordination scheme in which the application 
controls the coordination activity by utilizing the communication pattern of application 
program. It classifies communication patterns of the processes as follows: centralized, 
serial, circular, hierarchical, irregular, rare and partitioned. Though the patterns may 



CSE 6306 Advance Operating Systems  8 

change upon the coarse of execution, in most cases one or a few patterns dominate the 
inter-process communication. There is certain fixed property of the length domino cycle 
formed under each pattern and it is found that most patterns have domino cycle with 
limited length. So it suggests two check pointing coordination schemes to avoid the 
domino cycle with reduced coordination for domino cycle with length two. For the 
communication patterns producing the domino cycle with length longer than two, limited 
coordination scheme is suggested. The process follows loose check pointing coordination 
in this case with limited target processes. Performance evaluation of the schemes 
evaluates two performance measures, namely average number of additional checkpoints 
taken at each process and rollback distance. Results claim to reduce number of 
checkpoints and coordination overhead. It however says that in some cases the rollback 
distance might get longer. 

 
7. Case Study : Somersault 
 

Somersault is a middleware for developing and integrating distributed fault-
tolerant software components. It provides a fault-tolerant communication transport 
protocol that can be combined with ORB to achieve replication transparency. Design 
goals are aimed to serve applications that require continuous availability, high message 
throughput, maintaining consistent state and guaranteed message delivery. Murray [15] 
uses “roll forward” approach where it replicates process and makes it highly available 
upon failure of primary.  It claims to survive hardware failures, operating systems failures 
and non-replicated application failures. It provides C++ middleware library to manage 
each pair of replica processes and to maintain identical computation and consistent state 
in each. This library can be integrated with CORBA.  
 
 Somersault consists of two units: simple non-fault-tolerant and recovery unit of 
replicated processes distributed across the network. Somersault implements n to m 
connection oriented messaging protocol where recovery unit acts as a single entity.  
 
 
 
 
 
 
 
 
 
 

 

Communication Patterns in Regular 
Distributed Systems 

 Communicating Units in Somersault 

 
 
 

 For our understanding we will consider a minimal case of three processes: the 
Primary, Secondary and Witness. Primary and Secondary replicate the application and 



CSE 6306 Advance Operating Systems  9 

are involved in failure detection. Witness acts as a tiebreaker. Somersault goes through 
following steps :  
 
Failure Detection:  
Processes communicate by passing 
heartbeat messages to one other. Failure is 
detected upon missing heartbeat.  

Recovery Unit 
 

 Replication: 
Process pairs acts as replicas with logging 
channel between primary and secondary. 
Primary performs non-deterministic events 
that are made to perform by secondary 
identically. 
 

Unit Communication and Secondary 
Sender Protocol: 
All replicas consume input message and 
generate output messages but only one 
copy of each output is sent. The order of 
message is as shown in the figure besides. 

    Somersault Connection 

Failover: 
Windowing protocol is used at unit-to-unit 
communication level that ensures that 
messages are not lost or re-ordered in the 
event of the failing of primary or 
secondary.  After failover of primary the 
secondary will receive the same input 
message and repeat the work  

Failure of Primary 

 
Recovery:  
Upon failure of primary, secondary will 
become primary. Immediately it will 
replicate itself to create another secondary 
that will be synchronized with it. 

 

w

p 

s

Replica 1 
 
 
 
 
 

Event 
Scheduler 

Replica 2 
 
 
 
 
 

Event  
Scheduler 

Primary Secondary 

Application 
Level 

Somersault 
Level 

Event Log 

 
p 

s 

Logging 

Outputs 

Inputs

 
 
 
        m1 

S 

P           m1 
      m2 
m3 



CSE 6306 Advance Operating Systems  10 

8. Conclusion 
 

Increasing application of critical application have lead to giving more focus and 
importance to fault tolerance. The area have gone more and more complex with advent of 
networked system and distributed application. Even after substantial research in 
theoretical as well as practical implementation this area is still is far from convincingly 
explored. Though there are some inherent limitations, fault tolerance is not impossible to 
implement. As we have seen formal approaches to deal with the problem using safety and 
liveness have helped us understand the concept well to implement it with exact 
understanding. Researchers have worked hard to formalize this field to make it more 
understandable. Queinnec [30] have tried to derive certain basic properties of a system to 
be fault tolerant. Arora [29] have tried to formalize building masking fault tolerant 
programs by use of component based method. They used stepwise approach by adding 
components to fault intolerant programs to transform it to non-masking fault tolerant and 
finally to masking one. But there are certain cases where detection is not possible before 
state of system transits to unsafe state and only its liveness may be guaranteed. Fault 
detection algorithms have successfully been implemented to solve consensus problems 
efficiently. In practice designing fault tolerance systems is more of compromise of design 
decisions with respect to replication level, protocols, fault detection algorithms, etc. 
Babaoğlu [31] has used probability of correct output as a criteria for evaluating and 
coming to decision regarding design.  

 
Current practical implementation efforts are focused on areas such as providing 

fault tolerant middleware abstraction to better overall fault tolerance. Distributed Object 
Oriented Reliable Service (DOORS) developed by Natrajan [22] is a prototype 
implementation of Fault Tolerant CORBA Specification proposed by OMG. Current 
CORBA has few limitations in implementing processor based failure detection and 
recovery like overly coarse granularity, inability to restore complex object relationships 
and restrictions on process check pointing and recovery. DOORS implements subset of 
the FTC standards to achieve fault tolerance via replication, fault detection and recovery. 
Recent work also includes work on Cassel’s [16] proposal to develop fault tolerant 
distributed computing and database system to solve extremely challenging problems of 
event processing, analysis and simulation of large data sets. The system is proposed to be 
scalable to hundreds of workstations and to expand fault tolerance and process group 
communication tools to wide-area networks. The project is currently under 
implementation and they have specified plan of action for five years. They plan to build 
prototype to understand the system working. Later they plan to concentrate on complex 
areas of fault tolerance, high-speed communication and performance measurements. 

 
Future work needs to be done in implementation of methodologies described by 

Agha [32] for developing adaptable dependable systems. These systems may function 
over long duration despite a changing execution environment. It presents language 
framework for describing dependable systems. Finally we would like to say that task of 
designing and understanding fault tolerant systems are notoriously difficult and 
predicting and dealing with behavior of system activities and components is challenge 
which lies ahead. 



CSE 6306 Advance Operating Systems  11 

 
References 
 
[1] Felix C. Gartner - Fundamentals of Fault Tolerant Distributed Computing in 
Asynchronous Environments, ACM Computing Surveys (CSUR) March 1999 
[2] Flavin Cristian – Understanding Fault-Tolerant Distributed Systems, Communications 
of the ACM, 1993 
[3] Laprie J. C. 1985 – Dependable computing and fault tolerance: concepts and 
terminologies. In FTCS-15, 15th Symposium on Fault Tolerant Computing Systems (June 
1985), pp. 2-11. 
[4] Arora A. and Gouda M. 1993 – Closure and Convergence: a foundation of fault 
tolerant computing. IEEE Transactions on Software Engineering 19,11, 1015-1027. 
[5] Aad P. A. van Moorsel – Action Models: A Reliability Modeling Formalism for Fault 
Tolerant Distributed Computation System, IPDS 1998 
[6] Randy Chow and Theodore Johnson – Distributed Operating Systems and 
Algorithms, Addison Wesley Longman Inc. 1997. 
[7] Jorg Kienzle – Combining Task and Transactions. 
[8] Oded Goldreick, Silvio Micali and Avi Wigderson – How to Solve any Protocol 
Problem. 
[9] Ran Canetti, Eyal Kushilertz, Rafail Ostrovsky and Adi Rosen – Randomness vs. 
Fault Tolerance, Proceedings of the sixteenth annual ACM symposium on Principles of 
distributed computing August 1997. 
[10] Tushar Deepak Chandra and Sam Toueg - Unreliable Failure Detectors for Reliable 
Distributed Systems, Journal of the ACM (JACM) March 1996 
[11] Schneider, F. B. 1990. - Implementing fault-tolerant services using the state machine 
approach: A tutorial. ACM Computing Survey 22, 4 (Dec. 1990), 299 ± 319. 
[12] Hadzilacos, V. and Toueg, S. 1994. A modular approach to fault-tolerant broadcasts 
and related problems. Technical Report TR94-1425. Department of Computer Science, 
Cornell University, Ithaca, NY. 
[13] Dean Daniels, Roger L. Haskin, Jon Reinke, and Wayne Sawdon: Shared Logging 
Services for Fault-Tolerant Distributed Computing. Operating Systems Review 25(1): 65-
68 (1991) 
[14] James S. Plank, Henri Casanova, Jack J. Dongarra and Terry Moore – Netsolve: An 
Environment for Deploying Fault-Tolerant Computing, FTCS-28: 28th International 
Symposium on Fault-tolerant Computing, Munich, June, 1998 
[15] Paul T. Murray, Roger A. Fleming, Paul D. Harry, Paul A. Vickers – Somersault: 
Enabling Fault-Tolerant Distributed Software Systems, HP Labs Technical Reports, Tech 
Reports: HPL-98-81. 
[16] David G. Cassel – Distributed Computing and Databases for High Energy Physics, 
University of Cornell, Research Index Article. 
[17] Taesoon Park and Heon Y. Yeom – Application Controlled Checkpointing 
Coordination for Fault-Tolerant Distributed Computing Systems, Parallel Computing 
26(4), March 2000,pp.467-482. 
[18] N. Liskov – “The Argus language and System. In Distributed Systems: Methods and 
Tools and Specification, LNCS< Vol 190 (M. Paul and H. Siegert, eds.), ch 7, pp. 343-
430 Berlin: Springer-verlag, 1985. 



CSE 6306 Advance Operating Systems  12 

[19] C. Ellis, J. Feldman and J. Heliotis, “Language constructs and support systems for 
distributed computing”, in ACM Symposium on Principals of Distributed Computing, pp. 
1-9, August 1982. 
[20] R. Cmelik, N. Gehani and W.D. Roome – “Fault Tolerant Concurrent C: A tool for 
writing fault tolerant Distributed programs”, in Proc. 18th Fault-Tolerant Computing 
Symposium, pp. 55-61, June 1988. 
[21] Graham E. Fagg and Jack J. Dongarra - FT-MPI: Fault Tolerant MPI, supporting 
dynamic applications in a dynamic world, Lecture Notes in Computer Science, 
University of Tennessee, 2000. 
[22] Balachandran Natrajan, Aniruddha Gokhale, Shalini Yajnik, Douglas C. Schmidt – 
DOORS: Towards High-Performance Fault Tolerant CORBA, Proceedings of the 2nd 
Distributed Applications and Objects (DOA) conference, Antwerp Belgium, Sept. 21-23, 
2000. 
[23] S.M. Yang, K.M. Kavi, A. Agarwalla, M. Reddy and S. Anam – SUVS: A 
Distributed Real-Time System Test bed for Fault Tolerant Computing, Proceedings of the 
1992 ACM/SIGAPP symposium on Applied computing, March 1992. 
[24] Zhou and Andrzej Goscinski – Fault Tolerant Servers for the RHODOS Systems, 
Journal of Systems Software, 37(3), pp. 201-214, June 1997. 
[25] Priya Venkitakrishnan – Rollback and Recovery Mechanisms in Distributed 
Systems, University of Texas at Arlington, Research Paper - March 2002. 
[26] Deepak Chandra – Unreliable Failure Detectors for Asynchronous Distributed 
Systems, PhD Dissertation, Cornell University,  May 1993. 
[27] Carole Delporte-Gallet and Hugues Fauconnier - Greatest lower bounds for 
consensus using unreliable failure detectors, Research Index Article 
[28] Jiong Yang, Gil Neige, Eli Gafni – Structured Derivations of Consensus Algorithms 
for Failure Detectors, Proceedings of the seventeenth annual ACM symposium on 
Principles of distributed computing, June 1998  
[29] Anish Arora , Sandeep S. Kulkarni - Designing masking fault-tolerance via 
nonmasking fault-tolerance, IEEE Transactions on Software Engineering, June 1998, 
Volume 24 Issue 6  
[30] Philippe Queinnec and Gerard Padiou – Derivation of fault tolerance properties of 
distributed algorithms, Proceedings of the thirteenth annual ACM symposium on 
Principles of distributed computing August 1994. 
[31] Özalp Babaoğlu - On the reliability of consensus-based fault-tolerant distributed 
computing systems, ACM Transactions on Computer Systems (TOCS) October 1987. 
[32] Gul Agha and Daniel C. Sturman – A Methodology for Adapting to Patterns of 
Faults, Foundations of Ultra dependability, Vol 1., Kluwe Academic, 1994. 


