
Distributed Computing Environment using DCOM

Gaurav Pancholi, Jyoti Jacob, Keshavaprasad Malavalli, Saishankar Madanogolapan
Computer Science and Engineering

The University of Texas at Arlington
{pancholi, jacob, malavall, madanogo}@cse.uta.edu

April 30, 2002

Abstract

Distributed Computing Environment (DCE) is a widely accepted set of tools for
developing and deploying multi-platform, secure, enterprise-wide distributed
computing applications. Distributed Component Object Model (DCOM)
technology introduced by Microsoft provides a framework for developing
distributed components. This paper describes an efficient implementation of a
Distributed Computing Environment using the DCOM technology. The
application covers major issues concerning a distributed environment like fault
tolerance, load balancing and security. The paper also has a brief comparison of
the DCOM with CORBA, a popular alternative for distributed component
development.

Keywords: Distributed Computing Environment application, DCOM.

1 Introduction

The high volume of networked computers, workstations, LANs has prompted users to move
from a simple end user computing to a complex distributed computing environment. This
transition is not just networking the computers, but also involves the issues of scalability,
security etc. A Distributed Computing Environment herein referred to, as DCE is essentially an
integration of all the services necessary to develop, support and manage a distributed computing
environment [1]. A distributed application is an application whose components reside on more
than on computer on a network, with the network typically composed on diverse computers and
operating systems. Middleware is a software layer that simplifies the construction of distributed
applications by providing standardized mechanisms that distributed components can use to
communicate. Many of the innovative features of DCE have been incorporated into two most
popular middleware technologies, Distributed Component Object Model (DCOM) by Microsoft
and Common Object Request Broker Architecture (CORBA) by the Object Management Group.

The paper describes an application based on DCE specification, build using the Microsoft
DCOM technology. Microsoft first came up with a document structuring technology known as
Object Linking and Embedding (OLE), which was later, transformed into a more generic object-
oriented technology called Component Object Model (COM). COM is used to define common

interfaces between software components residing on same computer. To create a true
middleware product Microsoft extended COM to support component residing on different
computers and called it Distributed COM or DCOM. DCOM is shipped with Windows NT 4.0
onwards and is available as an add-on for Win 95\98. DCOM provides a clear separation
between the interface on an object and the implementation of an object [5]. This allows
flexibility during development, since objects can be implemented in different ways or even in
different languages for different components of the network.

Section 2 provides a very brief overview of DCE, Section 3 deals with DCOM and DCOM
architecture in brief. Project description is provided in Section 4, Section 5 deals with project
design and the implementation prototype is discussed in Section 6. Section 7 has a technology
comparison between DCOM and CORBA highlighting the features of the two popular
middleware technologies in the market, Section 8 had discussion and conclusions drawn.

2 Distributed Computing Environment (DCE)

DCE is an integration of all the services necessary to develop, support and manage a distributed
computing environment. The high volume of networked computers, workstations, LANs has
prompted users to move from a simple end user computing to a complex distributed computing
environment. The present day computing industry depends on the efficient usage of resources.
So instead of duplicating the resources at every node of computing, a remote method of
accessing the resources is more efficient and saves costs. A DCE Provides a Global Computing
Environment, which can interoperate with other services like DNS and X.500 [1]. This sort of
global interoperability provides the much-needed interface for Write Once Run Anywhere
applications. Also the suite of components is completely integrated and interoperable, which
facilitates the networking of two systems for processing even though they have different
hardware and software configurations.

The DCE cloud refers to the distributed computing environment tools that facilitate distributed
computing. The DCE cloud consists of the following components [2]:
a) Distributed File Service
b) Distributed Time Service
c) Security Service
d) Cell Directory Service
e) Threads Service

All these services are achieved by the use of Remote Procedure calls (RPC) [3].

3 DCOM – An Overview

DCOM is a Microsoft technology for distributed software component development. DCOM is an
abbreviation for Distributed Component Object Model. Microsoft introduced the technology in
1996, shortly after COM (Component Object Model) was introduced [4]. Using COM,

applications can be built using many binary objects. DCOM is an extension to COM, wherein
applications can be build using many COM objects that may reside on different machines.

3.1 DCOM Architecture

Since DCOM is an extension of COM, the mechanisms used for client-component interaction is
similar to that in COM. COM distinguishes between three different interactions [6].

1. First type of interaction is when the client and the component reside in the same process.
In this case the client can directly call the methods in the component without any
overhead.

2. The second case in when the client and the component are in different processes. In this
case the client has to use some form of inter-process communication. COM provides this
mechanism; it takes the client calls and forwards them to the component in another
process.

3. In the third case the client and the component are on different machines. Here DCOM
uses a network protocol for communication, neither the client nor the component may be
aware of the physical distance.

This section describes the underlying architecture of DCOM as shown below.

In order for components to communicate, they are assigned a 128 bit globally unique identifier
(GUID). To create a COM object several functions like “CoCreateInstance” provided in the
COM library can be used [7]. The COM libraries search the registry for appropriate binary code,
create the instance and return the interface pointer. In case of DCOM the components may reside
on a remote machine. In this case, the client needs to know location of the machine where the
component is. Once the server address is known the Service Control Manager (SCM) on the
client contacts the SCM on the server and creates the object.

Client Proxy Component Stub
Security DCE RPC
Provider
 Protocol Stack

DCOM network
protocol

OLE 32

SCM

OLE 32

SCM

CoCreateInstance CoCreateInstance

RemoteActivation Remote Activation

DCOM Architecture

Security DCE RPC
Provider
 Protocol Stack

A component can be either in the form of a library file (DLL file) or can be an executable. A
DLL component cannot run by itself, a surrogate process is created on the component side within
which the component can run. Each interface is given a 128 bit globally unique identifier
(GUID) [6].

3.2 Date transfer between the clients and components

To pass parameters between distributed clients and servers, DCOM uses a technique knows as
marshalling\unmarshalling. COM provides sophisticated mechanisms for marshaling and
unmarshaling method parameters that are build on the remote procedure call (RPC)
infrastructure defined as part of the DCE standard. DCE RPC defines a standard data
representation for all relevant data types, the Network Data Representation (NDR). In order for
COM to be able to marshal and unmarshal parameters correctly, it needs to know the exact
method signature, including all data types, types of structure members, and sizes of any arrays in
the parameter list. This description is provided using Interface Definition Language (IDL), which
is also built on the DCE RPC standard IDL [7]. IDL files are compiled using a special IDL
compiler (typically the Microsoft IDL compiler, or MIDL, which is part of the Win32 SDK). The
IDL compiler generates C source files that contain the code for performing the marshaling and
unmarshaling for the interface described in the IDL file. The client-side code is called the proxy,
while the code running on the object’s side is called the stub. The MIDL generated proxies and
stubs are COM objects that are loaded by the COM libraries as needed. When COM needs to
find the proxy/stub combination for a particular interface, it simply looks up the Interface ID in
the system registry [5].

4 Project Description [8]

“Consider the following Scenario: The central business area of a city has several restaurants and
parking places distributed geographically. It’s very hard to get a parking slot and a table during
lunchtime. It’s even harder to get a parking slot close to a restaurant with available tables.

The aim of the project is to develop a ‘service’ for the distributed computing environment that
keeps track of available parking slots and tables in restaurants in a dynamic fashion. A user can
contact this ‘service’ through his palm device (or cell phone). Basically the user tells the service
where she/he is, what kind of cuisine she/he likes and a time limit. The ‘service’ processes the
request and finds a parking slot – restaurant match so that the distances (driving and walking)
and waiting time are minimized”.

The project should be developed using the Microsoft DCOM technology.

5 Project Design

The project design is depicted in the domain model shown below.

The DCE constitutes of a Client, a Service Module that is replicated, and number of Servers that
serve the client request, and Restaurants and Parking Lots that subscribe with the Server.
Security Module is responsible for authenticating the client before he\she can use the service.
Servers, Restaurant, Parking Lots and Security Module maintain their individual database.

6 Prototype Description

6.1 Client

The client has a graphical user interface. Before using the service, the user has to authenticate
himself with the server, via a user-name and password. The request goes to the service module,
which forwards it to the security module for authentication. On entering valid user-name and
password user gets the tab-screen where he can select the preferences. The user selects the type
of restaurant he wants, the number of seats, maximum driving time to the restaurant, maximum
waiting time in the restaurant and number of parking spaces. The user can also indicate the
priority order amongst the parameters. After filling the various parameters, user sends the request

Client

Service
Module

Server1 Server2 ServerN …

Database

Security
Module

Restaurant Parking Lot

Database

Database Database

Domain Model

to the server. The server gets the request, does the processing required to find the restaurant-
parking lot match and sends the list of restaurant that satisfy the client request. The client now
gets a list of restaurant that meets his\her selection criteria. The client selects the restaurant from
the list for which it wants to confirm the booking. The selected restaurant is contacted to get the
seating and parking lot information. The restaurant sends it current status to the client. The client
if it is interested confirms the booking. The restaurant then sends its menu to the client for
browsing. Similarly it can contact the parking lot to confirm a parking space.

6.2 Restaurant

The restaurant has to register with the active servers once in a day at start-up. It contacts the
service module and gets the list of active servers. Next the restaurant contacts each server and
registers with them indicating the type, location and whether it has parking space available
within the restaurant. Each server stores this information in its database. A client contacts the
restaurant to know its current seating information. If there are no seats available, the restaurant
indicates its expected waiting time. The client can confirm the seating with the restaurant.

6.3 Parking Lots

Parking lots are similar to restaurants. They also register with the server once a day at start up
similar to what the restaurant does, with their location. The client can contact the parking lot for
its current parking information and can confirm a parking slot.

6.4 Service Module

The service module is a routing entity. The servers on startup register with the service module.
Hence the service module has a list of servers currently active. It uses this list for load balancing
and fault tolerance. With each server is a load measurement. If the load on a server is over the
threshold the module forwards the client request to another server. Similarly if the one server
fails, the module can route the request to another active server. The service module collaborates
with the security module for client authentication. When the restaurant or parking lots contacts
the service module at start-up, it returns the list of active servers. The restaurant and parking lots
use this list to register with each active server.

6.5 Server

The server gets the client request and finds the restaurant-parking lot match based on client
preference. As the restaurants and parking lots register with the server, it has information about
the restaurants and parking lots and their location. The server uses this information and a simple
address matching mechanism to find the restaurant-parking lot match to send back to the client.

6.6 Caching

A Push Caching mechanism has been implemented in the project. The client has the cached data
from all the previous requests. The data is stored in form of a file with a header. Header has a
field, which indicates if the data is valid, or not. The client sends a request and gets the response

from the service module in form of list of restaurants and parking lots. This information is stored
in form of a file. The header of the file has a field indicating that the data is valid. When any
restaurant shuts down for the day, it indicates this to the server. The server then goes to the
clients and set the field in the header file to invalid. If the client sends the same request again,
and if the cached data is valid, the request is not send to the server but the cached data is used.
Only if the data is invalid the request goes to the service module. Similar caching mechanism is
also used for data received from restaurants and parking lots.

6.7 Load Balancing

The service module handles most of the loads balancing issues. When a server starts up, it
registers itself with the service module. Hence the service module knows the number of servers
in the environment. When it gets the request from the client the service module iterates through
the list of servers. If the first server is over loaded it finds the next server with less load.

6.8 Fault Tolerance

The service module can be a single point of failure in the system. To ensure fault tolerance of
service module, inbuilt services in DCOM are used. DCOM Config utility allows the user to
specify the alternate location of the component. Hence the service module can be placed at more
than one location. There is a primary service module and many replicated secondary service
modules. All the requests from the clients go to the primary service module. If the primary
service module fails, the DCOM Config utility routes the request to one of the secondary service
module. At regular intervals, the state of the primary service module is replicated into all the
secondary modules. As of now, the above mechanism is not implemented in the system.

6.9 Location Transparency

DCOM provides complete location transparency amongst the components. None of the
components in the system know the actual physical location of any other component. They just
have a handle to the component. The underlying DCOM architecture takes care of
communicating with the components.

6.10 Scalability

The service module routes the request of the client to the different server depending upon the
current load. Once the new servers are registered with the service module, the client request will
be routed to them. The service module only handles the load balancing issue and so is not
overloaded with much computation. Hence it can support increased number of servers. The
number of restaurants and parking lots can be increased as required. Once the new components
are registered with the server and has the DCOM application loaded, then they can communicate
with the server and the clients. As the load balancing issue has been considered, scalability can
be easily achieved.

Our current design is designed for one geographic zone. In future, if the application scales to
more than one zone, then the current module can be replicated easily.

6.11 Security

The client authenticates using a login-password mechanism before using the service. DCOM
security features will be discussed in section 7.

6.12 Services

The present system allows the client to book seats in the restaurant on-line based on his
preference of cuisine, shortest distance, parking lot availability and shortest waiting period. The
server sends a list of restaurants based on cuisine and shortest distance. The client selects the
restaurant of preference, contacts the restaurant and reserves seats based on the availability. In
future, this can be easily extended to allow the client to place the order online as the current
design opens a communication channel between the client and restaurant and displays the menu.

Multi-threading is inherently supported by DCOM. Our design makes use of the security and life
cycle management services provided by DCOM. In future, the event services of DCOM can also
be added.

7 Technology Comparison

CORBA is an alternative middleware solution for distributed computing environment (DCE). It
is a specification for distributed objects from Object Management Group (OMG). Though the
methodology of implementation is different in both DCOM and CORBA, the applications for
which both are used are same.

7.1 Programming

DCOM supports objects with multiple interfaces unlike CORBA. This allows for greater
flexibility in programming. DCOM does efficient garbage collection. It uses pinging mechanism
to collect garbage references. CORBA doesn’t attempt to perform general-purpose distributed
garbage collection [9].

Developing applications in DCOM is easy as most of the services are hidden from the user. In
CORBA, many individual services have to be invoked by the user. The user has to be aware of
many commands to invoke the ORB’s [10], making usage of CORBA difficult.

The specification of ORB’s varies from vendor to vendor, each having their own standards.
There is a lack of inter-operability between the different ORB’s.

7.2 Feature Comparison

Comparing the features of both the tools, the following differences come out [9][10][11][12]:

7.2.1 Language Independence

In CORBA, language independence is provided by the use of a common Interface Definition
Language (IDL). IDL interfaces are translated to standard languages through mapping. IDL has
been mapped to C, C++, Smalltalk, Ada, Java and Objective C.

DCOM achieves language independence based on binary standard. Each language is converted
into its machine binary code. DCOM currently supports Microsoft products, Java, PowerBuilder,
Delphi and Micro Focus COBOL.

In case of CORBA, the translation is done at the interface level and is left to the ORB vendors to
create the translation. Hence the interface specification varies based on different ORB. Though
CORBA offers language independence, it is still dependent on the vendor specification of ORB.

7.2.2 Network Communication

CORBA relies for cross-ORB communication on Internet Inter-ORB Protocol (IIOP), which uses
TCP. CORBA only supports the TCP protocol.

DCOM utilizes UDP/DCOM, a connectionless protocol and also TCP. It also allows for
IPX/SPX and Net Bios protocol. DCOM does not depend on only one protocol for
communication unlike CORBA. DCOM is protocol independent.

7.2.3 Reliability

CORBA’s Object Transaction Service (OTS) offers support for both flat and nested transaction.
A single IDL supports both transactional and non-transactional implementations. Developers use
an interface that inherits from an abstract OTS class to make an object transactional.

DCOM uses MTS, which supports transactions implicitly. This frees the developer from the
complexity of dealing with the transaction services directly unlike CORBA where the user has to
be involved.

7.2.4 Platform Independence

CORBA offers platform independence. DCOM works on Windows platform. Software AG has
come up with products that allow DCOM to work on UNIX, Solaris and Linux.

7.2.5 Fault Tolerance

CORBA specification doesn’t directly support fault tolerant services [9]. The ORB vendor is
responsible for providing these services. CORBA object directory sit on a single node and does
not allow object addresses to be replicated [10]. This allows a single point of failure.
Performance is also degraded, as every user on the system has to access this remote node.

Basic fault tolerance is provided at the protocol level in DCOM. DCOM uses Active Directory,
which creates a single directory that can be replicated around the network. Hence, there is no
single point of failure. DCOM utilizes reference counts, ‘keep alive’ messages and pinging of

essential component of the DCOM object. To reduce network traffic generated because of this
approach, positive steps like piggybacking, grouped pings and delta pinging is used.

7.2.6 Security

Both CORBA and DCOM provide good security options. DCOM has inbuilt security features
and can be easily incorporated in the application design. Access, launch, security identity and
connection policies are defined in DCOM [section 3]. Access security is provided in DCOM by
allowing only authorized users to connect to an object. Allowing only authorized users to create
instances of the object provides launch security. The capability of the object is limited by the
caller’s privileges, which are set in the security identity. DCOM also offers security on data
communication between the caller and object by allowing the application to dynamically choose
the level of security required in the connection policy.

7.2.7 Messaging

CORBA addresses messaging from a primitive standpoint [9]. Either the event service primitive
or a propriety mechanism is used. Different vendors have included messaging services in par
with the message-oriented middleware (MOM) but inter-service integrations is lacking.

DCOM offers messaging through Microsoft Message Queue Server (MSQM). MSQM supports
all the important features of reliable messaging.

7.2.8 Market

According to Ovum report [10], Iona Technologies has the largest market share of CORBA and
it has only about 2000 customers with a share of five licenses each. DCOM, because of the ease
of use and as it is built on COM, has a huge market, though it came in the market after CORBA.

8 Discussion

A distributed system should have the capability to support the distributed computing
environment and must have the features like fault tolerance, load balancing, location
transparency and security. The advantage of using a distributed system can be realized only if the
computing is distributed among the various components.

A good design of a distributed system should take into considerations the above said features.
Our design incorporates most of the features . The workload is distributed between all the
components. As seen from our design, the server takes the request for the clients, matches it
based on cuisine and shortest distance and opens communication with the client and the
restaurant/parking lot. The rest of communication is between these components. Hence the server
is not overloaded with the entire computation.

Fault tolerance is an important consideration in a distributed system. In our design, if one of the
servers crashes then the service module would route the request to the other server. DCOM

allows for backup of importance components. In future, the service module can be replicated and
kept as a backup. . If the service module crashes, then the request can be routed immediately to
the replicated service module using DCOM Config. DCOM offers inbuilt fault tolerance in the
application implementation [section 7.2.5].

Distributed system should have capability to accommodate increased load and scalability. Load
balancing can provide this capability. DCOM offers inbuilt features to incorporate load balance
options in the design. The service module takes care of the load balancing issues in our system.
Usage of distributed system is more in large centric network like the Internet, which is not a
trusted network. Hence, security is a very important issue. DCOM provides inbuilt security
[section 7.2.6], which can be implemented by the user easily in the system. Security issues have
been incorporated in our design by authenticating the clients.

DCOM provides location transparency in the application. The clients need not know the location
of the server. Application development is easy in DCOM as the user can incorporate most of the
features easily. The software implicitly incorporates many of the features without the user being
involved. DCOM can be used to develop reliable distributed applications as it provides features
like load balancing, fault tolerance and security.

In future, the design can be extended to order food online using the service. The present design
allows the display of menu; hence the online food-ordering feature can be easily incorporated.
The distributed system can be expanded to different geographic zones. The client, depending
upon his zone, can contact the respective service module.

9. Conclusion

DCOM, though in the market after CORBA, is rapidly gaining the ground in the DCE market.
As most of the existing applications use COM objects, shifting to distributed environment using
DCOM is easy as DCOM is built on COM. Hence, instead of designing from the scratch, only
the additional distributed features need to be added.

DCOM is the future of DCE and slowly becoming the leader for distributed software component
development because of its ease of use, language and protocol independence and its ability to
provide a fault tolerant and reliable system.

10. References

[1] An OSF White Paper: The OSF Distributed Computing Environment: Building on International
Standards.

[2] IBM AIX Website available at
 http://www-3.ibm.com/software/network/dce/library/publications/dceaix.html

[3] IBM White Paper on Remote Procedure calls available at
http://www.transarc.ibm.com/Library/whitepapers/OSF_Whitepapers/rpc.html

[4] Learning DCOM – Thuan L. Thai – O’Reilly Publications
[5] COM\DCOM Blue Book – Nathan Wallace – CORIOLIS publications
[6] COM\DCOM Unleashed – Randy Abernethy – SAMS Publications
[7] DCOM Architecture White Paper by Microsoft Corporation available at

http://www.microsoft.com/ntserver/techresources/appserv/com/DCOM/2_DCOMarchitectur.
asp

[8] Slides by Dr. Mohan Kumar from the class CSE 6306 – Spring 2002 at University of Texas at
Arlington.

[9] CORBA Vs DCOM: Solutions for the Enterprise, Meta Group Consulting, May 1998.
[10] CORBA no match for Microsoft's DCOM, Ovum report, Ron Condom, Computerworld.

August 1997 available at www.computerworld.com/
cwi/story/0,1199,NAV47_STO21627,00.html

[11] A Detailed Comparision of CORBA, DCOM and Java RMI, Gopalan Suresh Raj,
available at http://www.execpc.com/~gopalan/misc/compare.html

[12] DCOM and CORBA Side by Side, Step-by-Step and Layer-by-Layer, P Emerald Chung, et
al., September 1997.

