
 TinyOS – An Operating System for Tiny Embedded Networked Sensors

By
Sharan Raman

Paper Presentation for Advanced Operating Systems Course, Spring 2002

1 . Abstract
This paper discusses the background and application requirements that motivated the development of
TinyOS. It enumerates the characteristics associated with any typical Networked Sensor application. The
hardware platform that was used for deploying TinyOS is also described. The design aspects of the Event
based TinyOS is discussed in detail. This paper also enlightens the Tiny Active Messaging Model used by
the TinyOS for data communication and its implementation concepts. The paper goes ahead and describes
some application level communication concepts like managing packet buffers, Network discovery and Ad
Hoc Routing and Media Access and Transmission Control. Then there is a bunch of discussions that
includes topics like Evaluation of TinyOS, Comparison of TinyOS with other Operating Systems and
Future Research Work.

2. Introduction
2.1 Background
TinyOS is an event based operating environment that is designed for use with embedded networked
sensors [1] .It is designed to support the concurrency intensive operations required by networked sensors
with minimal hardware requirements. It uses the Active Message Communication model [2] for building
non-blocking applications and higher Networking capabilities like Multihop ad hoc routing. TinyOS was
developed by a group of four Computer Science Graduate Students at the University of California,
Berkeley. The development of TinyOS was supported by Defense Advanced Research Project Agency
(DARPA), the National Science Foundation (NSF) and Intel Corporation. [5] [1]
The emergence of compact, low-power wireless communication and Networked sensors is giving rise to
entirely new kinds of embedded systems that are distributed and deployed in dynamic, constantly
changing and adaptive control environments. These Networked Sensors are compact devices that can be
used to sense light, heat, position, movement, chemical presence etc from real environments and
communicate information back to traditional computers. They also need to assist each other in collection
of data and conveying them back to the centralized collection point. [2]
These Embedded Sensors are characterized to be agile, self-organizing, critically resource constrained
and communication centric. Their application space is huge including all monitoring applications in a
context aware situation, situation monitoring of life science experiments, disaster management and others.
There are two design issues associated with this scenario: these devices are Concurrency Intensive where
several flows of data must be handled simultaneously and the system must provide Efficient Modularity,
which means that hardware specific and application specific components must coalesce together with
little processing and storage overhead [2]. There are bursts of activity where data and events stream in
from the sensors and the Network and periods of passive listening to significant events. During the bursts
a mix of real time actions and long-scale processing/computation must be performed and in the remaining
majority of time, the device shuts to a very low power state and monitors for changes in the system state.

2.2 Networked Sensor Characteristics [1]

• Small Physical Size and low power consumption
Minimal Size and power constrain the processing time, storage and interconnect capacity of the
device. Due to these constrained resources, the operating system and applications have to use
them efficiently.

• Concurrency Intensive Operation
These sensors have to communicate information with little processing on the fly. Information
may be simultaneously captured from sensors, manipulated and streamed onto a network. Data
may also be received from other nodes and have to be forwarded to the next hop in the network.
Hence the system must handle multiple flows of data concurrently and also perform processing
and communication parallely.

• Limited Physical Parallelism and Controller Hierarchy
The Number of independent device controllers, their capabilities and complexity of the
interconnect are much lower for these Networked Sensors when compared to conventional
systems. The sensors provide a primitive interface directly to the central controller unlike
conventional systems that distribute concurrent processing over multiple levels of controllers.
This limited hierarchy is a repercussion of the Resource constraints.

• Diversity in Design and Usage
These devices are application specific, rather than general purpose. The hardware is specific to
the application and the variations in them are likely to be large. Hence these devices require an
unusual degree of Software Modularity that must be efficient. A generic development
environment is needed which allows the development of specialized applications and allows
easy migration of components across the software/hardware Boundary.

• Robust Operation
These devices will be numerous, largely unattended and expected to be operational a large
fractional of time. The application of redundancy techniques for fault-tolerance is constrained
by space and power limitations. Thus, enhancing the reliability of individual devices is
essential.
As the previous embedded operating systems are more general purpose, they occupy too much
memory and work on heavy weight processes. They also have a deep hierarchy of controllers
and kernel layers and the context switch time to perform different functions is too much. As
these Embedded OS do not cater to the needs of the Networked Sensor System, the
development of Tiny OS was important.

3. TinyOS Concepts
3.1 Hardware Organization

The UC-Berkeley group developed a small, flexible networked sensor platform that expressed the
key characteristics of the general class (in Section 2.2). Figure 1 shows the hardware configuration
of the device.
There is a microcontroller MCU (ATMEL 90LS8535) that has an 8-bit Harvard Architecture
processor with 16-bit addresses. It has 32 8-bit general registers and runs at 4 MHz and 3.0 Volts. It
has 8 KB of Flash Program Memory and 512 Bytes of SRAM as the data memory. A co-processor is
used to write instructions to the Program Memory. It also has a single-channel low power radio, an
EEPROM secondary store and a range of sensors like Light (photo sensor) and Temperature sensors
connected to the Bus. [3]
There are 3 power modes that the processor operates on: idle, which just shuts off the processor,
power down, which shuts off everything but the watchdog and asynchronous interrupt logic
necessary for wake-up and power save which is similar to power down, but leaves a timer also
running. The sensors use Analog to Digital Converters to communicate data to the processor. [3]

The Radio device contains no buffering and hence each bit must be serviced by the controller on
real time. The serial port represents an important asynchronous bit-level device with byte controller
support. The main processor can use the coprocessor for extra storage.
The power characteristics of these components in the Networked Sensor show that biggest power
savings is achieved by making unused components inactive whenever possible. The philosophy of
the system should be to get work done as quickly as possible and go to sleep.
There are two types of sensors. One type is a mobile sensor that picks up temperature and light
readings periodically and presents them to the wireless network. This needs to conserve its limited
energy. The other type is a stationary sensor that bridges the radio network through the serial link to
a host computer. It has a little more power input but has more demanding data flows. [3]

3.2 TinyOS Design

TinyOS uses an Event model so that high levels of concurrency can be handled in a very small
amount of space unlike the stack based threaded approach that uses too much stack
space and also has a high context switch time. [1]
Since Power is a precious resource, CPU resources must be utilized efficiently. The event-based
approach handles tasks associated with events rapidly without allowing blocking or polling. Unused
CPU cycles are spent in sleep state as opposed to actively looking for events. TinyOS was
developed in C. [3]

 Components, Commands, Events and Tasks
TinyOS is divided into a collection of Software Components. A TinyOS application consists of a
scheduler and a graph of components describing their interaction.
A Component has four parts: a set of Command Handlers, a set of Event Handlers, an encapsulated
fixed-size frame and a bundle of simple tasks. Each component declares the commands it uses and
events it signals. [1] [7]
The fixed sized frames are statically allocated which helps to know the memory requirements of a
component at compile time. The frame is an internal storage space that contains the state of the
component and is used by the events, commands and tasks. [1] [7]

Figure 1: Photograph and schematic for representative network sensor platform [1]

Each Component is described by its interface and its internal implementation. An interface contains
commands and events. These declarations are used to compose the modular components and this
composition creates layers of components that are application specific. The higher-level
components issue commands to lower-level components while the lower ones signal events to the
higher-level components. Hence we can think of the component to have an upper interface, which
names the commands it implements and the events it signals a lower interface which names the
commands it uses and events it handles. [3] [7]

Commands are non-blocking requests made to lower level components. A command will deposit
request parameters into its frame and conditionally post a task for a later execution. It also provides
feedback to its caller (from a higher level component) by returning status of success or failure. [3]
Event Handlers are invoked to deal with Hardware events either directly or indirectly. The lowest
level components have handlers connected directly to hardware interrupts. An event Handler can
deposit information in its frame, post tasks, signal higher-level events or call lower level
commands. Events help in forwarding changes upwards while commands forward processing
downwards. In order to avoid cycles, command cannot signal events. [1]

Tasks perform the work and are atomic with respect to other tasks. They run to completion and can
call lower commands, signal higher-level events and schedule other tasks within the same
component. The run-to completion property helps to allocate a single stack to the currently
executing task and this conserves space. Tasks also allow concurrency within each component as
they execute asynchronously. They must never block to avoid delaying progress in other
components. Hence we can look at these tasks as blocks of computation. [3]

The Task scheduler is a simple FIFO scheduler that has a bounded size scheduling data Structure. It
is power sensitive and puts the processor to sleep when the task queue is empty, but leaves the
peripherals operating to wake up the system in case of any new hardware event. There is a two level
scheduling hierarchy in the TinyOS – events preempt tasks but tasks do not preempt other tasks.
Since all components have bounded storage, a component has to refuse commands. [1]

4. Application Level Communication Concepts
4.1 Tiny Active Messages

Active Messages (AM) is a simple, extensible paradigm for message-based communication widely
used in large parallel and distributed computing systems. Each Active Message contains the name
of a user-level handler to be invoked upon a target node and a data payload to pass arguments. The
handler serves the dual purpose of extracting the message from the network and performing

Commands Implemented

Messaging Component

Internal Tasks

Commands Events

Internal State

Commands Used

 Events signaled

 Events handled

Figure 2: Structure of a Component in TinyOS [6] [7]

computation on the data or sending a response message. It overlaps communication and
computation through lightweight remote procedure calls. [3]

This AM communication model is well suited to the execution framework of the TinyOS, as it is
event-driven and designed to allow a very lean communication stack to process packets directly off
the network. Message Handlers must be able to execute quickly and asynchronously. Initiating an
Active Message involves four components: specifying the data arguments, naming the handler,
requesting the transmission and detecting transmission completion. [2]

 Implementation of Tiny Active Messages
TinyOS commands are used to initiate message transfers and this fires off events to message
handlers. There is also an event associated with the completion of transmission.

Send Command includes the destination address, handler ID and message body. The Active
Message Component in the TinyOS performs address checking and dispatch and relies on lower
components for basic packet transmission. Reliable, error free delivery is not guaranteed. There
are different levels of error detection and correction in packet level components. These include
basic transmission without any error detection or correction, CRC checked packets that have
error detection, and forward error packets that provide basic error correction and detection. [4]

A Host PC package consists of libraries that can be used to communicate over the PC’s serial
port to a special base station sensor that has both a RS232C communication channel as well as
RF communication. These libraries help to bring the collected data from the Sensor Networks to
a more traditional computing environment. [3]

 Packet Format
A fixed size 30-Byte packet is used for packet transmission. The First two bytes of a received
packet are used to identify the destination of the packet (R0) and the ID of the message handler
that is to be invoked on the packet (H0). The TinyOS AM component first checks that the
address matches the local address and then it invokes the listed handler, passing on the
remaining 28 bytes of the packet. In the event that the message is bound for a handler that is not
present on the receiving device, the packet is ignored. [4]

 Multi-hop Packet Format
The research group designed a Multi-Hop Packet format for source based multi-hop routing
applications. A Multi hop packet format is shown below:

This format, dedicates seven additional bytes to allow a maximum of 4-hop communication.
Four of these bytes are used to hold the intermediate hops of the route (R1, R2, R3, R4): one is
used for the number of hops left (N), one is used to store the source of the packet (S), and one
is used for the handler ID that is to be invoked once the message arrives at its destination (HF).
In this instance, the multi-hop router is simply the handler of a typed message. [4]

While the packet is in-route, H0 is set to zero (the routing handler). In response to the reception
of a packet, the routing handler decrements the hop count and rotates in the next hop and

Figure 3: Multi-hop packet format [4]

pushes the local node address to the end of the route chain. This process records the route that
the packet has taken in the route table so that the recipient knows how to route a response
packet. If the next hop is the final destination (number of hops is one), the routing handler
inserts the destination handler, HF, into H0. [3]
Two special addresses are defined. The first special address needed was the broadcast address
(0xff). The concept of a one-to-all broadcast greatly simplifies the route discovery and
exploration algorithms. Secondly, a special address was chosen for the Host PC in the device
virtual network. Arbitrarily chosen to be 0x7e, a device receiving a packet for this destination
forwards the packet to the local data UART instead of the radio. [4]
In TinyOS, multiple applications will use a single messaging layer. The Active Message layer
can handle only a single message at a time. If a message transmission is in progress, a request
to transmit an additional message will be denied. An application must then retry transmission at
a later time. In many data collection applications, it may be better to simply throw away the
message and wait to transmit the next sensor readings. The Active Messages layer cannot
receive a message while a transmission is in progress. Once a message transmission begins, it
runs to completion. [3]
When an application sends out a message, it provides the Active Messages layer with a pointer
to a memory buffer. The data in this buffer must remain unchanged until the transmission is
complete. This means that the application cannot modify the buffer until the Active Messages
layer has fired the send done event. [3]
When an application receives an incoming message, the messaging layer provides a pointer to
the buffer where the message is stored. This data is only guaranteed to be valid for the duration
the event that delivered the message. If the application needs to keep the data longer, it must
copy the data elsewhere. Once the event handler returns, the messaging layer will receive
subsequent messages into the same buffer. This will overwrite the original message. [3]

4.2 Managing Packet Buffers
Managing buffer storage is very important in any communication stack. Three issues must be
addressed: encapsulating useful data with transport header and trailer information, determining
when output message data storage can be reused, and providing an input buffer for an incoming
message before the message has been inspected to determine where it goes. [2]
The message buffer has a defined type in the frame that provides holes for system specific
encapsulation, such as routing information and error detection. These holes are filled in as the
packet moves down the stack, rather than following pointers or copying. Once the send command is
called, the transmit buffer is considered ’owned’ by the network until the messaging component
signals that transmission is complete. The mechanism for tracking ownership is application specific.
Since a strict ownership exchange is involved, no mutex is required. The TinyOS attempts to
conserve buffer memory by reusing buffer space for multiple applications. [2]

4.3 Network Discovery and Ad Hoc Routing
The TinyOS Active message Model is particularly useful in Network Discovery and Ad hoc routing
applications.
Discovery could be initiated from any node, but often it is rooted at gateway nodes that provide
connectivity to conventional networks. Each root periodically transmits a message carrying its ID
and its distance (zero) to its neighborhood. The message handler checks whether the source is the
’closest’ node it has heard from recently and, if so, records the source ID as its multi hop parent,
increments the distance, and retransmits the message with its own ID as the source. Each node
records only a fixed amount of information. [2]
Routing packets up the tree is straightforward. A node transmitting data to be routed specifies a
multihop-forwarding handler and identifies its parent as the recipient. The handler will fire to each

of its neighbors. The parent retransmits the packet to its parent, using the buffer swap. Other
neighbors simply discard the packet. The data is thus routed hop-by-hop to the root. [2]

5. Lower Level Communication Challenges
5.1 Crossing layers without buffering

Because of the memory constraints, the message data from the application storage buffer has to be
moved to the physical modulation of the channel without making entire copies, and similarly in the
reverse direction. [2]
The upper component has a unit of data partitioned into subunits. It issues a command to request
transmission of the first subunit. The lower component acknowledges that it has accepted the
subunit and when it is ready for the next one it signals a subunit event. The upper handler provides
the next unit, or indicates that no more are forthcoming. Thus the same buffer is re-used from one
layer to another without copying. The same holds for building up data from the lower level
components to the higher level ones. [3]

5.2 Listening at Lower Power
In remote monitoring applications, a well-powered stationary device always receives while a mobile
sensor device transmits infrequently. In Multi hop data collection network, each node transmits data
periodically and listens to the network the rest of the time. [2]

Active transmission is the most power intensive mode. There are two techniques that reduce power
consumption while listening: Periodic Listening and Low Power Listening. [2]

Periodic Listening creates time periods when it is illegal to transmit and the hence nodes need to
listen only during some periods. For ex. we can have a transmission window of 10 sec and a sleep
window of 90 sec. Hence power consumption can be reduced by 90%.This scheme works well if the
invalid period duration is much longer than the message transmission time. But this scheme limits
the realized bandwidth as there are always some specific periods when nothing is transmitted
though transmission data might be available then. [2]

In the low power listening, the same concept of selective transmission is used, but the cycle of
window is very small. For ex. we can have a transmission window of 30 µsec and a sleep window of
270µsec. This has the same power savings and also does not limit the bandwidth too much as the
window is too small to miss out any buffered data. But a transmitter now has to expend extra effort
to make sure it has a transmission window currently before it can transmit. A hybrid of Low power
listening and periodic listening can also be used to conserve power.

5.3 Physical Layer Interface
In the TinyOS system the hardware layer directly connects to the Central Microcontroller. Hence
the microcontroller has to handle every bit that is transmitted or received in real time.

A state machine component [2] is designed to perform the bit level timing. From the lower
components bit level data is received using this state machine timing and assembled into a byte at
the higher component. This Byte is now transmitted bit by bit to its higher component.
During transmission, complex encoding must be done on each byte while simultaneously meeting
the strict real time requirements of the bit layer. The encoding operation for a single byte takes
longer than the transmission time of single bit. To ensure that the encoded data is ready in time to
meet the bit level transmission deadline, the encoding of the next byte must start prior to the
completion of the transmission of the current byte. The TinyOS task mechanism is used to execute
the encoding operation while simultaneously performing the transmission of previous data. This is
similar to byte pre-fetching in case of Instruction set architectures. [2]

5.4 Media Access and Transmission Control
The communication path in wireless embedded systems is not a dedicated link. Hence this precious
resource must be shared effectively and all nodes in a network should have a fair share of the media,
irrespective of their location in the network topology. The TinyOS has an energy-aware media
access control protocol and also an application specific adaptive rate control for ensuring fair share
of the media. [2]

The MAC protocols are performed on the Microcontroller concurrently with other operations, as
there is no stack hierarchy. Carrier Sense Multiple Access (CSMA) protocol is used where a node
listens for the channel and transmits only if the channel is idle. The bit-clocking mechanism at the
physical layer is also used for carrier sensing. [2]
If consecutive sampling of the channel discovers no signal, the channel is deemed idle and a packet
transmission is attempted. However, if the channel is busy, a random back off occurs. The entire
process repeats until the channel is idle. A simple 16-bit shift register is used as a pseudo random
number generator for the back off period. The processor moves into the low-power mode during
this back off period.
Equal coverage of data sampling over the entire network is very important. Each Node in the
network should be able to deliver fair allocation of bandwidth to the base station.
The adaptive transmission control scheme is a local algorithm implemented above the Active
Message layer and below the application level. The application has a baseline sampling rate that
determines its maximum transmission rate and transmits a sample with a dynamically determined
probability. On successful transmission the probability is increased linearly, whereas on failure it is
decreased multiplicatively. This way the transmission is done in an adaptive manner considering the
network congestion. [2]

6. Discussions

6.1 Evaluation of TinyOS
 Small Physical Size

The source code size for various components of the TinyOS system and the sample Multi hop
routing application is shown below. The important TinyOS component ‘scheduler’ occupies
only 178 Bytes. The data size of the scheduler is only 16 bytes and it utilizes only 3% of the
available data memory. [1]

Software Footprint refers to the total number of bytes occupied by a software component on the
device. The Active Message Layer occupies a total of 322 Bytes. The total device Binary is 2.6
Kbytes and includes the packet level, byte level and bit level controllers, the AM component
and the routing Application. 40 Bytes is used for static data. Hence the software footprint of the
TinyOS is very small and this is very useful when memory is strictly constrained. [1]

 Figure 4: Code and Data Size for TinyOS and an application [1]

 Concurrency-Intensive Operations
Network Sensors need to handle multiple flows of information simultaneously. An important
characteristic is the context switch speed. The table below shows this aspect when compared to
the hardware cost for moving bytes in memory.

The cost of propagating an event is roughly equivalent to that of copying one byte of data.
Posting a thread and switching context costs about as much as moving 6 bytes of memory.
Hence the TinyOS supports concurrency intensive operations effectively due to reduced context
switch time.

 Efficient Modularity
The events and commands propagate through the TinyOS components very quickly. The event
model triggers events quickly and commands are executed in real-time. Since the context switch
time is very less and the TinyOS active messages do not waste time in copying data, a good
response time is achieved. [1]

 Communications Model Evaluation
The performance of the Active message model can be evaluated by using Round Trip Time
(RTT) and throughput. [2]

The RTT measures the time for a message to be sent from a Host PC to a specific sensor device
and back. The RTT is plotted for various route lengths. A route length of one measures the
Host-PC to base station RTT and is about 40ms. This reflects the cost of wired link, device
processing and Host OS overhead. For routes greater than one hop, the RTT also includes the
latency of the wireless link between two devices. The difference between the two and one hop
RTT yields the device-to-device RTT of 78ms.These RTT measures indicate that the Tiny
Active message Model is really fast. [2]

Since the RTT is very less, the throughput or the messages handled in unit time is more.
6.2 Comparison of TinyOS with other Embedded OS

Comparison of TinyOS with common Desktop and Server OS like MS-Windows, Sun Solaris, UNIX
or IBM’s AIX is not meaningful as their application environments are totally different. These
Desktop OS are meant for a broad range of applications and really not suited for small-embedded
devices, whereas TinyOS is suited only for Networked Sensors that are embedded in a Data
collection Network.

However we can compare TinyOS with some of the real time operating systems like VxWorks,
WinCE, PalmOS and QNX [1] that are also meant for embedded devices. Many of these are based
on Micro kernels that allow for capabilities to be added or removed based on system needs. These
systems provide memory protection and fault isolation features that TinyOS doesn’t provide.
Security of applications is very important in larger commercial systems. Tiny OS design does not
incorporate security features at all. But still security may not be that important an issue in Data
collection Networks and situation monitoring.

TinyOS does not guarantee 100% packet delivery, as it has no time-out mechanism and receipt
acknowledgement features. It is found that about 5% of the bytes received were corrupted even

Figure 5: Cost of Primitive operations in TinyOS [3]

after some error correction. Hence some newer error correction scheme with CRC check is
required. [16]

TinyOS does very well on Context Switch time. It is about 12.75 µsec whereas a QNX context
switch takes about 7.3 msec. TinyOS does well on Software footprint also as it requires only 2.16
Kbytes whereas VxWorks’ memory footprint is in the hundreds of Kilobytes. [1]

There is also a collection of smaller real time OS like Creem, pOSEK and Ariel that are minimal OS
designed for deeply embedded systems such as motor controllers or Microwave ovens. They also
have severely constrained storage and execution models. But their models tend to be Control
Centric that is controlling access to hardware resources as opposed to TinyOS’s Data flow centric
approach. Even the pOSEK, that meets TinyOS’s memory requirements, exceeds the context switch
limitations and hence cannot meet real-time requirements. There is no preemption in Creem and this
totally prevents real-time processing [1]

Most of these OS are based on a Thread based Model and these systems need to reserve additional
storage for every thread created. Though there might be better separation of work using threads, the
storage penalty is too much. On the other hand TinyOS is an event based model and because of
good buffer management, it does well on storage constraints.

The TinyOS’s Active message model helps a lot in the reduction of power consumption. Sensors can
switch to a power save mode when they are not active and events would trigger them to come back
into normal-operational mode. The other threaded models have to keep polling for some event to
occur. This results in considerable power consumption. Another advantage of using events is that
polling based I/O mechanisms see significant performance degradation when the number of
interfaces that must be periodically checked increases.
A traditional socket based TCP/IP communication model (used by MS-Windows and Unix) is not
optimal for the Networked Sensors. First of all the use of a socket model forces the system into a
thread based programming model. This is because sockets have a stream-based interface where the
user application polls or blocks as it waits for data to arrive. The overhead associated with context
switches and the storage of inactive execution contexts is too much in the case of these socket
models. [3]
Secondly, the communication is extremely expensive for network sensors and it is advantageous to
transmit as few bits as possible. In TCP/IP and UDP, there are different fields that come as an
overhead like sequence numbers, addresses, port numbers, protocol types etc. A single TCP/IP
packet has an overhead of 48 Bytes. [3]
Finally the TCP/IP protocol has a lot of overhead in the memory management associated with a
stream-based interface. The networking stack must buffer incoming data until the application
requests it, whereupon it must be copied into the application's buffer while any remaining data
remains buffered by the protocol stack. This buffer management greatly increases complexity and
overhead. Creation of intermediate copies & data fragmentation proves too costly for the sensors.
[3]
There is an assortment of OS such as VxWorks, OS-9, PalmOS and QNX that provide TCP/IP based
network connectivity to embedded devices. However, these real time OS consume significantly
more resources than that are currently available on the class of hardware that TinyOS works with.
Small Devices like Palm Pilots and PDA’s (using PalmOS) are optimized for user response times.
They have quick periods of very high activity and long periods of idle time. Networked Sensor
regimes have long periods of constant data collection. [4]
The Wireless Application Protocol (WAP) addresses many of the same wireless device issues
presented in this paper (e.g. power and CPU constraints). However, WAP is targeted mainly at
client-server type applications. Networked Sensor domain has small autonomous devices that may
operate in large numbers. [4]

But TinyOS caters to a very small range of applications and hardware platforms. It was mainly
built for Embedded Networked Sensors where applications generally perform monitoring of some
specific events, data collection and forwarding to a Centralized point. The event-based model using
Active Messages may not be really suitable for other traditional computing environments.

6.3 Commercial Applications of TinyOS and Future Research Directions
The various applications of these Networked Sensors and Tiny OS are

1) Personnel Tracking and information distribution
2) Monitoring of Real-time environments and Data collection like Temperature, light, pressure etc.
3) Secure Messaging that requires trusted communication to bases using RC5 cryptography. [9]
4) Studying Life Science patterns such as Bird’s Migration and retrieving ecological parameters

like toxic contents in a river. [12]
5) Monitoring Enemy targets and other targets of importance
Crossbow Inc. and UC Berkeley’s Computer Science Department are commercializing microsensor
Motes, that help in detecting and monitoring a wide variety of targets such as an enemy personnel or
chemical threats. [14] [15] TinyOS would be used in these Motes. Crossbow manufactures and sells
the Networked Sensor hardware using TinyOS.
The department of Computer Science, UC-Berkeley released a new version of TinyOS 0.6 on
January 31, 2002[10]. It can be installed over Windows 2000 and Red Hat Linux platforms.
Intel has opened a new R&D laboratory in Berkeley, California that focuses on Pro-active
computing technologies. This includes the Mote project and further development of TinyOS. [13]

Some of the Future Research Works in TinyOS are

1) Development of a better MAC layer that fits the requirements of Network Sensors. [11]
2) Incorporating Security features in Data Transmission using RC5 cryptography and some form

of Memory protection schemes. [9]
3) Determine all possible limitations of TinyOS [8]
4) Incorporate TinyOS to newer Hardware Architectures [9] [12]
5) Develop techniques to deliver data more reliably and reduce data corruption.

7. Conclusion
The TinyOS approach has proven quite effective in supporting general-purpose communication
among potentially many devices that are highly constrained in terms of processing, storage,
bandwidth, and energy with primitive hardware support for I/O. Efficiency and low energy use and
modularity is taking precedence over FLOPS and throughput.
Its event driven model facilitates interleaving the processor between multiple flows of data and
between multiple layers in the stack for each flow while still meeting the severe real-time
requirements. Since storage is very limited, it is common to process messages incrementally at
several levels, rather than buffering entire messages and processing them level-by-level.
By adopting a non-blocking, event-driven approach, TinyOS avoids supporting traditional threads,
with the associated multiple stacks and complex synchronization support. The component approach
has yielded not only robust operation despite limited debugging capabilities, it has greatly facilitated
experimentation.

The Tiny Active Message programming model has reduced the storage overhead and uses the event
driven message transfer to conserve power consumption. The adaptive transmission control scheme

and the application level forwarding of multihop traffic are valuable additions. TinyOS allows users
to generate highly efficient applications targeted at the emerging paradigm of networked sensors.

8. References
[1] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and Kristofer

Pister. “System architecture directions for networked sensors”. In Proceedings of the
Ninth International Conference on Architectural Support for Programming Languages

 and Operating Systems, Cambridge, MA, November 2000.

[2] David E. Culler, Jason Hill, Philip Buonadonna, Robert Szewczyk, and Alec Woo.
 “A Network-Centric Approach to Embedded Software for Tiny Devices”. In Proceedings of
 the International Workshop on Embedded Systems (EMSOFT) 2001: Tahoe City, CA,
 USA, October 2001

[3] Jason Hill. “A Software Architecture Supporting Networked Sensors”. Masters thesis
 submitted to the Department of Electrical Engineering and Computer Sciences, University
 of California at Berkeley, December 2000

[4] Philip Buonadonna, Jason Hill, David Culler. “Active Message Communication for Tiny

Networked Sensors”. In Proceedings of the IEEE conference Infocom 2001, Anchorage, Alaska, April 2001

[5] The Official TinyOS Project Website at University of California, Berkeley.
 http://tinyos.millennium.berkeley.edu/

[6] Presentation Slides on “A System Architecture for Networked Sensors“
 http://tinyos.millennium.berkeley.edu/presentations/ASPLOS_2000.ppt

[7] Presentation Slides on “ How to use TinyOS”
 http://tinyos.millennium.berkeley.edu/presentations/TinyOS.ppt

[8] Presentation Slides on “ Towards System Architecture for Tiny Networked Devices”
 http://tinyos.millennium.berkeley.edu/presentations/TinyOSTalk.ppt

[9] Presentation Slides on “ TinyOS – Communication and Computation at the extremes”
 http://tinyos.millennium.berkeley.edu/presentations/Ninja_Retreat_highlight_2001.ppt

[10] The TinyOS Software Website. http://webs.cs.berkeley.edu/tos/

[11] The Abstract Web-page on TinyOS: Operating System for Sensor Networks
 http://buffy.eecs.berkeley.edu/IRO/Summary/01abstracts/szewczyk.1.html

[12] A News Article Web-Page on the “Daily Illini Online Magazine”.
 http://www.dailyillini.com/oct00/oct16/news/campus02.shtml

[13] A News Article Web-Page on “Silicon Strategies Online Magazine”
 http://www.siliconstrategies.com/story/OEG20011112S0077

[14] A News Article Web-Page on “Sensor Mag Online”
 http://www.sensorsmag.com/articles/0102/10/main.shtml

[15] A News Article Web-Page on “Sensor Mag Online”
 http://www.sensorsmag.com/express/hardware/2001-12-07-6139.phtml

[16] Scott Klemmer, Sarah Waterson, and Kamin Whitehouse. “An Empirical Analysis of
 TinyOS RF Networking (and Beyond…)” . A University project Report.
 http://www.cs.berkeley.edu/~kubitron/courses/cs252-F00/projects/reports/project6_report.pdf

