
 1

Distributed Service Provider Simulation using CORBA

Visvasuresh Govindaswamy, Saurabh Maitra, Mitvin Shah, Viswanath Veerappan

University of Texas at Arlington
416 Yates Street

Box 19015
Arlington, TX
76019-0015

victor@uta.edu, maitra@cse.uta.edu, mshah@cse.uta.edu, vxv7378@omega.uta.edu,

Abstract

 This paper presents the current and future work on a Distributed Service Provider Simulation
(DSPS) using CORBA that keeps track of available parking slots and tables in restaurants in a dynamic
fashion. The communication architecture of the DSPS simulator is based on the Object Management
Group’s (OMG) Common Object Request Broker Architecture (CORBA) standard. Starting with an
overview of the project requirements, the CORBA middleware, a comparison study between CORBA and
the other alternative, Distributed Component Object Model (DCOM), and the software modules of the
DSPS environment are described with respect to project requirements. With the DSPS simulating
restaurant reservation system, performance measurements evaluating critical design and implementation
decisions are described. The main aspects of the performance analysis are the attained application
performance using CORBA as communication middleware, and the scalability of the overall approach. The
evaluation shows the appropriateness of the design of the DSPS environment and the derived software
architecture, which is flexible and open to further extensions. Moreover, CORBA provides a suited
platform for distributed interactive simulation purposes because of the adequate performance, high
scalability, and the high-level programming model, which allows rapidly developing and maintaining
complex distributed applications with high-performance requirements.

Keywords: CORBA, Distributed Service Provider Simulation (DSPS), Distributed System, Middleware.

1. Introduction

 The ever-changing dynamic and sudden growth of today’s networks has increased the
need of accessing network services that are provided by servers. This has led to the development
of two important requirements [1, 2]. It has demanded the growth of service providers to provide
services for the clients who request these services. As a result, it has become necessary for a
client to request for certain services with some kind of modality such as payment and/or
authentication in order to possess such services from these service providers. The reliance of
clients have increased dramatically on these service providers that it has become necessary for the
service provider to be distributed, reliable, scalable and powerful enough to service incoming
requests at an acceptable performance level. As for the client, it is ideally for it to be general-
purpose in nature. All it has to possess is an engine to allow it to access the service provider.
Hence, a service provider is a host that provides a set of clients with a certain number of remote
services.

 2

 This paper presents a Distributed Service Provider Simulation (DSPS) that keeps track of
available parking slots and tables in restaurants in a dynamic fashion. The following scenario has
been considered:
 The central business area of a city has several restaurants and parking places distributed
geographically. It’s very hard to get a parking slot and a table during lunchtime. It’s even harder
to get a parking slot close to a restaurant with available tables. Imagine a ‘service’ on the
distributed computing environment that keeps track of available parking slots and tables in
restaurants in a dynamic fashion. A user can contact this ‘service’ through his palm device (or
cell phone). Basically the user tells the service where she/he is, what kind of cuisine she/he likes
and a time limit. The ‘service’ processes the request and finds a parking slot – restaurant match so
that the distances (driving and walking) and waiting time are minimized. The scenario assumes
availability of GPS enabled devices, PCs, cameras, sensors etc.
 The paper is organized as follows: in Section 2, the past literature on CORBA and service
providers is reviewed. In Section 3, the CORBA middleware is presented, which is followed by a
comparison study between CORBA and the other alternative, Distributed Component Object
Model (DCOM) in Section 4. In section 5, the software modules of the DSPS environment are
described with respect to project requirements. Section 6 discusses the distributed aspects of the
design. Section 7 focuses on performance measurements evaluating critical design and
implementation decisions, and analysis. The conclusion is presented in Section 8 with current
work, along with directions for future work.
 In this paper, the reader is assumed to have a basic knowledge of the fundamentals of the
object-oriented paradigm, the Java programming language [11, 13] and CORBA [10, 12].

2. Literature review
 This section looks into past research into service providers and/or research that are
done at the crossing of the two main technology streams of the Java and object-oriented
technology, especially Java and CORBA or CORBA-like systems.

2.1. Service Providers

 Carchiolo et.al [1] present an approach based on mobile agents for the implementation of
a platform for an Internet service provider. The aim of the approach is to implement a service
provider that can provide services that are reliable, low-cost and flexible. The main emphasis here
is to provide clients who do not have particular hardware characteristics and do not need special
software to access the service they require but are only equipped with an engine for network
access.

2.2. CORBA vs. DCOM

 Janson [3] in his thesis, studies in detail the differences between Object Management
Group’s (OMG) Common Object Request Broker Architecture (CORBA) and Microsoft’s
Distributed Component Object Model (DCOM). In order to make the right choice between these
technologies, the authors describe both technologies thoroughly and compare them along with
practical performance tests. The ease of deployment was also considered.

 3

3. ORB Architecture

 The conceptual architecture [5, 6, 7, 8, 9] of an ORB is shown in figure 1. The CORBA
communication middleware provides the transparency and the information passing technology.
The object implementation is made available through the server skeleton, which is used by the
object adapter to route incoming requests to their implementations. The object adapter (OA) is
responsible for providing basic functionality for objects and servers, such as processing object
references, activation and deactivation of objects and method invocations. An implementation can
use the OMG-defined Basic Object Adapter (BOA), or use a custom OA for specialized purposes
such as accessing database objects. The ORB Interface provides access to the interface and
implementation repositories as well as general functionality such as the conversion of objects to
strings and vice versa. This interface is identical for all implementations and can be accessed by
clients as well as servers. Clients issue requests either through client stubs, the Interface
Definition Language (IDL) or through the Dynamic Invocation Interface.

ORB Core

Object implementation

Client

Dynamic
Invocation

Identical for all orb implementations

For each object type

Server
skeleton

ORB
Interface

Client
(IDL)
stubs

Object
adapter

Fig. 1. The Structure of ORB Interfaces

4. Comparison between CORBA and DCOM

 This subsection lists the main differences [3, 14, 15] between CORBA and DCOM.

Table. 1. CORBA vs DCOM

 CORBA DCOM

Architecture Dominant remoting architecture Dominant component architecture

Strategy of
Implementation

Horizontal, since OMG aim to
create portable distributed
applications for many different
vendors’ platforms.

Vertical, since Microsoft wants to
control the technology from
all the way from the operating
system up to the end-user
applications

Performance

Similar to each other.

Programming CORBA products for several Applications are mostly developed in

 4

Languages

languages, for instance
Java, C/C++, Smalltalk,
COBOL and Ada.

C++ and Visual Basic, and some
developers use J++.

Learning Curve

If a programmer knows Java, it is easier to learn to use COM+ than
CORBA, since the COM+ code is almost like ordinary Java while
CORBA adds special code. Building a large distributed application with
CORBA requires more effort and knowledge from the programmer.

Development Tools

Tools are less sophisticated

Tools are more sophisticated

Platforms

Any platform Run on Windows and only Windows

5. Project Implementation Details
 The hardware and software details are given in sections 5.1 and 5.2 respectively and
section 5.3 covers the architecture used in the project.

5.1. Hardware Details
Machine: Gamma - SUN Ultra Enterprise 3000 system
Processor: UltraSPARC at 248 MHz
Ram: 4 GB
Connection: 100 Mbps Ethernet

5.2. Software Configuration Details
Programming language: Java
Operating system: Sun Solaris
CORBA ORB: Orbix 2.3c

5.3 Architecture of project
 Distributed Service Provider Simulation (DSPS) using CORBA represents a distributed
system that keeps track of available parking slots and tables in restaurants in a dynamic fashion.
Figure 2 shows an overview of the DSPS environment.

5.3.1 Software Modules
 The architecture identifies the following modules to represent each functional unit.

• Domain Server – The server is a one-point contact to the client and coordinates the
overall process. It communicates with the other components like parking lots and
restaurants registered with it and other domain servers to respond to the requests from a
client

• Parking Lot and Restaurant – These objects simulate the functioning of restaurant and
parking lot. Each such object is registered with one domain server.

• GPS and Sensor – The GPS object tracks the location of the client. The sensor objects
continuously monitor the availability of slots/tables in the parking lots/restaurants and
duly inform the respective objects using callback functions, which in turn, keep the server
updated.

 5

Client: User
Client: User

Client: User

Restaurant object Parking Lot object

Server

Server
Server

Fig. 2. Overview of the DSPS environment

5.3.2 General Working
 The client, that is, the user informs the service where she/he is, what kind of cuisine
she/he likes and a time limit. The server processes the request and finds a parking slot – restaurant
match so that the distances (driving and walking) and waiting time are minimized.
 The entire business domain is divided into several domains. A server represents each of
the domains. When the request arrives on the server side, each server checks whether the
coordinates and preferences fall within its domain. The server considers the objects in its own
domain and tries to find the nearest restaurant and parking lot as per the requirements. In the
event that the server fails to find any restaurant, the computation is migrated to other domain
servers by forwarding the client requirements. Upon finding a restaurant/parking lot as per the
request, the domain server makes a reservation at the respective functional unit by invoking their
update methods. Multiple clients are serviced by making the domain severs multi-threaded.
 The working of the system can be understood better with the sequence diagram shown in
Figure 3.

5.3.3. ORB Interface Definition

 The data structure and the interface definitions in the IDL file used in the implementation

are given in Figure 4.

6 Distributed system features in the DSPS architecture

 This section discusses aspects of the DSPS architecture vis-à-vis the features required of
a distributed system.

6.1 Information sharing

 Information sharing is required in the system to overcome the unavailability of restaurant
or parking lot in the same domain as the client, as per the client’s needs. In the design, it is
realized between domain servers whenever a client request is forwarded from one domain server
to others in order to find the nearest restaurant and parking lot. It is also achieved when one
server becomes overloaded and it has to transfer the request to a nearby server. The information
shared in these cases is the client’s location and requirements and necessary domain data.

 6

Active Sequence Diagram Background Sequence Diagram

Fig. 3. Sequence diagrams for the design

6.2 Transparency

 The architecture provides location and performance transparency by ensuring that client,
at all times, is unaware of the identity or location of the domain server that services its request.

6.3 Scalability and Flexibility

 Scalability [2] of a system is the ability of the system to be able to find a solution that
works when the size of the problem grows. Flexibility can be interpreted to be the ability of a
system to adapt to dynamically changing situations. In this project, a domain server can register
any number of parking lots and restaurants. Multiple client requests can be handled due to the
multithreaded nature of the domain servers. The flexibility in the system is limited due to the fact
that the server does not keep track of the client after the request is serviced.

6.4 Fault tolerance

 The current design does not provide fault tolerance in the event of server/functional unit
crashes. However, it is proposed that it can be introduced in the system by checking the alive
status and the subsequent distribution of domain data and computation to other servers. It is also
proposed to include active exception handling and recovery mechanisms by providing call back
methods on the other domain servers to regain the lost information and continue servicing client
requests at the just failed domain server. The client, which had been in contact with a failed
server, will catch an exception and get the reference to another domain server for further
communication.

 7

 Fig. 4. IDL file for the implementation

7 Introduction of the Tests

 This section discusses the metrics and tests that are being applied to the simulation.

7.1 Calculation of Response Time

 The response time is calculated as follows: Time t1 is the time just before the client
makes a request while t2 is the time for the client to receive an answer from the server for that
particular request. The difference between t1 and t2 is the response time for that particular
request. Hence,
t2 – t1 = tOverheadSend + tCommunication + tOverheadReceiveRequest + tExecution + tOverheadReturn + tCommunication +
tOverheadReceiveResult
tOverheadSend : Time required for marshalling the input parameters and putting the request on the
“wire”,

 8

tCommunication : Time required on the wire for the client to send the request to the server and vice
versa,
tOverheadReceiveRequest : Time required for receiving the request and unmarshalling it.
tExecution : Time required for executing on the server
tOverheadReturn : Time required for marshal the result and putting the result on the “wire”,
tOverheadReceiveResult : Time required for receiving the result and unmarshalling it.

7.1.1. Assumptions for the tests

 Since the system is implemented using the Java language, the resolution of the clock is
limited to milliseconds. This implies that the difference between times t2 and t1is too small to be
measured over one invocation. Thus it is necessary to take an average over multiple invocations.
The clock is started when the Java method System.currentTimeMillis() is called before the first
invocation and is stopped after the nth invocation. The collected time is then divided by n to get
the average roundtrip time for one invocation. The following techniques [13] have been used
and will be considered when calculating the roundtrip time for these tests:
• The Java method System.currentTimeMillis() takes some time when it is called by another
function. This will cause an increment in the response time when measuring over a period of
time. This increment needs to be subtracted from the response time.
• The time it takes for a loop containing multiple requests need to be considered and measured.
It should also be subtracted from the response time.
• When a method is invoked on a servant for the first time; it will take a longer time since there
is an overhead. Measurements should be taken after the first invocation, thereby eliminating this
overhead.

7.1.2. Multi Clients
 The objective here is to detect contention by varying the number of clients sending their
requests to the same server. Their response is collected and compared. All the clients call the
same servant since the domain servers; spawn a new thread for servicing each request by the
client, Figure 5 shows a schematic model of this scenario.

Client

Client

Client

Client

Client

Thread

Thread

Thread

Thread

Thread

Servant

Servant Process

Server

Fig. 5. Schematic model of the Multi Client Test

 9

7.2. Results

 This section shows the preliminary results of two scenarios obtained during scalability
tests.

7.2.1. First Scenario

 Here, the response time is calculated by scaling the number of Parking Lot objects while
keeping the number of Servers to 4 and the Restaurant objects to 1. The results are shown in
figure 6. It shows that the rate of increase decreases as the number of Parking Lots is scaled up.

Response Time When Number of Parking Lots is
Scaled (No of servers = 4 and Restaurants = 1)

0

5

10

15

20

25

5 10 15 20 25

Number of Parking Lots

Ti
m

e
(m

s)

Fig. 6. Response Time when number of Parking Lots is scaled up

7.2.2. Second Scenario

 Here, the response time is calculated by scaling the number of Restaurant objects while
keeping the number of Servers to 4 and the Parking Lot objects to 1. The results are shown in
figure 7. It shows that the rate of increase decreases as the number of Restaurants is scaled up.

 10

Response Time When Number of Restaurants is
scaled (No of servers = 4 and Parking Lots = 1)

0

2

4

6

8

10

5 10 15 20 25 30

Number of Restaurants

Ti
m

e
(m

s)

Fig. 7. Response Time when number of Restaurants is scaled up

Description of procedure

1. Each client calculates the start time.
2. Each client calculates the elapsed time.
3. Each client displays the response time.

8. Conclusion, Present and Future Work

The need for simulation frameworks to be transparent, portable and extensible
makes the choice of distributed object technology and a good design to be crucial.
Location transparency in the architecture is provided by the fact that the client is unaware
of the server from which the response is obtained. Performance transparency is achieved
by forwarding client requests from an overloaded server to the next nearest server that
can continue with the computation. The distributed service provider implemented in this
project shows that the middleware used for the system has a major role in deciding how
well the system performs in terms of transparency, scalability, response time and other
factors. The current design is scalable as the parking lots and restaurants can be
dynamically registered with the domain servers. Also, multiple clients can be serviced
simultaneously as the domain servers are multithreaded. Thus, the service provider in this
project has provisions for the parking lots and restaurants to register with their respective
servers and the client can issue requests to the servers. Performing transactions, handling
of errors and server activations are some of the other issues that can be handled using
CORBA. Future work is to include improvement in fault tolerance of the system and
dynamic load balancing between servers by introducing more functions in the server
interface of the IDL file. Error handling procedures and security issues are also being
investigated in order to improve the robustness of the implementation.

 11

9. References

[1] V. Carchiolo, M. Malgeri, G. Mangioni, “An Agent Based Platform for to Service Provider”, in
Proceedings of 2nd IMACS International Conference on Circuits, Systems and Computers (CSC'
98), Piraeus (Greece), October 26-27-28, 1998.

[2] S. Maffeis: “Adding Group Communication and Fault Tolerance to CORBA”, In: Proceedings of the
USENIX Conference on Object-Oriented Technologies, Monterey, CA, June 1995.

[3] F. Janson, and M. Zetterquist, “CORBA vs. DCOM”, Master Thesis, Technical Report, The Royal
Institute of Technology, Kungliga Tekniska Högskolan.

[4] Object Management Group: OMA: Object Management Architecture Guide, Revision 2.0.
http://www.omg.org

[5] Object Management Group and X/Open: The Common Object Request Broker: Architecture and
Specification, Revision 1. http://www.omg.org

[6] Object Management Group: Common Object Services Specification, Volume I. http://www.omg.org

[7] Object Management Group: Common Object Request Broker: Architecture and Specification,
Revision 2.0. http://www.omg.org

[8] Object Management Group: ORB Portability Enhancement RFP. OMG Document number 95-6-26.
http://www.omg.org

[9] Object Management Group: Common Facilities RFP3 -- Data Interchange Facility and Mobile
Agent Facility. OMG Document Number 95-11-3. http://www.omg.org

[10] Jon Siegel et al.: CORBA Fundamentals and Programming. John Wiley & Sons, 1996.

[11] Sun Corporation: The Java Programming Language. http://java.sun.com

[12] J. Buford: CORBA and WWW: On a Collision Course. (position paper) Joint W3C/OMG Workshop
on Distributed Objects and Mobile Code. Boston, June 1996.

[13] A. Kari, L. Casper and S. Reijo. “Process Enactment Support in a Distributed Environment”, WET
ICE '95, IEEE Fourth Workshop on Enabling Technologies: Infrastructure for Collaborative
Enterprises, Berkeley Springs, West Virginia, April 20-22, 1995.

[14] P. Chung, H. Yennun, S. Yajnik, D. Liang, J. Shih, C. Wang, Y. Wang. “DCOM and CORBA
Side by Side, Step by Step, and Layer by Layer”,
http://www.cs.wustl.edu/%7Eschmidt/submit/Paper.html [2000, August 30].

[15] J. Pritchard. 1999. COM and CORBA Side by Side. ISBN: 0-201-37945-7. United States of America.
Addison Wesley Longman, Inc.

