
 1

Clock Synchronization

Amruth Dattatreya
Computer Science and Engineering

University of Texas at Arlington
dattatre@cse.uta.edu

March 26th 2002

Abstract:

The concept of time is fundamental to our way of thinking. Similarly the distributed
system uses clocks to synchronize between different processes. Accurate and
synchronized clocks are extremely needed and useful to co-ordinate activities between
co-operating processors and therefore very important in a distributed environment.
Although computers usually have a hardware-based clock, most of them are imprecise
and have a substantial drift. Furthermore, these clocks are prone to faults and malicious
resetting. Hence in order to behave as a single, unified computing resource, distributed
systems need a fault-tolerant, clock synchronization service. A clock synchronization
service ensures that spatially dispersed processors in a distributed system share a
common notion of time. This clock synchronization service must deal with communication
delay uncertainties, clock imprecision and drift, as well as link and processor faults. This
paper examines the different ways the clocks are synchronized and the algorithms
implemented. Many of the algorithms proposed for Clock Synchronization take either
software or a hardware approach.

1.Introduction:

Digital computers have become essential to critical real-time applications such as
aerospace systems, life support system, nuclear power plants and computer integrated
manufacturing systems. All these applications demand for maximum reliability and high
performance from computer controllers. The performance to a large extent depends on
the quality of synchronization between the processors. Because of such stringent
requirements Clock Synchronization becomes one of the fundamental problems of
distributed computing [12]. The discrepancy between clock readings is called the tightness
of synchronization.

The basic difficulty in clock synchronization is that timing information tends to
deteriorate over the temporal and spatial axes. A fault free hardware clock, even if
initially synchronized with a standard time reference, tends to drift away from the
standard over a period of time. As a result, an interval of time measured with such a clock

 2

tends to be in error. However, the rate at which the hardware clock deviates from the
standard is bounded by a constant, which is known as maximum drift rate of the clock.
A direct consequence of this phenomenon is that clocks in a distributed system gradually
deviate from each other over a period of time. A clock synchronization algorithm is used
in a distributed system to ensure that the skew that develops between clocks remain
bounded. Usually it is assumed that local clocks have known lower and upper bounds on
their rate of progress with respect to real time. These bounds are called as drift bounds.
In addition, it is also assumed that there are known lower and upper bounds on the time
required to transmit a message. These bounds are called as the message latency bounds.
The essence of all clock synchronization problems is how to use these bounds to obtain
tight synchronization.

This paper is organized as follows: Section 2 discusses some of the algorithms and the
approaches used. Section 3 lists some of the practical uses of synchronized clocks in
distributed system. Finally, Section 4 concludes on Clock Synchronization.

2. Approaches and Algorithms:

2.1. Background:

Synchronized clocks are crucial for many fault-tolerant real time systems. Clocks can be
externally or internally synchronized [9]. A clock is externally synchronized if at any
point in real-time the distance between its value and reference time is bounded by an a
priori given constant called maximum external deviation. A set of clocks is internally
synchronized if at any point in real-time the distance between the values of two correct
clocks in the set is bounded by an a priori given constant called maximum internal
deviation and each clock runs within a linear envelope of real time. Usually loosely
coupled systems use external synchronization and tightly coupled systems use internal
synchronization.

Clock skews that are significantly smaller than the theoretical limit described by
Lundelius and Lynch [5] can be achieved if the requirement of determinism is relaxed and
accept a probabilistic guarantee. This technique is called as the Probabilistic approach
for Clock Synchronization proposed by Cristian [14]. In this approach, the transmission
times of messages are assumed to adhere to some probability distribution and the
transmission times of other messages are assumed to be independent. Under these
assumptions, some guarantees can be made by the synchronization protocol. A guarantee
is said to be probabilistic if it fails to hold for sometimes, but with a failure probability
that can be determined or bounded. A clock synchronization algorithm that provides a
probabilistic guarantee on the maximum clock skew is referred to as a probabilistic clock
synchronization algorithm.

 3

2.2. Cristian’s Probabilistic Algorithm [14][15]:

The idea of probabilistic clock synchronization was proposed by Cristian. This algorithm
is well suited to systems in which one machine acts as a time server and the goal is to
have all the other machines stay synchronized with it.

Both T0 And T1 are measured with the same clock

T0 T1

Fig 2.1

The Cristian algorithm is based on Remote Clock Reading [RCR]. Remote Clock Reading
is used by a machine [Client] to read the clock at a remote machine [Time server] with a
specified minimum accuracy. RCR involves querying a target node for the time on it
clock, i.e. periodically, certainly no more than every δ/2ρ seconds, each machine sends a
message to the time server asking for its current time. That machine responds as fast as it
can with a message containing its current time, CUTC, as shown in the Fig 2.1. The
querying node then estimates time on the target nodes clock from the response received.

As a first approximation, when the sender gets the reply, it can just set its clock to CUTC.
However, this algorithm has two problems. The major problem is that the time must
never run backward. If the senders clock is fast, CUTC will be smaller than the sender’s
current value of clock. Just taking over CUTC could cause serious problems such as an
object file compiled after the clock change having a time earlier than the source that was
modified before the clock change. Such a clock change must be introduced gradually.
Suppose that the timer is set to generate 100 interrupts per second. Normally, each
interrupt would add 10msec to the time. When slowing down, the interrupt routine adds
9msec each time until the correction has been made. Similarly, the clock can be advanced
by adding 11msec at each interrupt instead of jumping it forward all at once. The minor
problem is that it takes a non-zero amount of time for the time server’s reply to get back
to the sender, yet this delay may be large and vary with the network load. A good way of
dealing with it would be to measure it. Both the starting time T0 and the ending time T1
are measured with the same clock and the sender can record accurately the interval
between sending the request to the time server and the arrival of the reply. The best
estimate of the message propagation time is (T0 - T1)/2. When the reply comes in, the

Client

Request

I, Interrupt handling time

Time Server

CUTC

Time

 4

value in the message can be increased by this amount to give an estimate of the server’s
current time. The time estimate can be further improved if it is known approximately how
long it takes the time server to handle the interrupt and process the incoming message.
Then the amount of the interval from T0 to T1 that was devoted to message propagation is
T1 – T0 – I, where I is the interrupt handling time. RCR guarantees that the maximum
estimation error is approximately T – Tmin, where T is the half the response time and Tmin
is the minimum response time.

To improve the accuracy, Cristian suggested making a series of measurements. RCR
repeatedly queries the target node until rapport is achieved. Any measurements in which
T1 – T0 exceeds some threshold value are discarded as being victims of network
congestion and thus are unreliable. The estimates derived from the remaining probes can
then be averaged to get a better value. If there is any constraint on the number of attempts
to achieve rapport, it may never be achieved. Alternatively, the message that came back
fastest can be taken to be the most accurate since it presumably encountered the least
traffic underway and therefore is the most representative of the pure propagation time.
This algorithm is a master-slave algorithm that makes use of RCR to achieve
synchronization. However, resynchronization is not guaranteed, because RCR may fail to
achieve rapport. The Cristain’s Algorithm is a probabilistic algorithm and can hence
guarantee much smaller clock skews than deterministic algorithms.

2.3. Network Time Protocol [NTP][3][13]:

2.3.1 Background:

The Network Time Protocol [NTP], now established as Internet Standard Protocol, is
used to organize and maintain a set of time servers and transmission paths as a
synchronization subnet.

 1 1
 x

 2 2 2

3 3 3 3 3 3 3
 Fig 2.2(a) Fig 2.2(b)

Strata 1

Strata 2

Strata 3

UTC UTC

 5

NTP is built on the Internet Protocol [IP] and User Datagram Protocol [UDP], however
it is readily acceptable to other protocol suites. It is specifically designed to maintain
accuracy and reliability.

In NTP one or more primary severs synchronize directly to external reference sources
such as timecode receivers. Secondary time receivers synchronize to the primary servers
and others in the synchronization subnet. A typical subnet is shown in Fig 2.2(a). The
nodes represent subnet servers, with normal stratum, the accuracy of each time server,
numbers determined by the hop count to the root and the arrows represent the active
synchronization paths and the direction of timing information flow. The lines represent
backup synchronization paths where timing information is exchanged, but not necessarily
used to synchronize the local clocks.

2.3.2. Implementation model:

NTP time servers can operate in one of the three service classes: multicast, procedure-
call and symmetric. These classes are distinguished by the number of peers involved,
whether synchronization is to be given or received and whether state information is
retained. In the typical scenario one or more time servers operating in multicast mode
send periodic NTP broadcasts. The workstation peers operating in the client mode then
determine the time on the basis of an assumed delay in the order of a few milliseconds.
By operating in multicast mode the server announces its willingness to provide
synchronization to many other peers, but to accept NTP messages from none of them.
The multicast mode is intended for use on high speed LANs with numerous workstations
and where the highest accuracies are needed.

In a procedure call mode, a time server operating in a client mode sends a NTP message
to a peer operating in server mode, which then interchanges the addresses, inserts the
required timestamps, recalculates the checksum and optional authenticator and returns the
message immediately. By operating in a client mode a server announces its willingness to
be synchronized by, but not provide synchronization to a peer. By operating in server
mode a server announces its willingness to be synchronized to, but not be synchronized
by a peer. The full generality of NTP requires distributed participation of a number of
time servers arranged in a dynamically reconfigurable, hierarchically distributed
configuration. This is when symmetric mode [active and passive] is used. By operating in
these modes a server announces its willingness to synchronize to or to be synchronized
by a peer, depending on the peer-selection algorithm. Symmetric active mode is designed
for use by servers operating near the leaves of the synchronization subnet. Symmetric
passive mode is designed for use by servers operating near the root.

The transmit process, driven by independent timers for each peer, collects information in
the data base and sends NTP messages to the peers. Each message contains the local
timestamp, together with previously received timestamps and other information necessary
to determine the hierarchy and manage the association. The message transmission rate is
determined by the accuracy of the local clock, as well as accuracies of its peers.

 6

The receive procedure is called upon arrival of NTP messages, which is then matched
with the association indicated by its addresses and ports. This results in the creation of a
persistent association for a symmetric mode or a transient one for the other modes.
When an NTP message is received, the offset between the peer clock and the local clock
is computed and incorporated into the database along with other information useful for
error determination and peer selection.

Fig 2.3: Implementation Model

The update procedure is called when a new set of estimates becomes available. A
weighted voting procedure determines the best peer, which may result in a new
synchronization source. This may involve many observations of a few peers or a few
observations of many peers, depending on the accuracies required. The local clock
process operates upon the offset data produced by the update procedure and adjusts the
phase and frequency of the local clock using different mechanisms. This may result in
either a step-change or a gradual phase adjustment of the local clock to reduce the offset
to zero. The local clock provides a stable source of time information to other users of the
system and for subsequent reference by NTP itself.

NTP provides the mechanisms to synchronize and coordinate time in a large, diverse
Internet operating at different rates. The purpose of NTP is to convey timekeeping
information from a standard primary reference server to other time servers via the
Internet and also to cross check clocks and mitigate errors due to equipment or
propagation failures. Experiments have shown that accuracies of 10s msec over Internet
and 1msec on LAN using NTP can be achieved.

Local Clock
Process

Receive
Process

Update
Procedure

Transmit
Process

NETWORK

 7

2.4. Lamport’s Logical Clock Synchronization [4][15]:

For many purposes, it is sufficient that all machines agree on the same time. It is not
essential that this time also agree with the real time. For certain class of algorithms, it is
the internal consistency of the clocks that matters, for which it is conventional to speak of
the clocks as Logical Clocks. Clock synchronization [internal and external] cannot be
sufficiently precise in order to use timestamping for the determination of total orderings
in different processes in a distributed system. Lamports algorithm is examined here for
synchronizing a system of logical clocks that can be used to totally order the events.
Lamport’s approach to logical clocks is used in many situations in distributed systems
where ordering is important but global time is not required.

To synchronize logical clocks, Lamport defined a relation called happens-before. The
expression a b is read “ a happens before b” and means that all processes agree that
first event ‘a’ occurs, then afterward, event ‘b’ occurs. The happens-before relation can
be observed directly in two situations:

• If ‘a’ and ‘b’ are events in the same process and ‘a’ occurs before ‘b’, then
 a b is true.

• If ‘a’ is the event of a message being sent by one process and ‘b’ is the event of
the message being received by another process, then a b is also true.

Happens-before is a transitive relation. If two events x and y, happen in different
processes that do not exchange messages, then x y is not true, but neither is y x.
These events are said to be concurrent. A way of measuring time is needed such that for
every event, ‘a’, we can assign it a time value C(a) on which all processes agree. These
time values must have the property that if a b, then C(a) < C(b). Similarly, if ‘a’ is
the sending of a message by one process and ‘b’ is the reception of that message by
another process, then C(a) and C(b) must be assigned in such a way that everyone agrees
on the values of C(a) and C(b) with C(a) < C(b). In addition, the clock time C, must
always go forward (increasing), never backward (decreasing). Corrections to time can be
made by adding a positive value, never by subtracting one.

Consider three processes as shown in the Fig 2.4

0
6

12
18
24
30
36
42
48
54
60

0
8

16
24
32
40
48
56
64
72
80

0
10
20
30
40
50
60
70
80
90
100

0
6
12
18
24
30
36
42
48
70
76

0
8
16
24
32
40
48
61
69
77
85

0
10
20
30
40
50
60
70
80
90

100

A

B

A

C

D

B

C

D

 8

The processes run on different machines, each with its own clock, running at its own
speed. As can be seen from the figure, when the clock has ticked 6 times in process 0, it
has ticked 8 times in process 1 and 10 times in process 2. Each clock runs at a constant
rate, but the rates are different due to differences in the crystals. At time 6 process 0
sends message A to process 1. The arrival rate of this message depends on the clock that
you choose. In any event, the clock in process 1 reads 16 when it arrives. If the message
carries the starting time, 6, in it, process 1 will conclude that it took 10 ticks for the
message to reach its destination. Accordingly, message B from process 1 to process2
takes 16 ticks, which is also a plausible value. Message C from process 2 to process1
leaves at 60 and arrives at 56. Similarly, message D from process 1 to process 0 leaves at
64 and arrives at 54. These values are clearly impossible. It is this type of situation that
should be prevented.

Lamport’s solution follows directly from the happens-before relation. Since C left at 60,
it must arrive at 61 or later. Therefore, each message carries the sending time according
to the sender’s clock. When a message arrives and the receiver’s clock shows a prior to
the time the message sent, the receiver fast forwards its clock to be one more than the
sending time. In fig 2.4(b) we can see that C now arrives at 61. Similarly D arrives at 70.
With one small addition, this algorithm meets our requirements for global time. The
addition is that between every two events, the clock must tick at least once. If a process
sends or receives two messages in quick succession, it must advance its clock by at least
one tick in between them. In some situations, an additional requirement is desirable: no
two events ever occur at exactly the same time. To achieve this goal, we can attach the
number of the process in which the event occurs to the low-order end of time, separated
by a decimal point. Thus if events happen in processes 1 and 2, b0th with time 25, the
former becomes 25.1 and the latter becomes 25.2

This algorithm gives way to provide a total ordering of all events in the system. Many
other distributed algorithms need such an ordering to avoid ambiguities.

3. Uses of Synchronized Clocks:

3.1. At-most-once Messages

Synchronized Clocks is used in the SCMP protocol that guarantees at-most-once delivery
of messages [6]. Implementing at-most-once semantics is typically done by having each
message receiver maintain a table containing information about “active” senders that
have communicated with the receiver recently. When a message arrives, if there is
information about the sender in the table it is used to determine whether or not the
message is a duplicate. If there is no information, there are two choices: either accept the
message or reject it. If the message is accepted, there is a chance of accepting a duplicate.
This chance can be made arbitrarily small by keeping information about senders long
enough. The alternative of rejecting the message guarantees that no duplicates will ever

 9

be accepted. However, it gives rise to a problem that can be solved by means of a
handshake.

The SCMP protocol avoids the handshake between the sender and receiver by using
synchronized clocks. The idea is the receiver remembers all “recent” communications. If
a message from a particular sender is “recent,” the receiver will be able to compare it
with the stored information and decide accurately whether the message is a duplicate, If
the message from the sender is “old,” it will be tagged as a duplicate even though it may
not be, but this case is very unlikely. Thus the system will never accept a duplicate but it
may occasionally reject a non-duplicate. For the scheme to work, receivers need to know
whether a message is “recent.” When a node sends a message, it timestamps the message
with the current time of its clock. When the message arrives at the receiver, it is
considered recent if its timestamp is later than the receiver’s local time minus the
message lifetime interval ρ; otherwise it is old. The message lifetime interval must be big
enough so that almost all messages will arrive within ρ time units of when they were

Synchronized clocks allow the protocol to establish a system-wide notion of “recent.”
Clocks are used to avoid communication and to save storage at receivers (only
timestamps of recent messages need be saved). Timestamps identify messages that have
already arrived, the identification is only approximate, since a single timestamp stands for
all earlier messages, and therefore sometimes a message that is not a duplicate will be
rejected. If clocks get out of synch, there is no danger of a duplicate message being
accepted, but recent messages may be flagged as duplicates. If a node’s clock is slow, its
messages are more likely to be flagged as duplicates by other modules; if its clock is fast;
it is more likely to flag messages from other modules as duplicates.

3.2. Cache Consistency:

The next use of Synchronized Clock concerns systems in which servers provide persistent
storage for objects and programs that use those objects run at client workstations [6][8]. To
provide reasonable response time to clients, copies of persistent objects are cached at the
workstations so that clients can use them locally when there is a cache hit. As is the case
in any system with cached copies, cache consistency is a concern. One possibility is to
use “leases”. This concept is used in a file system, so the objects in question are files. In
the initial use of leases, the caches were writethrough, newer systems use write-behind.
This cache behavior leads to a difference in how leases are used. The systems in fact only
require synchronized clock rates.

In the case of the write-through cache, leases work as follows. Each client workstation
obtains a lease for a file when the file is copied into its cache. The lease contains an
expiration time E, when E has been reached, i.e., when E > time(client) - ε the client
stops using the file. The client can then request that a lease be renewed by asking the
server for a new expiration time. When a client modifies a file, the modification goes
directly to the server (since this is a write-through cache). The server can do the
modification immediately if there are no other outstanding leases on the file. Otherwise

 10

it communicates with the clients holding the leases, requesting them to give them up. The
modification is done when all leases have been relinquished. Of course, it is possible that
a current holder of a lease might not respond, either because of a network problem, or
because of a crash of its node. In this case, the system will wait until the expiration time
of the lease, and then do the modification. In write-behind caches there are two kinds of
leases, read leases and write leases, and a client must use the file in accordance with its
lease. Thus a client with a read lease can only read the file, while a client with a write
lease can both read and write the file. Each lease has an expiration time as discussed
above. The only difference is that competition for leases now occurs when a client
requests a lease (rather than when a file is written), If a client needs a lease that conflicts
with leases held by other clients, the server sends messages to the other clients requesting
them to relinquish their leases.

The invariant of interest in a system with leases is, each time a client uses a file, it has a
valid lease for that file. Validity is determined by using the client’s clock as an
approximation of the time of the server’s clock. If the client’s clock is slow, or the
server’s clock is fast the invariant will not hold. In this case, the client may continue to
use the file after its lease has expired at the server. In the absence of the use of
synchronized clocks there are two possibilities for maintaining cache consistency, neither
of which is desirable. One alternative is for the client to check the validity of each file
use. The other alternative is for the server to not invalidate a client’s lease until it hears
from the client. Thus the system is presented with two unattractive choices: either depend
on assumptions such as synchronized clocks that might fail causing inconsistencies, or
sacrifice performance. Choosing to improve performance is a valid position, given the
low probability of clocks getting out of synch.

4. Discussion and Conclusion:

Clock Synchronization is an important matter in any fault-tolerant distributed system and
has been extensively studied in recent years. A clock synchronization algorithm lets
processors adjust their clocks, to overcome the effects of drifts and failures. Some of the
relevant works are focused here:

A number of works focus on handling processor faults, but ignore drifts, as drift rates are
quite small. A model of time-adaptive self-stabilization suggested by Kutten and Patt-
Shamir has the goal to recover from arbitrary faults at ‘f’ processors in time that is a
function of ‘f’ but the main problem being it assumes periods of no faults. Among the
works dealing with both processor faults and drifts, most assume that once a processor
failed, it never recovers and there is a bound ‘f’ on the number of failed processors
throughout the lifetime of the system. The Network Time Protocol, designed by Mills,
allows recoveries, but without analysis and proof. Furthermore, while authenticated
versions of Mills were proposed, so far these do not attempt recovery from malicious
faults. The probabilistic internal clock synchronization algorithm suggested by Fetzer and
Cristian gives a probabilistic guarantee of attaining clock skews that are significantly

 11

smaller than the theoretical limit. Specifically, the algorithm tries to minimize the change
made to the clocks in each synchronization operation. Using such small correction may
delay the recovery of a processor with a clock very far from the correct one. The
Lamports algorithm introduced the concept of “happening-before” and used logical
clocks to achieve synchronization in distributed environment. The total ordering defined
is somewhat arbitrary. It can produce anomalous behavior if it disagrees with the ordering
perceived by the systems users.

The various solutions proposed are difficult to compare because they are presented under
different notations and assumptions. Additional difficulty arises because of slight
differences in the assumptions made by different synchronization algorithms. Hence we
will classify the algorithms based on the approach namely the software or the hardware
approach.

The software approach is flexible and economical. The software algorithms require nodes
to exchange and adjust their individual clock values periodically. The clock values are
exchanged via message passing solely for synchronization. Because they depend on
message exchanges, the worst case skews guaranteed by most of these solutions are
greater than the difference maximum and minimum message transit delay between any
two nodes in the system.

The hardware approach, on the other hand, uses special hardware at each node to achieve
a tight synchronization with minimal time overhead. However, the cost of additional
hardware precludes this approach in large distributed systems unless a very tight
synchronization is essential. Hardware solutions also require a separate network of clocks
that is different from the interconnection network between the nodes of the distributed
systems.

Because of these limitations in the software and hardware approaches, researchers have
begun investigating a hybrid approach. A hardware assisted software synchronization is
proposed that strikes a balance between the hardware requirement at each node and the
clock skews attainable.

5. References

1. B.Barak, A.Herzberg, D.Naor and E.Shai, “Clock Synchronization with Faults
and Recoveries”.

2. F.Cristian and C.Fretzer, “Probabilistic Internal Clock Synchronization
Algorithm” Distributed Computing, 3:146-158, Press/McGraw-Hill, 1990.

3. D.L.Mills, “Internet Time Synchronization: The Network time Protocol”. IEEE
Trans. Comm, 39(10): 1482-1493, Oct 1991.

4. L.Lamport “ Time, Clocks and the Ordering on events in a distributed system”.
Comm. ACM, 21(7): 558-565, July 1978.

 12

5. J.Lundelius and N.Lynch. “An upper and lower bound for clock synchronization”.
Information and Computation, 62(2-3): 190-204, 1984.

6. B.Liskov. “Practical uses of synchronized clocks in distributed systems”.
Distributed Computing, 6: 211-219, 1993. Invited talk at the 9th Annual ACM
symposium on principles of Distributed Computing, 1990.

7. B.Patt-Shamir and S.Rajsbaum. “ A theory of clock synchronization”. In
proceedings of 26th Annual ACM symposium on Theory of Computing, Montreal,
Canada, pages 810-819, May 1994.

8. B.Simmons, J.L Welch and N.Lynch. “ An overview of clock synchronization”.
Research report RC 6505(63306), IBM, 1998.

9. C.Fetzer and F. Cristian. “ Integrating external and internal clock
synchronization”. In proceedings of the Thirteenth symposium on Reliable
Distributed Systems, Dana Point, CA Oct 1994.

10. P.Ramanathan, K.G. Shin and R.W. Butler. “ Fault-Tolerant clock
synchronization in Distributed Systems”. IEEE Trans. Computers, Vol C-37,
No11, Nov 1988.

11. T.K. Srikanth and S.Toueg. “Optimal clock synchronization”. Journal ACM, Vol
34, No 3, July 1987.

12. Boaz Patt. “ A Theory of Clock synchronization”.
13. http://www.eecis.udel.edu/~ntp/database/time_pub.html
14. F.Cristian. “ Probabilistic clock synchronization”. Tech report RJ 6432(62550),

IBM Almaden Research Center, Sept 1988.
15. Andrew.S.Tanenbaum and Maarten van Steen. “Distributed Systems: Principles

and Paradigms”.

