
Process Migration

DEJAN S. MILOJ́IČIĆ

HP Labs

FRED DOUGLIS

AT&T Labs–Research

YVES PAINDAVEINE

TOG Research Institute

RICHARD WHEELER

EMC

AND

SONGNIAN ZHOU

University of Toronto and Platform Computing

Process migration is the act of transferring a process between two machines. It enables
dynamic load distribution, fault resilience, eased system administration, and data
access locality. Despite these goals and ongoing research efforts, migration has not
achieved widespread use. With the increasing deployment of distributed systems in
general, and distributed operating systems in particular, process migration is again
receiving more attention in both research and product development. As
high-performance facilities shift from supercomputers to networks of workstations, and
with the ever-increasing role of the World Wide Web, we expect migration to play a
more important role and eventually to be widely adopted.

This survey reviews the field of process migration by summarizing the key concepts
and giving an overview of the most important implementations. Design and
implementation issues of process migration are analyzed in general, and then revisited
for each of the case studies described: MOSIX, Sprite, Mach, and Load Sharing Facility.
The benefits and drawbacks of process migration depend on the details of
implementation and, therefore, this paper focuses on practical matters. This survey will
help in understanding the potentials of process migration and why it has not caught on.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]:
Distributed Systems—network operating systems; D.4.7 [Operating Systems]:
Organization and Design—distributed systems; D.4.8 [Operating Systems]:
Performance—measurements; D.4.2 [Operating Systems]: Storage Management—
distributed memories

General Terms: Design, Experimentation

Additional Key Words and Phrases: Process migration, distributed systems, distributed
operating systems, load distribution

Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication, and its date appear, and notice is given that copying is by
permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists,
requires prior specific permission and/or a fee.
c©2001 ACM 0360-0300/01/0900-0241 $5.00

ACM Computing Surveys, Vol. 32, No. 3, September 2000, pp. 241–299.

242 D. S. Milojičić et al.

1. INTRODUCTION
Organization of the Paper

2. BACKGROUND
2.1. Terminology
2.2. Target Architectures
2.3. Goals
2.4. Application Taxonomy
2.5. Migration Algorithm
2.6. System Requirements for Migration
2.7. Load Information Management
2.8. Distributed Scheduling
2.9. Alternatives to Process Migration

3. CHARACTERISTICS
3.1. Complexity and Operating

System Support
3.2. Performance
3.3. Transparency
3.4. Fault Resilience
3.5. Scalability
3.6. Heterogeneity
3.7. Summary

4. EXAMPLES
4.1. Early Work
4.2. Transparent Migration in

UNIX-like Systems
4.3. OS with Message-Passing Interface
4.4. Microkernels
4.5. User-space Migrations
4.6. Application-specific Migration
4.7. Mobile Objects
4.8. Mobile Agents

5. CASE STUDIES
5.1. MOSIX
5.2. Sprite
5.3. Mach
5.4. LSF

6. COMPARISON
7. WHY PROCESS MIGRATION

HAS NOT CAUGHT ON
7.1. Case Analysis
7.2. Misconceptions
7.3. True Barriers to Migration Adoption
7.4. How these Barriers Might be Overcome

8. SUMMARY AND FURTHER RESEARCH
ACKNOWLEDGMENTS
REFERENCES

1. INTRODUCTION

A process is an operating system ab-
straction representing an instance of a
running computer program. Process mi-
gration is the act of transferring a pro-

cess between two machines during its
execution. Several implementations have
been built for different operating systems,
including MOSIX [Barak and Litman,
1985], V [Cheriton, 1988], Accent [Rashid
and Robertson, 1981], Sprite [Ousterhout
et al., 1988], Mach [Accetta et al., 1986],
and OSF/1 AD TNC [Zajcew et al., 1993].
In addition, some systems provide mech-
anisms that checkpoint active processes
and resume their execution in essentially
the same state on another machine, in-
cluding Condor [Litzkow et al., 1988] and
Load Sharing Facility (LSF) [Zhou et al.,
1994]. Process migration enables:r dynamic load distribution, by mi-

grating processes from overloaded nodes
to less loaded ones,r fault resilience, by migrating pro-
cesses from nodes that may have expe-
rienced a partial failure,r improved system administration, by
migrating processes from the nodes that
are about to be shut down or otherwise
made unavailable, andr data access locality, by migrating pro-
cesses closer to the source of some data.

Despite these goals and ongoing re-
search efforts, migration has not achieved
widespread use. One reason for this is the
complexity of adding transparent migra-
tion to systems originally designed to run
stand-alone, since designing new systems
with migration in mind from the begin-
ning is not a realistic option anymore. An-
other reason is that there has not been a
compelling commercial argument for op-
erating system vendors to support process
migration. Checkpoint-restart approaches
offer a compromise here, since they can
run on more loosely-coupled systems by
restricting the types of processes that can
migrate.

In spite of these barriers, process mi-
gration continues to attract research. We
believe that the main reason is the po-
tentials offered by mobility as well as
the attraction to hard problems, so in-
herent to the research community. There
have been many different goals and
approaches to process migration because

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Process Migration 243

of the potentials migration can offer to
different applications (see Section 2.3 on
goals, Section 4 on approaches, and Sec-
tion 2.4 on applications).

With the increasing deployment of dis-
tributed systems in general, and dis-
tributed operating systems in particular,
the interest in process migration is again
on the rise both in research and in prod-
uct development. As high-performance fa-
cilities shift from supercomputers to Net-
works of Workstations (NOW) [Anderson
et al., 1995] and large-scale distributed
systems, we expect migration to play a
more important role and eventually gain
wider acceptance.

Operating systems developers in in-
dustry have considered supporting pro-
cess migration, for example Solaris MC
[Khalidi et al., 1996], but thus far the
availability of process migration in com-
mercial systems is non-existent as we
describe below. Checkpoint-restart sys-
tems are becoming increasingly deployed
for long-running jobs. Finally, techniques
originally developed for process migration
have been employed in developing mobile
agents on the World Wide Web. Recent in-
terpreted programming languages, such
as Java [Gosling et al., 1996], Telescript
[White, 1996] and Tcl/Tk [Ousterhout,
1994] provide additional support for agent
mobility.

There exist a few books that discuss
process migration [Goscinski, 1991; Barak
et al., 1993; Singhal and Shivaratri, 1994;
Milojičić et al., 1999]; a number of sur-
veys [Smith, 1988; Eskicioglu, 1990; Nut-
tal, 1994], though none as detailed as
this survey; and Ph.D. theses that deal
directly with migration [Theimer et al.,
1985; Zayas, 1987a; Lu, 1988; Douglis,
1990; Philippe, 1993; Milojičić, 1993c; Zhu,
1992; Roush, 1995], or that are related
to migration [Dannenberg, 1982; Nichols,
1990; Tracey, 1991; Chapin, 1993; Knabe,
1995; Jacqmot, 1996].

This survey reviews the field of pro-
cess migration by summarizing the key
concepts and describing the most impor-
tant implementations. Design and im-
plementation issues of process migration
are analyzed in general and then re-

visited for each of the case studies de-
scribed: MOSIX, Sprite, Mach, and LSF.
The benefits and drawbacks of process mi-
gration depend on the details of implemen-
tation and therefore this paper focuses
on practical matters. In this paper we
address mainly process migration mech-
anisms. Process migration policies, such
as load information management and dis-
tributed scheduling, are mentioned to the
extent that they affect the systems be-
ing discussed. More detailed descriptions
of policies have been reported elsewhere
(e.g., Chapin’s survey [1996]).

This survey will help in understand-
ing the potential of process migration. It
attempts to demonstrate how and why
migration may be widely deployed. We
assume that the reader has a general
knowledge of operating systems.

Organization of the Paper

The paper is organized as follows. Sec-
tion 2 provides background on process mi-
gration. Section 3 describes the process
migration by surveying its main charac-
teristics: complexity, performance, trans-
parency, fault resilience, scalability and
heterogeneity. Section 4 classifies vari-
ous implementations of process migration
mechanisms and then describes a couple
of representatives for each class. Section 5
describes four case studies of process mi-
gration in more detail. In Section 6 we
compare the process migration implemen-
tations presented earlier. In Section 7 we
discuss why we believe that process migra-
tion has not caught on so far. In the last
section we summarize the paper and de-
scribe opportunities for further research.

2. BACKGROUND

This section gives some background on
process migration by providing an over-
view of process migration terminology,
target architectures, goals, application
taxonomy, migration algorithms, system
requirements, load information manage-
ment, distributed scheduling, and alterna-
tives to migration.

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

244 D. S. Milojičić et al.

Fig. 1. High Level View of Process Migration.
Process migration consists of extracting the state of
the process on the source node, transferring it to the
destination node where a new instance of the process
is created, and updating the connections with other
processes on communicating nodes.

2.1. Terminology

A process is a key concept in operating
systems [Tanenbaum, 1992]. It consists of
data, a stack, register contents, and the
state specific to the underlying Operating
System (OS), such as parameters related
to process, memory, and file management.
A process can have one or more threads
of control. Threads, also called lightweight
processes, consist of their own stack and
register contents, but share a process’s ad-
dress space and some of the operating-
system-specific state, such as signals. The
task concept was introduced as a gener-
alization of the process concept, whereby
a process is decoupled into a task and a
number of threads. A traditional process
is represented by a task with one thread
of control.

Process migration is the act of trans-
ferring a process between two machines
(the source and the destination node) dur-
ing its execution. Some architectures also
define a host or home node, which is the
node where the process logically runs. A
high-level view of process migration is
shown in Figure 1. The transferred state
includes the process’s address space, exe-
cution point (register contents), communi-
cation state (e.g., open files and message
channels) and other operating system de-
pendent state. Task migration represents
transferring a task between two machines
during execution of its threads.

During migration, two instances of the
migrating process exist: the source in-
stance is the original process, and the

Fig. 2. Taxonomy of Mobility.

destination instance is the new process
created on the destination node. After mi-
gration, the destination instance becomes
a migrated process. In systems with a
home node, a process that is running on
other machines may be called a remote
process (from the perspective of the home
node) or a foreign process (from the per-
spective of the hosting node).

Remote invocation is the creation of a
process on a remote node. Remote invo-
cation is usually a less “expensive” opera-
tion than process migration. Although the
operation can involve the transfer of some
state, such as code or open files, the con-
tents of the address space need not be
transferred.

Generally speaking, mobility can be
classified into hardware and software mo-
bility, as described in Figure 2. Hardware
mobility deals with mobile computing,
such as with limitations on the connectiv-
ity of mobile computers and mobile IP (see
[Milojičić et al., 1999] for more details). A
few techniques in mobile computing have
an analogy in software mobility, such as
security, locating, naming, and communi-
cation forwarding. Software mobility can
be classified into the mobility of passive
data and active data. Passive data rep-
resents traditional means of transferring
data between computers; it has been em-
ployed ever since the first two comput-
ers were connected. Active data can be
further classified into mobile code, pro-
cess migration and mobile agents. These
three classes represent incremental evo-
lution of state transfer. Mobile code, such
as Java applets, transfers only code be-
tween nodes. Process migration, which is
the main theme of this paper, deals pri-
marily with code and data transfer. It also

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Process Migration 245

deals with the transfer of authority, for
instance access to a shared file system,
but in a limited way: authority is under
the control of a single administrative do-
main. Finally, mobile agents transfer code,
data, and especially authority to act on
the owner’s behalf on a wide scale, such
as within the entire Internet.

2.2. Target Architectures

Process migration research started with
the appearance of distributed processing
among multiple processors. Process mi-
gration introduces opportunities for shar-
ing processing power and other resources,
such as memory and communication chan-
nels. It is addressed in early multipro-
cessor systems [Stone, 1978; Bokhari,
1979]. Current multiprocessor systems,
especially symmetric multiprocessors, are
scheduled using traditional scheduling
methods. They are not used as an envi-
ronment for process migration research.

Process migration in NUMA (Non-
Uniform Memory Access) multiprocessor
architectures is still an active area of re-
search [Gait, 1990; Squillante and Nelson,
1991; Vaswani and Zahorjan, 1991; Nelson
and Squillante, 1995]. The NUMA archi-
tectures have a different access time to the
memory of the local processor, compared
to the memory of a remote processor, or to
a global memory. The access time to the
memory of a remote processor can be vari-
able, depending on the type of intercon-
nect and the distance to the remote pro-
cessor. Migration in NUMA architectures
is heavily dependent on the memory foot-
print that processes have, both in memory
and in caches. Recent research on virtual
machines on scalable shared memory mul-
tiprocessors [Bugnion, et al., 1997] rep-
resents another potential for migration.
Migration of whole virtual machines be-
tween processors of a multiprocessor ab-
stracts away most of the complexities of
operating systems, reducing the migrate-
able state only to memory and to state
contained in a virtual monitor [Teodosiu,
2000]. Therefore, migration is easier to im-
plement if there is a notion of a virtual
machine.

Massively Parallel Processors (MPP)
are another type of architecture used
for migration research [Tritscher and
Bemmerl, 1992; Zajcew et al., 1993]. MPP
machines have a large number of pro-
cessors that are usually shared between
multiple users by providing each of them
with a subset, or partition, of the pro-
cessors. After a user relinquishes a par-
tition, it can be reused by another user.
MPP computers are typically of a NORMA
(NO Remote Memory Access) type, i.e.,
there is no remote memory access. In
that respect they are similar to net-
work clusters, except they have a much
faster interconnect. Migration represents
a convenient tool to achieve repartition-
ing. Since MPP machines have a large
number of processors, the probability of
failure is also larger. Migrating a running
process from a partially failed node, for ex-
ample after a bank of memory unrelated to
the process fails, allows the process to con-
tinue running safely. MPP machines also
use migration for load distribution, such
as the psched daemon on Cray T3E, or
Loadleveler on IBM SP2 machines.

Since its inception, a Local Area Net-
work (LAN) of computers has been the
most frequently used architecture for pro-
cess migration. The bulk of the systems de-
scribed in this paper, including all of the
case studies, are implemented on LANs.
Systems such as NOW [Anderson et al.,
1995] or Solaris [Khalidi et al., 1996] have
recently investigated process migration
using clusters of workstations on LANs.
It was observed that at any point in time
many autonomous workstations on a LAN
are unused, offering potential for other
users based on process migration [Mutka
and Livny, 1987]. There is, however, a so-
ciological aspect to the autonomous work-
station model. Users are not willing to
share their computers with others if this
means affecting their own performance
[Douglis and Ousterhout, 1991]. The pri-
ority of the incoming processes (process-
ing, VM, IPC priorities) may be reduced
in order to allow for minimal impact
on the workstation’s owner [Douglis and
Ousterhout, 1991; Krueger and Chawla,
1991].

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

246 D. S. Milojičić et al.

Most recently, wide-area networks have
presented a huge potential for migration.
The evolution of the Web has significantly
improved the relevance and the opportu-
nities for using a wide-area network for
distributed computing. This has resulted
in the appearance of mobile agents, en-
tities that freely roam the network and
represent the user in conducting his tasks.
Mobile agents can either appear on the In-
ternet [Johansen et al., 1995] or in closed
networks, as in the original version of
Telescript [White, 1996].

2.3. Goals

The goals of process migration are closely
tied with the type of applications that use
migration, as described in next section.
The goals of process migration include:

Accessing more processing power
is a goal of migration when it is used
for load distribution. Migration is partic-
ularly important in the receiver-initiated
distributed scheduling algorithms, where
a lightly loaded node announces its avail-
ability and initiates process migration
from an overloaded node. This was the
goal of many systems described in this sur-
vey, such as Locus [Walker et al., 1983],
MOSIX [Barak and Shiloh, 1985], and
Mach [Milojičić et al., 1993a]. Load distri-
bution also depends on load information
management and distributed scheduling
(see Sections 2.7 and 2.8). A variation
of this goal is harnessing the computing
power of temporarily free workstations in
large clusters. In this case, process mi-
gration is used to evict processes upon
the owner’s return, such as in the case of
Sprite (see Section 5.2).

Exploitation of resource locality is
a goal of migration in cases when it is
more efficient to access resources locally
than remotely. Moving a process to an-
other end of a communication channel
transforms remote communication to lo-
cal and thereby significantly improves per-
formance. It is also possible that the re-
source is not remotely accessible, as in the
case when there are different semantics
for local and remote accesses. Examples
include work by Jul [1989], Milojičić et al.
[1993], and Miller and Presotto [1981].

Resource sharing is enabled by mi-
gration to a specific node with a special
hardware device, large amounts of free
memory, or some other unique resource.
Examples include NOW [Anderson et al.,
1995] for utilizing memory of remote
nodes, and the use of parallel make in
Sprite [Douglis and Ousterhout, 1991] and
work by Skordos [1995] for utilizing un-
used workstations.

Fault resilience is improved by migra-
tion from a partially failed node, or in the
case of long-running applications when
failures of different kinds (network, de-
vices) are probable [Chu et al., 1980]. In
this context, migration can be used in com-
bination with checkpointing, such as in
Condor [Litzkow and Solomon, 1992] or
Utopia [Zhou et al., 1994]. Large-scale sys-
tems where there is a likelihood that some
of the systems can fail can also benefit
from migration, such as in Hive [Chapin
et al., 1995] and OSF/1 AD TNC [Zajcew
et al., 1993].

System administration is simplified
if long-running computations can be tem-
porarily transferred to other machines.
For example, an application could mi-
grate from a node that will be shutdown,
and then migrate back after the node is
brought back up. Another example is the
repartitioning of large machines, such as
in the OSF/1 AD TNC Paragon configura-
tion [Zajcew et al., 1993].

Mobile computing also increases the
demand for migration. Users may want to
migrate running applications from a host
to their mobile computer as they connect
to a network at their current location or
back again when they disconnect [Bharat
and Cardelli, 1995].

2.4. Application Taxonomy

The type of applications that can benefit
from process migration include:

Parallelizable applications can be
started on certain nodes, and then mi-
grated at the application level or by a
system-wide migration facility in response
to things like load balancing consider-
ations. Parallel Virtual Machine (PVM)
[Beguelin et al., 1993] is an example
of application-level support for parallel

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Process Migration 247

invocation and interprocess communi-
cation, while Migratory PVM (MPVM)
[Casas et al., 1995] extends PVM to al-
low instances of a parallel application
to migrate among nodes. Some other
applications are inherently paralleliz-
able, such as the make tool [Baalbergen,
1988]. For example, Sprite provides a
migration-aware parallel make utility
that distributes a compilation across
several nodes [Douglis and Ousterhout,
1991]. Certain processor-bound applica-
tions, such as scientific computations, can
be parallelized and executed on multi-
ple nodes. An example includes work by
Skordos [1995], where an acoustic appli-
cation is parallelized and executed on a
cluster of workstations. Applications that
perform I/O and other nonidempotent op-
erations are better suited to a system-wide
remote execution facility that provides lo-
cation transparency and, if possible, pre-
emptive migration.

Long-running applications, which
can run for days or even weeks, can
suffer various interruptions, for example
partial node failures or administrative
shutdowns. Process migration can relo-
cate these applications transparently to
prevent interruption. Examples of such
systems include work by Freedman [1991]
and MPVM [Casas et al., 1995]. Migra-
tion can also be supported at the appli-
cation level [Zhou et al., 1994] by pro-
viding a checkpoint/restart mechanism
which the application can invoke periodi-
cally or upon notification of an impending
interruption.

Generic multiuser workloads, for
example the random job mix that an
undergraduate computer laboratory pro-
duces, can benefit greatly from process mi-
gration. As users come and go, the load on
individual nodes varies widely. Dynamic
process migration [Barak and Wheeler,
1989, Douglis and Ousterhout, 1991] can
automatically spread processes across all
nodes, including those applications that
are not enhanced to exploit the migration
mechanism.

An individual generic application,
which is preemptable, can be used with
various goals in mind (see Section 2.3).

Such an application can either migrate it-
self, or it can be migrated by another au-
thority. This type of application is most
common in various systems described in
Section 4 and in the case studies described
in Section 5. Note that it is difficult to
select such applications without detailed
knowledge of past behavior, since many
applications are short-lived and do not ex-
ecute long enough to justify the overhead
of migration (see Section 2.7).

Migration-aware applications are
applications that have been coded to
explicitly take advantage of process
migration. Dynamic process migration can
automatically redistribute these related
processes if the load becomes uneven on
different nodes, e.g. if processes are dy-
namically created, or there are many more
processes than nodes. Work by Skordos
[1995], Freedman [1991] and Cardelli
[1995] represent this class of application.
They are described in more detail in Sec-
tion 4.6.

Network applications are the most
recent example of the potential use of mi-
gration: for instance, mobile agents and
mobile objects (see Sections 4.7 and 4.8).
These applications are designed with mo-
bility in mind. Although this mobility dif-
fers significantly from the kinds of “pro-
cess migration” considered elsewhere in
this paper, it uses some of the same tech-
niques: location policies, checkpointing,
transparency, and locating and communi-
cating with a mobile entity.

2.5. Migration Algorithm

Although there are many different migra-
tion implementations and designs, most of
them can be summarized in the following
steps (see also Figure 3):

1. A migration request is issued to a
remote node. After negotiation, mi-
gration has been accepted.

2. A process is detached from its
source node by suspending its execu-
tion, declaring it to be in a migrating
state, and temporarily redirecting com-
munication as described in the follow-
ing step.

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

248 D. S. Milojičić et al.

Fig. 3. Migration Algorithm. Many details have been simplified, such as user v. kernel migration, when
is process actually suspended, when is the state transferred, how are message transferred, etc. These details
vary subject to particular implementation.

3. Communication is temporarily
redirected by queuing up arriving
messages directed to the migrated
process, and by delivering them to
the process after migration. This step
continues in parallel with steps 4,
5, and 6, as long as there are addi-
tional incoming messages. Once the
communication channels are enabled
after migration (as a result of step 7),
the migrated process is known to the
external world.

4. The process state is extracted,
including memory contents; proces-
sor state (register contents); commu-
nication state (e.g., opened files and

message channels); and relevant ker-
nel context. The communication state
and kernel context are OS-dependent.
Some of the local OS internal state is
not transferable. The process state is
typically retained on the source node
until the end of migration, and in some
systems it remains there even after mi-
gration completes. Processor dependen-
cies, such as register and stack con-
tents, have to be eliminated in the case
of heterogeneous migration.

5. A destination process instance is
created into which the transferred
state will be imported. A destination in-
stance is not activated until a sufficient

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Process Migration 249

amount of state has been transferred
from the source process instance. Af-
ter that, the destination instance will
be promoted into a regular process.

6. State is transferred and imported
into a new instance on the remote
node. Not all of the state needs to be
transferred; some of the state could be
lazily brought over after migration is
completed (see lazy evaluation in Sec-
tion 3.2).

7. Some means of forwarding refer-
ences to the migrated process must be
maintained. This is required in order
to communicate with the process or to
control it. It can be achieved by regis-
tering the current location at the home
node (e.g. in Sprite), by searching for the
migrated process (e.g. in the V Kernel,
at the communication protocol level),
or by forwarding messages across all
visited nodes (e.g. in Charlotte). This
step also enables migrated communica-
tion channels at the destination and it
ends step 3 as communication is perma-
nently redirected.

8. The new instance is resumed when
sufficient state has been transferred
and imported. With this step, process
migration completes. Once all of the
state has been transferred from the
original instance, it may be deleted on
the source node.

2.6. System Requirements for Migration

To support migration effectively, a system
should provide the following types of func-
tionality:r Exporting/importing the process

state. The system must provide some
type of export/import interfaces that
allow the process migration mechanism
to extract a process’s state from the
source node and import this state on the
destination node. These interfaces may
be provided by the underlying operating
system, the programming language,
or other elements of the programming
environment that the process has access
to. State includes processor registers,
process address space and communi-

cation state, such as open message
channels in the case of message-based
systems, or open files and signal masks
in the case of UNIX-like systems.r Naming/accessing the process and
its resources. After migration, the mi-
grated process should be accessible by
the same name and mechanisms as
if migration never occurred. The same
applies to process’s resources, such as
threads, communication channels, files
and devices. During migration, access to
a process and/or some of its resources
can be temporarily suspended. Varying
degrees of transparency are achieved in
naming and accessing resources during
and after migration (see Section 3.3).r Cleaning up the process’s non-
migratable state. Frequently, the mi-
grated process has associated system
state that is not migratable (examples
include a local process identifier, pid, and
the local time; a local pid is relevant only
to the local OS, and every host may have
a slightly different value for the local
time—something that may or may not
matter to a migrating process). Migra-
tion must wait until the process finishes
or aborts any pending system operation.
If the operation can be arbitrarily long, it
is typically aborted and restarted on the
destination node. For example, migra-
tion can wait for the completion of local
file operations or local device requests
that are guaranteed to return in a lim-
ited time frame. Waiting for a message or
accessing a remote device are examples
of operations that need to be aborted and
restarted on the remote node. Processes
that cannot have their non-migrateable
state cleaned cannot be considered for
migration.

2.7. Load Information Management

The local processes and the resources of
local and remote nodes have to be char-
acterized, in order to select a process for
migration and a destination node, as well
as to justify migration. This task is com-
monly known as load information manage-
ment. Load information is collected and
passed to a distributed scheduling policy

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

250 D. S. Milojičić et al.

Fig. 4. Load Information Management Mod-
ule collects load information on the local node
and disseminates it among the nodes. Distributed
Scheduling instructs the migration mechanism
when, where, and which process to migrate.

(see Figure 4). Load information manage-
ment is concerned with the following three
questions:

What is load information and how
is it represented? The node load is typi-
cally represented by one or more of the fol-
lowing load indices: utilization of the CPU,
the length of the queue of processes wait-
ing to be executed, the stretch factor (ra-
tio between turnaround- and execution-
time-submission to completion v. start to
completion) [Ferrari and Zhou 1986], the
number of running processes, the num-
ber of background processes, paging, com-
munication [Milojičić, 1993c], disk uti-
lization, and the interrupt rate [Hwang
et al., 1982]. A process load is typically
characterized by process lifetime, CPU us-
age, memory consumption (virtual and
physical), file usage [Hac, 1989a], commu-
nication [Lo, 1989], and paging [Milojičić,
1993c]. Kuntz uses a combination of work-
load descriptions for distributed schedul-
ing [Kunz, 1991]. The application type is
considered in Cedar [Hagmann, 1986].

When are load information col-
lection and dissemination activated?
These can be periodic or event-based. A
typical period is in the range of 1 second
or longer, while typical events are pro-
cess creation, termination, or migration.
The frequency of information dissemina-
tion is usually lower than the frequency of
information collection, i.e. it is averaged
over time in order to prevent instability
[Casavant and Kuhl, 1988b]. It also de-
pends on the costs involved with dissemi-

nation and the costs of process migration.
The lower the costs, the shorter the period
can be; the higher the costs, less frequently
load information is disseminated.

How much information should be
transferred? It can be the entire state,
but typically only a subset is transferred
in order to minimize the transfer costs and
have a scalable solution. In large systems,
approximations are applied. For example,
only a subset of the information might be
transferred, or it might be derived from
the subset of all nodes [Barak and Shiloh,
1985; Alon et al., 1987; Han and Finkel,
1988; Chapin and Spafford, 1994].

There are two important observations
derived from the research in load infor-
mation management. The first one is that
just a small amount of information can
lead to substantial performance improve-
ments. This observation is related to load
distribution in general, but it also applies
to process migration. Eager et al. were
among the first to argue that load shar-
ing using minimal load information can
gain dramatic improvements in perfor-
mance over the non-load-sharing case, and
perform nearly as well as more complex
policies using more information [Eager
et al., 1986b]. The minimal load informa-
tion they use consists of the process queue
length of a small number of successively
probed remote nodes. A small amount of
state also reduces communication over-
head. Kunz comes to the same conclusion
using the concept of stochastic learning
automata to implement a task scheduler
[Kunz, 1991].

The second observation is that the cur-
rent lifetime of a process can be used
for load distribution purposes. The issue
is to find how old the process needs to
be before it is worth to migrate it. Costs
involved with migrating short-lived pro-
cesses can outweigh the benefits. Leland
and Ott were the first to account for the
process age in the balancing policy [1986].
Cabrera finds that it is possible to predict
a process’s expected lifetime from how long
it has already lived [Cabrera, 1986]. This
justifies migrating processes that manage
to live to a certain age. In particular, he
finds that over 40% of processes doubled

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Process Migration 251

their age. He also finds that the most
UNIX processes are short-lived, more than
78% of the observed processes have a life-
time shorter than 1s and 97% shorter
than 4s.

Harchol-Balter and Downey explore
the correlation between process lifetime
and acceptable migration costs [Harchol-
Balter and Downey, 1997]. They derive
a more accurate form of the process life-
time distribution that allows them to pre-
dict the life-time correlated to the pro-
cess age and to derive a cost criterion
for migration. Svensson filters out short-
running processes by relying on statistics
[Svensson, 1990], whereas Wang et al. de-
ploy AI theory for the same purpose [Wang
et al., 1993].

2.8. Distributed Scheduling

This section addresses distributed sched-
uling closely related to process migration
mechanisms. General surveys are pre-
sented elsewhere [Wang and Morris, 1985;
Casavant and Kuhl, 1988a; Hac, 1989b;
Goscinski, 1991; Chapin, 1996].

Distributed scheduling uses the infor-
mation provided by the load informa-
tion management module to make migra-
tion decisions, as described in Figure 4.
The main goal is to determine when to
migrate which process where. The acti-
vation policy provides the answer to the
question when to migrate. Scheduling is
activated periodically or it is event-driven.
After activation, the load is inspected, and
if it is above/below a threshold, actions
are undertaken according to the selected
strategy. The selection policy answers the
question which process to migrate. The
processes are inspected and some of them
are selected for migration according to the
specified criteria. Where to migrate de-
pends on the location policy algorithm,
which chooses a remote node based on the
available information.

There are a few well-known classes of
distributed scheduling policies:r A sender-initiated policy is activated

on the node that is overloaded and that
wishes to off-load to other nodes. A
sender-initiated policy is preferable for

low and medium loaded systems, which
have a few overloaded nodes. This strat-
egy is convenient for remote invocation
strategies [Eager et al., 1986a; Krueger
and Livny, 1987b; Agrawal and Ezzat,
1987].r A receiver-initiated policy is acti-
vated on underloaded nodes willing to
accept the load from overloaded ones.
A receiver-initiated policy is preferable
for high load systems, with many over-
loaded nodes and few underloaded ones.
Process migration is particularly well-
suited for this strategy, since only with
migration can one initiate process trans-
fer at an arbitrary point in time [Bryant
and Finkel, 1981; Eager et al., 1986a;
Krueger and Livny, 1988].r A symmetric policy is the combina-
tion of the previous two policies, in an
attempt to take advantage of the good
characteristics of both of them. It is suit-
able for a broader range of conditions
than either receiver-initiated or sender-
initiated strategies alone [Krueger and
Livny, 1987b; Shivaratri et al., 1992].r A random policy chooses the destina-
tion node randomly from all nodes in a
distributed system. This simple strategy
can result in a significant performance
improvement [Alon et al., 1987; Eager
et al., 1986b; Kunz, 1991].

The following are some of the issues in
distributed scheduling related to the pro-
cess migration mechanism:r Adaptability is concerned with the

scheduling impact on system behavior
[Stankovic, 1984]. Based on the cur-
rent host and network load, the rela-
tive importance of load parameters may
change. The policy should adapt to these
changes. Process migration is inherently
adaptable because it allows processes to
run prior to dispatching them to other
nodes, giving them a chance to adapt. Mi-
gration can happen at any time (thereby
adapting to sudden load changes),
whereas initial placement happens only
prior to starting a process. Examples of
adaptive load distribution include work
by Agrawal and Ezzat [1987], Krueger

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

252 D. S. Milojičić et al.

and Livny [1988], Concepcion and
Eleazar [1988], Efe and Groselj [1989],
Venkatesh and Dattatreya [1990], Shiv-
aratri and Krueger [1990], and Mehra
and Wah [1992].r Stability is defined as the ability to de-
tect when the effects of further actions
(e.g. load scheduling or paging) will not
improve the system state as defined by
a user’s objective [Casavant and Kuhl,
1988b]. Due to the distributed state,
some instability is inevitable, since it
is impossible to transfer state changes
across the system instantly. However,
high levels of instability should be
avoided. In some cases it is advisable
not to perform any action, e.g. under ex-
tremely high loads it is better to aban-
don load distribution entirely. Process
migration can negatively affect stability
if processes are migrated back and forth
among the nodes, similar to the thrash-
ing introduced by paging [Denning,
1980]. To prevent such behavior a limit
on the number of migrations can be im-
posed. Bryant and Finkel demonstrate
how process migration can improve sta-
bility [Bryant and Finkel, 1981].r Approximate and heuristic sched-
uling is necessary since optimal solu-
tions are hard to achieve. Suboptimal
solutions are reached either by approx-
imating the search space with its subset
or by using heuristics. Some of the
examples of approximate and heuristic
scheduling include work by Efe [1982],
Leland and Ott [1986], Lo [1988],
Casavant and Kuhl [1988a], and Xu and
Hwang [1990]. Deploying process migra-
tion introduces more determinism and
requires fewer heuristics than alterna-
tive load distribution mechanisms. Even
when incorrect migration decisions are
made, they can be alleviated by subse-
quent migrations, which is not the case
with initial process placement where
processes have to execute on the same
node until the end of its lifetime.r Hierarchical scheduling integrates
distributed and centralized scheduling.
It supports distributed scheduling
within a group of nodes and centralized

scheduling among the groups. This area
has attracted much research [Bowen
et al., 1988; Bonomi and Kumar, 1988;
Feitelson and Rudolph, 1990; Gupta
and Gopinath, 1990; Gopinath and
Gupta, 1991; Chapin, 1995]. A process
migration mechanism is a good fit for
hierarchical scheduling since processes
are typically migrated within a LAN or
other smaller domain. Only in the case
of large load discrepancies are processes
migrated between domains, i.e. between
peers at higher levels of the hierarchy.

The most important question that dis-
tributed scheduling studies address re-
lated to process migration is whether mi-
gration pays off. The answer depends
heavily on the assumptions made. For ex-
ample, Eager et al. compare the receiver-
and sender-initiated policies [Eager et al.,
1986a], and show that the sender-initiated
policies outperform the receiver-initiated
policies for light and moderate system
loads. The receiver-initiated policy is bet-
ter for higher loads, assuming that trans-
fer costs are same. They argue that the
transfer costs for the receiver policy, that
requires some kind of migration, are much
higher than the costs for mechanisms
for the sender-initiated strategies, where
initial placement suffices. They finally
conclude that under no condition could mi-
gration provide significantly better perfor-
mance than initial placement [Eager et al.,
1988].

Krueger and Livny investigate the rela-
tionship between load balancing and load
sharing [Krueger and Livny, 1988]. They
argue that load balancing and load shar-
ing represent various points in a contin-
uum defined by a set of goals and load con-
ditions [Krueger and Livny, 1987]. They
claim that the work of Eager et al. [1988]
is only valid for a part of the contin-
uum, but it cannot be adopted generally.
Based on better job distributions than
those used by Eager et al., their simulation
results show that migration can improve
performance.

Harchol-Balter and Downey present the
most recent results on the benefits of us-
ing process migration [Harchol-Balter and

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Process Migration 253

Downey, 1997]. They use the measured
distribution of process lifetimes for a va-
riety of workloads in an academic envi-
ronment. The crucial point of their work
is understanding the correct lifetime dis-
tribution, which they find to be Pareto
(heavy-tailed). Based on the trace-driven
simulation, they demonstrate a 35-50%
improvement in the mean delay when us-
ing process migration instead of remote
execution (preemptive v. non-preemptive
scheduling) even when the costs of migra-
tion are high.

Their work differs from Eager et al.
[1988] in system model and workload de-
scription. Eager et al. model server farms,
where the benefits of remote execution
are overestimated: there are no associated
costs and no affinity toward a particular
node. Harchol-Balter and Downey model a
network of workstations where remote ex-
ecution entails costs, and there exists an
affinity toward some of the nodes in a dis-
tributed system. The workload that Eager
et al. use contains few jobs with non-zero
life-times, resulting in a system with lit-
tle imbalance and little need for process
migration.

2.9. Alternatives to Process Migration

Given the relative complexity of im-
plementation, and the expense incurred
when process migration is invoked, re-
searchers often choose to implement al-
ternative mechanisms [Shivaratri et al.,
1992; Kremien and Kramer, 1992].

Remote execution is the most fre-
quently used alternative to process migra-
tion. Remote execution can be as simple
as the invocation of some code on a re-
mote node, or it can involve transferring
the code to the remote node and inherit-
ing some of the process environment, such
as variables and opened files. Remote exe-
cution is usually faster than migration be-
cause it does not incur the cost of trans-
ferring a potentially large process state
(such as the address space, which is cre-
ated anew in the case of remote execu-
tion). For small address spaces, the costs
for remote execution and migration can
be similar. Remote execution is used in
many systems such as COCANET [Rowe

and Birman, 1982], Nest [Agrawal and
Ezzat, 1987], Sprite [Ousterhout et al.,
1988], Plan 9 [Pike et al., 1990], Amoeba
[Mullender et al., 1990], Drums [Bond,
1993], Utopia [Zhou et al., 1994], and Hive
[Chapin et al., 1995].

Remote execution has disadvantages as
well. It allows creation of the remote in-
stance only at the time of process creation,
as opposed to process migration which al-
lows moving the process at an arbitrary
time. Allowing a process to run on the
source node for some period of time is ad-
vantageous in some respects. This way,
short-lived processes that are not worth
migrating are naturally filtered out. Also,
the longer a process runs, the more in-
formation about its behavior is available,
such as whether and with whom it commu-
nicates. Based on this additional informa-
tion, scheduling policies can make more
appropriate decisions.

Cloning processes is useful in cases
where the child process inherits state from
the parent process. Cloning is typically
achieved using a remote fork mechanism.
A remote fork, followed by the termina-
tion of the parent, resembles process mi-
gration. The complexity of cloning pro-
cesses is similar to migration, because the
same amount of the process state is in-
herited (e.g. open files and address space).
In the case of migration, the parent is
terminated. In the case of cloning, both
parent and child may continue to access
the same state, introducing distributed
shared state, which is typically complex
and costly to maintain. Many systems use
remote forking [Goldberg and Jefferson,
1987; Smith and Ioannidis, 1989; Zajcew
et al., 1993].

Programming language support for
mobility enables a wide variety of options,
since such systems have almost complete
control over the runtime implementation
of an application. Such systems can en-
able self-checkpointing (and hence migrat-
able) applications. They are suitable for
entire processes, but also for objects as
small as a few bytes, such as in Emerald
[Jul et al., 1988; Jul, 1989] or Ellie
[Andersen, 1992]. Finer granularity in-
curs lower transfer costs. The complexity

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

254 D. S. Milojičić et al.

of maintaining communication channels
poses different kinds of problems. In
Emerald, for example, the pointers have
to be updated to the source object. Pro-
gramming language support allows a pro-
grammer to introduce more information
on object behavior, such as hints about
communication and concurrency patterns.

Object migration at the middleware
level is also possible. Because of the in-
creasing costs of operating system devel-
opment and the lack of standard solutions
for distributed systems and heterogene-
ity, middleware level solutions have be-
come of more interest [Bernstein, 1996].
Distributed objects are supported in mid-
dleware systems such as DCE [Rosenberry
et al., 1992] and CORBA [OMG, 1996]. Ob-
ject migration at the middleware level has
not attracted as much research as process
migration in operating systems. One of
the reasons is that the early heterogeneity
of these systems did not adequately sup-
port mobility. Nevertheless, a couple of
systems do support mobility at the mid-
dleware level, such as DC++ [Schill and
Mock, 1993] and the OMG MASIF speci-
fication for mobile agents [Milojičić et al.,
1998b] based on OMG CORBA.

Mobile agents are becoming increas-
ingly popular. The mobility of agents on
the Web emphasizes safety and security is-
sues more than complexity, performance,
transparency and heterogeneity. Mobile
agents are implemented on top of safe
languages, such as Java [Gosling et al.,
1996], Telescript [White, 1996] and Tcl/Tk
[Ousterhout, 1994]. Compared to process
migration, mobile agents have reduced im-
plementation complexity because they do
not have to support OS semantics. Per-
formance requirements are different due
to the wide-area network communication
cost, which is the dominant factor. Hetero-
geneity is abstracted away at the language
level. The early results and opportunities
for deployment, as well as the wide inter-
est in the area of mobile agents, indicate
a promising future for this form of mobil-
ity. However, the issues of security, social
acceptance, and commercializable appli-
cations have been significantly increased
and they represent the main focus of re-

Fig. 5. Migration levels differ in implementation
complexity, performance, transparency, and reusa-
bility.

search in the mobile agent community.
Mobile agents are described in more detail
in Section 4.8.

3. CHARACTERISTICS

This section addresses issues in pro-
cess migration, such as complexity, per-
formance, transparency, fault resilience,
scalability and heterogeneity. These char-
acteristics have a major impact on the
effectiveness and deployment of process
migration.

3.1. Complexity and Operating
System Support

The complexity of implementation and
dependency on an operating system are
among the obstacles to the wider use
of process migration. This is especially
true for fully-transparent migration im-
plementations. Migration can be classified
according to the level at which it is applied.
It can be applied as part of the operating
system kernel, in user space, as part of a
system environment, or as a part of the ap-
plication (see Figure 5). Implementations
at different levels result in different per-
formance, complexity, transparency and
reusability.

User-level migration typically yields
simpler implementations, but suffers too
much from reduced performance and
transparency to be of general use for load
distribution. User-space implementations
are usually provided for the support of
long-running computations [Litzkow and
Solomon, 1992]. Migration implemented
as part of an application can have poor

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Process Migration 255

reusability if modifications are required to
the application, as was done in the work by
Freedman [1991] and Skordos [1995]. This
requires familiarity with applications and
duplicating some of the mechanisms for
each subsequent application, frequently
involving effort beyond re-linking the mi-
gration part with the application code.
It could be somewhat improved if parts
of migration support is organized in a
reusable run-time library. Lower-level mi-
gration is more complex to implement, but
has better performance, transparency and
reusability.

Despite high migration costs, user-level
implementations have some benefits with
regard to policy. The layers closer to an
application typically have more knowl-
edge about its behavior. This knowledge
can be used to derive better policies and
hence, better overall performance. Sim-
ilar motivations led to the development
of microkernels, such as Mach [Accetta
et al., 1986], Chorus [Rozier, 1992], and
Amoeba [Tanenbaum, 1990], which have
moved much of their functionality from
the kernel into user space. For example,
file servers and networking may be imple-
mented in user space, leaving only a min-
imal subset of functionality provided in
the microkernel, such as virtual memory
management, scheduling and interprocess
communication.

Extensible kernels, such as Spin
[Bershad et al., 1995], Exokernel [Engler
et al., 1995], and Synthetix [Pu et al.,
1995], have taken an alternative approach
by allowing user implemented parts to
be imported into the kernel. Both micro-
kernels and extensible kernels provide
opportunities for extracting a process’s
state from the operating system.

There have been many implementa-
tions of migration for various operat-
ing systems and hardware architectures;
many of them required a significant im-
plementation effort and modifications to
the underlying kernel [Barak and Shiloh,
1985; Theimer et al., 1985; Zayas, 1987a;
Douglis and Ousterhout, 1991]. This com-
plexity is due to the underlying operat-
ing system architecture and specifically
its lack of support for the complex

interactions resulting from process mi-
gration. In the early days, migration re-
quired additional OS support, such as ex-
tensions for communications forwarding
[Artsy et al., 1987], or for data transfer
strategies [Theimer et al., 1985; Zayas,
1987a]. In the case of some subsequent mi-
gration implementations, this support al-
ready existed in the OS, such as in the case
of Mach [Milojičić et al., 1993a].

In UNIX-like operating systems, sup-
port for opened files and signals requires
significant interaction with various kernel
subsystems [Douglis, 1989; Welch, 1990].
Process migration in message-passing
kernels requires significant effort to sup-
port message handling [Theimer et al.,
1985; Artsy et al., 1987; Artsy and Finkel,
1989]. Recent operating systems provide
much of this support, such as transparent
distributed IPC with message forwarding,
and external distributed pagers, which
allow easier optimizations and customiz-
ing [Black et al., 1992; Rozier, 1992].
Nevertheless, migration still challenges
these mechanisms and frequently breaks
them [Douglis and Ousterhout, 1991;
Milojičić, 1993c].

3.2. Performance

Performance is the second important
factor that affects the deployment of pro-
cess migration. Migration performance de-
pends on initial and run-time costs intro-
duced by the act of migration. The initial
costs stem from state transfer. Instead
of at migration time, some of the state
may be transferred lazily (on-demand),
thereby incurring run-time costs. Both
types of cost may be significant, depend-
ing on the application characteristics, as
well as on the ratio of state transferred
eagerly/lazily.

If only part of the task state is trans-
ferred to another node, the task can start
executing sooner, and the initial migra-
tion costs are lower. This principle is called
lazy evaluation: actions are not taken be-
fore they are really needed with the hope
that they will never be needed. However,
when this is not true, penalties are paid
for postponed access. For example, it is

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

256 D. S. Milojičić et al.

convenient to migrate a huge address
space on demand instead of eagerly. In the
lazy case, part of the space may never be
trans-ferred if it is not accessed. However,
the source node needs to retain lazily eval-
uated state throughout the life-time of the
migrated process.

A process’s address space usually con-
stitutes by far the largest unit of process
state; not surprisingly, the performance of
process migration largely depends on the
performance of the address space transfer.
Various data transfer strategies have been
invented in order to avoid the high cost of
address space transfer.

r The eager (all) strategy copies all of
the address space at the migration time.
Initial costs may be in the range of
minutes. Checkpoint/restart implemen-
tations typically use this strategy, such
as Condor [Litzkow and Solomon, 1992]
or LSF [Zhou et al., 1994].r The eager (dirty) strategy can be de-
ployed if there is remote paging sup-
port. This is a variant of the eager
(all) strategy that transfers only modi-
fied (dirty) pages. Unmodified pages are
paged in on request from a backing store.
Eager (dirty) significantly reduces the
initial transfer costs when a process has
a large address space. Systems support-
ing eager (dirty) strategy include MOSIX
[Barak and Litman, 1985] and Locus
[Popek and Walker, 1985].r The Copy-On-Reference (COR) strat-
egy is a network version of demand pag-
ing: pages are transferred only upon ref-
erence. While dirty pages are brought
from the source node, clean pages can be
brought either from the source node or
from the backing store. The COR strat-
egy has the lowest initial costs, rang-
ing from a few tens to a few hundred
microseconds. However, it increases the
run-time costs, and it also requires sub-
stantial changes to the underlying oper-
ating system and to the paging support
[Zayas, 1987a].r The flushing strategy consists of flush-
ing dirty pages to disk and then access-
ing them on demand from disk instead

of from memory on the source node
as in copy-on-reference [Douglis and
Ousterhout, 1991]. The flushing strategy
is like the eager (dirty) transfer strat-
egy from the perspective of the source,
and like copy-on-reference from the tar-
get’s viewpoint. It leaves dependencies
on the server, but not on the source
node.r The precopy strategy reduces the
“freeze” time of the process, the time that
process is neither executed on the source
nor on the destination node. While the
process is executed on the source node,
the address space is being transferred
to the remote node until the number
of dirty pages is smaller than a fixed
limit. Pages dirtied during precopy have
to be copied a second time. The precopy
strategy cuts down the freeze time below
the costs of the COR technique [Theimer
et al., 1985].

There are also variations of the above
strategies. The most notable example is
migration in the Choices operating sys-
tem [Roush and Campbell, 1996]. It uses
a variation of the eager (dirty) strategy
which transfers minimal state to the re-
mote node at the time of migration. The re-
mote instance is started while the remain-
der of the state is transferred in parallel.
The initial migration time is reduced to
13.9ms running on a SparcStation II con-
nected by a 10Mb Ethernet, which is an
order of magnitude better than all other
reported results, even if results are nor-
malized (see work by Rousch [1995] for
more details on normalized performance
results).

Leaving some part of the process state
on the source or intermediate nodes of the
migrated instance results in a residual de-
pendency. Residual dependencies typically
occur as a consequence of two implemen-
tation techniques: either using lazy evalu-
ation (see definition below), or as a means
for achieving transparency in communica-
tion, by forwarding subsequent messages
to a migrated process.

A particular case of residual depen-
dency is the home dependency, which is
a dependency on the (home) node where

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Process Migration 257

a process was created [Douglis and
Ousterhout, 1991]. An example of a home
dependency is redirecting systems calls to
the home node: for example, local host-
dependent calls, calls related to the file
system (in the absence of a distributed
file system), or operations on local devices.
A home dependency can simplify migra-
tion, because it is easier to redirect re-
quests to the home node than to support
services on all nodes. However, it also ad-
versely affects reliability, because a mi-
grated foreign process will always depend
on its home node. The notion of the home
dependency is further elaborated upon be-
low in Section 5.1 (MOSIX) and Section 5.2
(Sprite).

Redirecting communication through the
previously established links represents
another kind of residual dependency. In
general, dependencies left at multiple
nodes should be avoided, since they re-
quire complex support, and degrade per-
formance and fault resilience. Therefore,
some form of periodic or lazy removal of
residual dependencies is desirable. For ex-
ample, the system could flush remain-
ing pages to the backing store, or update
residual information on migrated commu-
nication channels.

3.3. Transparency

Transparency requires that neither the
migrated task nor other tasks in the sys-
tem can notice migration, with the possi-
ble exception of performance effects. Com-
munication with a migrated process could
be delayed during migration, but no mes-
sage can be lost. After migration, the
process should continue to communicate
through previously opened I/O channels,
for example printing to the same console
or reading from the same files.

Transparency is supported in a variety
of ways, depending on the underlying op-
erating system. Sprite and NOW MOSIX
maintain a notion of a home machine that
executes all host-specific code [Douglis
and Ousterhout, 1991; Barak et al., 1995].
Charlotte supports IPC through links,
which provide for remapping after migra-
tion [Finkel et al., 1989].

Transparency also assumes that the mi-
grated instance can execute all system
calls as if it were not migrated. Some user-
space migrations do not allow system calls
that generate internode signals or file ac-
cess [Mandelberg and Sunderam, 1988;
Freedman, 1991].

Single System Image (SSI) represents a
complete form of transparency. It provides
a unique view of a system composed of a
number of nodes as if there were just one
node. A process can be started and com-
municated with without knowing where
it is physically executing. Resources can
be transparently accessed from any node
in the system as if they were attached
to the local node. The underlying system
typically decides where to instantiate new
processes or where to allocate and access
resources.

SSI can be applied at different levels of
the system. At the user-level, SSI consists
of providing transparent access to objects
and resources that comprise a particu-
lar programming environment. Examples
include Amber [Chase et al., 1989] and
Emerald [Jul, 1989]. At the traditional op-
erating system level, SSI typically con-
sists of a distributed file system and dis-
tributed process management, such as in
MOSIX [Barak and Litman, 1985], Sprite
[Ousterhout et al., 1988] and OSF/1 AD
TNC [Zajcew et al., 1993]. At the microker-
nel level, SSI is comprised of mechanisms,
such as distributed IPC, distributed mem-
ory management, and remote tasking. A
near-SSI is implemented for Mach [Black
et al., 1992] based on these transpar-
ent mechanisms, but the policies are sup-
ported at the OSF/1 AD server running on
top of it. At the microkernel level the pro-
grammer needs to specify where to create
remote tasks.

SSI supports transparent access to a
process, as well as to its resources, which
simplifies migration. On the other hand,
the migration mechanism exercises func-
tionality provided at the SSI level, posing
a more stressful workload than normally
experienced in systems without migra-
tion [Milojičić et al., 1993a]. Therefore,
although a migration implementation on
top of SSI may seem less complex, this

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

258 D. S. Milojičić et al.

complexity is pushed down into the SSI
implementation.

Some location dependencies on another
host may be inevitable, such as access-
ing local devices or accessing kernel-
dependent state that is managed by the
other host. It is not possible transparently
to support such dependencies on the newly
visited nodes, other than by forwarding
the calls back to the home node, as was
done in Sprite [Douglis and Ousterhout,
1991].

3.4. Fault Resilience

Fault resilience is frequently mentioned
as a benefit of process migration. How-
ever, this claim has never been substan-
tiated with a practical implementation,
although some projects have specifically
addressed fault resilience [Chou and
Abraham, 1983; Lu et al., 1987]. So far
the major contribution of process migra-
tion for fault resilience is through com-
bination with checkpointing, such as in
Condor [Litzkow and Solomon, 1992], LSF
Zhou et al., 1994] and in work by Skordos
[1995]. Migration was also suggested as a
means of fault containment [Chapin et al.,
1995].

Failures play an important role in
the implementation of process migration.
They can happen on a source or target ma-
chine or on the communication medium.
Various migration schemes are more or
less sensitive to each type of failure. Resid-
ual dependencies have a particularly neg-
ative impact on fault resilience. Using
them is a trade-off between efficiency and
reliability.

Fault resilience can be improved in sev-
eral ways. The impact of failures during
migration can be reduced by maintaining
process state on both the source and
destination sites until the destination
site instance is successfully promoted to
a regular process and the source node is
informed about this. A source node failure
can be overcome by completely detaching
the instance from the source node once
it is migrated, though this prevents
lazy evaluation techniques from being
employed. One way to remove communi-
cation residual dependencies is to deploy

locating techniques, such as multicasting
(as used in V kernel [Theimer et al.,
1985), reliance on the home node (as used
in Sprite [Douglis and Ousterhout, 1991],
and MOSIX [Barak and Litman, 1985]),
or on a forwarding name server (as used
in most distributed name services, such
as DCE, as well as in mobile agents, such
as MOA [Milojičić et al., 1999]). This way
dependencies are singled out on dedicated
nodes, as opposed to being scattered
throughout all the nodes visited, as is
the case for Charlotte [Artsy et al., 1987].
Shapiro, et al. [1992] propose so-called
SSP Chains for periodically collapsing
forwarding pointers (and thereby reduc-
ing residual dependencies) in the case of
garbage collection.

3.5. Scalability

The scalability of a process migration
mechanism is related to the scalability of
its underlying environment. It can be mea-
sured with respect to the number of nodes
in the system, to the number of migra-
tions a process can perform during its life-
time, and to the type and complexity of
the processes, such as the number of open
channels or files, and memory size or frag-
mentation.

The number of nodes in the system af-
fects the organization and management
of structures that maintain residual pro-
cess state and the naming of migrated pro-
cesses. If these structures are not part of
the existing operating system, then they
need to be added.

Depending on the migration algorithm
and the techniques employed, some sys-
tems are not scalable in the number of
migrations a process may perform. As we
shall see in the case study on Mach (see
Section 5.3), sometimes process state can
grow with the number of migrations. This
is acceptable for a small number of mi-
grations, but in other cases the additional
state can dominate migration costs and
render the migration mechanism useless.

Migration algorithms should avoid lin-
ear dependencies on the amount of state
to be transferred. For example, the eager
data transfer strategy has costs propor-
tional to the address space size, incurring

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Process Migration 259

significant costs for large address spaces.
The costs for a lazily copied process are
independent of the address space size, but
they can depend on the granularity and
type of the address space. For example, the
transfer of a large sparse address space
can have costs proportional to the num-
ber of contiguous address space regions,
because each such region has metadata as-
sociated with it that must be transferred
at migration time. This overhead can be
exacerbated if the meta-data for each re-
gion is transferred as a separate opera-
tion, as was done in the initial implemen-
tation of Mach task migration [Milojičić
et al., 1993b].

Communication channels can also affect
scalability. Forwarding communication to
a migrated process is acceptable after a
small number of sequential migrations,
but after a large number of migrations
the forwarding costs can be significant. In
that case, some other technique, such as
updating communication links, must be
employed.

3.6. Heterogeneity

Heterogeneity has not been addressed in
most early migration implementations.
Instead, homogeneity is considered as a
requirement; migration is allowed only
among the nodes with a compatible archi-
tecture and processor instruction set. This
was not a significant limitation at the time
since most of the work was conducted on
clusters of homogeneous machines.

Some earlier work indicated the need
as well as possible solutions for solving
the heterogeneity problem, but no mature
implementations resulted [Maguire and
Smith, 1988; Dubach, 1989; Shub, 1990;
Theimer and Hayes, 1991].

The deployment of world-wide comput-
ing has increased the interest in hetero-
geneous migration. In order to achieve
heterogeneity, process state needs to be
saved in a machine-independent represen-
tation. This permits the process to resume
on nodes with different architectures. An
application is usually compiled in advance
on each architecture, instrumenting the
code to know what procedures and vari-
ables exist at any time, and identifying

points at which the application can be
safely preempted and checkpointed. The
checkpointing program sets a breakpoint
at each preemption point and examines
the state of the process when a breakpoint
is encountered. Smith and Hutchinson
note that not all programs can be safely
checkpointed in this fashion, largely de-
pending on what features of the language
are used [Smith and Hutchinson, 1998].
Emerald [Steensgaard and Jul, 1995]
is another example of a heterogeneous
system.

In the most recent systems, heterogene-
ity is provided at the language level, as
by using intermediate byte code repre-
sentation in Java [Gosling et al., 1996],
or by relying on scripting languages such
as Telescript [White, 1996] or Tcl/Tk
[Ousterhout, 1994].

3.7. Summary

This subsection evaluates the trade-offs
between various characteristics of process
migration, and who should be concerned
with it.

Complexity is much more of a concern
to the implementors of a process migra-
tion facility than to its users. Complexity
depends on the level where migration
is implemented. Kernel-level implemen-
tations require significantly more com-
plexity than user-level implementations.
Users of process migration are impacted
only in the case of user-level implemen-
tations where certain modifications of the
application code are required or where mi-
gration is not fully transparent.

Long-running applications are not con-
cerned with performance as are those
applications whose lifetimes are com-
parable to their migration time. Short-
running applications are generally not
good candidates for migration. Migration-
time performance can be traded off against
execution-time (by leaving residual depen-
dencies, or by lazily resolving communica-
tion channels). Residual dependencies are
of concern for long-running applications
and for network applications. Applications
with real-time requirements generally are
not suitable candidates for residual depen-
dency because of the unpredictable costs

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

260 D. S. Milojičić et al.

of bringing in additional state. On the
other hand, real-time requirements can be
more easily fulfilled with strategies, such
as precopy.

Legacy applications are concerned with
transparency in order to avoid any
changes to existing code. Scientific ap-
plications typically do not have trans-
parency requirements. Frequently, one is
allowed to make modifications to the code
of these applications, and even support
migration at the application level (e.g.
by checkpointing state at the application
level). Transparency typically incurs com-
plexity. However, transparency is not re-
lated to migration exclusively, rather it
is inherent to remote access. Transpar-
ent remote execution can require support
that is as complex as transparent pro-
cess migration [Douglis and Ousterhout,
1991].

Scientific applications (typically long-
running), as well as network applications
are concerned with failure tolerance. In
most cases periodic checkpointing of the
state suffices.

Scalability requires additional complex-
ity for efficient support. It is of concern for
scientific applications because they may
require a large number of processes, large
address spaces, and a large number of
communication channels. It is also impor-
tant for network applications, especially
those at the Internet scale.

Heterogeneity introduces performance
penalties and additional complexity. It is
of most concern to network applications
which typically run on inhomogeneous
systems.

4. EXAMPLES

This section classifies process migration
implementations in the following cate-
gories: early work; UNIX-like systems
supporting transparent migration; sys-
tems with message-passing interfaces;
microkernels; user-space migration; and
application-specific migration. In addi-
tion, we also give an overview of mobile
objects and mobile agents. These last two
classes do not represent process migration
in the classic sense, but they are similar

in sufficiently many ways to warrant their
inclusion [Milojičić et al., 1998a]. For each
class, an overview and some examples are
presented. Finally, in the last subsection,
we draw some conclusions. The next sec-
tion expands upon four of these systems in
substantial detail.

There are also other examples of pro-
cess migration that can fit into one or
more classes presented in this section.
Examples include object migration in
Eden [Lazowska, et al., 1981]; MINIX
[Louboutin, 1991]; Galaxy [Sinha et al.,
1991]; work by Dediu [1992]; EMPS [van
Dijk and van Gils, 1992]; object migration
for OSF DCE, DC++ [Schill and Mock,
1993]; work by Petri and Langendorfer
[1995]; MDX [Schrimpf, 1995]; and many
more. A description of these systems is
beyond the scope of this paper. In ad-
dition to other surveys of process mi-
gration already mentioned in the intro-
duction [Smith, 1988; Eskicioglu, 1990;
Nuttal, 1994], Borghoff provides a cat-
alogue of distributed operating systems
with many examples of migration mech-
anisms [Borghoff, 1991].

4.1. Early Work

Early work is characterized by specialized,
ad hoc solutions, often optimized for the
underlying hardware architecture. In this
subsection we briefly mention XOS, Worm,
DEMOS/MP and Butler.

Migration in XOS is intended as a
tool for minimizing the communication be-
tween the nodes in an experimental mul-
tiprocessor system, organized in a tree
fashion [Miller and Presotto, 1981]. The
representation of the process and its state
are designed in a such a way as to facili-
tate migration. The Process Work Object
(PWO) encapsulates process related state
including stack pointers and registers. Mi-
gration is achieved by moving PWO ob-
jects between the XOS nodes. The process
location is treated as a hint, and the cur-
rent location is found by following hints.

The Worm idea has its background
in the nature of real worms [Shoch and
Hupp, 1982]. A worm is a computation
that can live on one or more machines.
Parts of the worm residing on a single

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Process Migration 261

machine are called segments. If a segment
fails, other segments cooperatively rein-
stantiate it by locating a free machine, re-
booting it from the network, and migrat-
ing the failed worm segment to it. A worm
can move from one machine to another, oc-
cupying needed resources, and replicating
itself. As opposed to other migration sys-
tems, a worm is aware of the underlying
network topology. Communication among
worm segments is maintained through
multicasting.

The original Butler system supports
remote execution and process migra-
tion [Dannenberg, 1982]. Migration oc-
curs when the guest process needs to be
“deported” from the remote node, e.g. in
case when it exceeds resources it nego-
tiated before arrival. In such a case, the
complete state of the guest process is
packaged and transferred to a new node.
The state consists of the address space,
registers, as well as the state contained
in the servers collocated at the same
node. Migration does not break the com-
munication paths because the underly-
ing operating system (Accent [Rashid and
Robertson, 1981]) allows for port migra-
tion. The Butler design also deals with
the issues of protection, security, and au-
tonomy [Dannenberg and Hibbard, 1985].
In particular, the system protects the
client program, the Butler daemons on the
source and destination nodes, the visiting
process, and the remote node. In its later
incarnation, Butler supports only remote
invocation [Nichols, 1987].

DEMOS/MP [Miller et al., 1987] is a
successor of the earlier version of the
DEMOS operating system [Baskett et al.,
1977]. Process migration is fully transpar-
ent: a process can be migrated during exe-
cution without limitations on resource ac-
cess. The implementation of migration has
been simplified and its impact to other
services limited by the message-passing,
location-independent communication, and
by the fact that the kernel can partici-
pate in the communication in the same
manner as any process [Powell and Miller,
1983]. Most of the support for process
migration already existed in the DEMOS
kernel. Extending it with migration re-

quired mechanisms for forwarding mes-
sages and updating links. The transferred
state includes program code and data
(most of the state), swappable and non-
swappable state, and messages in the in-
coming queue of the process.

4.2. Transparent Migration in
UNIX-like Systems

UNIX-like systems have proven to be rel-
atively hard to extend for transparent
migration and have required significant
modifications and extensions to the under-
lying kernel (see Subsections 4.3 and 4.4
for comparisons with other types of OSes).
There are two approaches to addressing
distribution and migration for these sys-
tems. One is to provide for distribution at
the lower levels of a system, as in MOSIX
or Sprite, and the other is by providing
distribution at a higher-level, as in Locus
and its derivatives. In this section, we
shall describe process migration for Locus,
MOSIX and Sprite. All of these systems
also happened to be RPC-based, as op-
posed to the message-passing systems de-
scribed in Section 4.3.

Locus is a UNIX-compatible operating
system that provides transparent access
to remote resources, and enhanced relia-
bility and availability [Popek et al., 1981;
Popek and Walker, 1985]. It supports pro-
cess migration [Walker et al., 1983] and
initial placement [Butterfield and Popek,
1984]. Locus is one of the rare systems
that achieved product stage. It has been
ported to the AIX operating system on the
IBM 370 and PS/2 computers under the
name of the Transparent Computing Fa-
cility (TCF) [Walker and Mathews, 1989].
Locus migration has a high level of func-
tionality and transparency. However, this
required significant kernel modifications.

Locus has subsequently been ported to
the OSF/1 AD operating system, under
the name of TNC [Zajcew et al., 1993].
OSF/1 AD is a distributed operating sys-
tem running on top of the Mach microker-
nel on Intel x86 and Paragon architectures
(see Section 5.3). TNC is only partially con-
cerned with task migration issues of the
underlying Mach microkernel, because in

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

262 D. S. Milojičić et al.

the OSF/1 AD environment the Mach
interface is not exposed to the user, and
therefore the atomicity of process migra-
tion is not affected. Locus was also used
as a testbed for a distributed shared mem-
ory implementation, Mirage [Fleisch and
Popek, 1989]. Distributed shared mem-
ory was not combined with process migra-
tion as was done in the case of Mach (see
Section 5.3).

The MOSIX distributed operating sys-
tem is an ongoing project that began in
1981. It supports process migration on
top of a single system image base [Barak
and Litman, 1985] and in a Network of
Workstations environment [Barak et al.,
1995]. The process migration mechanism
is used to support dynamic load balancing.
MOSIX employs a probabilistic algorithm
in its load information management that
allows it to transmit partial load informa-
tion between pairs of nodes [Barak and
Shiloh, 1985; Barak and Wheeler, 1989].
A case study of the MOSIX system is pre-
sented in Section 5.1.

The Sprite network operating system
[Ousterhout et al., 1988] was developed
from 1984–1994. Its process migration fa-
cility [Douglis and Ousterhout, 1991] was
transparent both to users and to appli-
cations, by making processes appear to
execute on one host throughout their ex-
ecution. Processes could access remote re-
sources, including files, devices, and net-
work connections, from different locations
over time. When a user returned to a work-
station onto which processes had been off-
loaded, the processes were immediately
migrated back to their home machines and
could execute there, migrate else-where,
or suspend execution. A case study of the
Sprite system is presented in Section 5.2.

4.3. OS with Message-Passing Interface

Process migration for message-passing op-
erating systems seems easier to design
and implement. Message passing is con-
venient for interposing, forwarding and
encapsulating state. For example, a new
receiver may be interposed between the
existing receiver and the sender, with-
out the knowledge of the latter, and mes-

sages sent to a migrated process can be
forwarded after its migration to a new
destination. However, much of the sim-
plicity that seems to be inherent for
message-passing systems is hidden in-
side the complex message-passing mech-
anisms [Douglis and Ousterhout, 1991].

In this section we describe Charlotte,
Accent and the V kernel. The V kernel can
be classified both as a microker-nel and
as a message passing kernel; we chose to
present it in the message-passing section.

Charlotte is a message-passing operat-
ing system designed for the Crystal mul-
ticomputer composed of 20 VAX-11/750
computers [Artsy and Finkel, 1989]. The
Charlotte migration mechanism exten-
sively relies on the underlying operating
system and its communication mecha-
nisms which were modified in order to sup-
port transparent network communication
[Artsy et al., 1987]. Its process migration is
well insulated from other system modules.
Migration is designed to be fault resilient:
processes leave no residual dependency on
the source machine. The act of migration
is committed in the final phase of the state
transfer; it is possible to undo the migra-
tion before committing it.

Accent is a distributed operating sys-
tem developed at CMU [Rashid and
Robertson, 1981; Rashid, 1986]. Its pro-
cess migration scheme was the first one to
use the “Copy-On-Reference” (COR) tech-
nique to lazily copy pages [Zayas, 1987a].
Instead of eagerly copying pages, virtual
segments are created on the destination
node. When a page fault occurs, the vir-
tual segment provides a link to the page
on the source node. The duration of the ini-
tial address space transfer is independent
of the address space size, but rather de-
pends on the number of contiguous mem-
ory regions. The subsequent costs for lazily
copied pages are proportional to the num-
ber of pages referenced. The basic as-
sumption is that the program would not
access all of its address space, thereby
saving the cost of a useless transfer. Be-
sides failure vulnerability, the drawback
of lazy evaluation is the increased com-
plexity of in-kernel memory management
[Zayas, 1987b].

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Process Migration 263

The V Kernel is a microkernel devel-
oped at Stanford University [Cheriton,
1988]. It introduces a “precopying” tech-
nique for the process address space trans-
fer [Theimer et al., 1985]. The address
space of the process to be migrated is
copied to the remote node prior to its
migration, while the process is still ex-
ecuting on the source node. Dirty pages
referenced during the precopying phase
are copied again. It has been shown that
only two or three iterations generally suf-
fice to reach an acceptably small number
of dirty pages. At that point of time the
process is frozen and migrated. This tech-
nique shortens the process freeze time, but
otherwise negatively influences the exe-
cution time, since overhead is incurred
in iterative copying. Migration benefits
from a communications protocol that dy-
namically rebinds to alternate destina-
tion hosts as part of its implementation
of reliable message delivery. Instead of
maintaining process communication end-
points after migration, V relies on multi-
cast to find the new process location.

4.4. Microkernels

The microkernel approach separates the
classical notion of a monolithic kernel
into a microkernel and an operating sys-
tem personality running on top of it in
a separate module. A microkernel sup-
ports tasks, threads, IPC and VM man-
agement, while other functionality, such
as networking, file system and process
management, is imple-mented in the OS
personality. Various OS personalities have
been implemented, such as BSD UNIX
[Golub et al., 1990], AT&T UNIX System
V [Rozier, 1992; Cheriton, 1990], MS DOS
[Malan et al., 1991], VMS [Wiecek, 1992],
OS/2 [Phelan and Arendt, 1993] and Linux
[Barbou des Places et al., 1996].

In the late eighties and early nineties,
there was a flurry of research into mi-
crokernels, including systems, such as
Mach [Accetta et al., 1986], Chorus
[Rozier, 1992], Amoeba [Mullender et al.,
1990], QNX [Hildebrand, 1992], Spring
[Hamilton and Kougiouris, 1993] and L3
[Liedtke, 1993], which eventually reached

commercial implementations, and many
more research microkernels, such as
Arcade [Cohn et al., 1989], Birlix [Haertig
et al., 1993], KeyKOS [Bomberger et al.,
1992] and RHODOS [Gerrity et al., 1991].

The microkernel approach, combined
with message passing, allows for trans-
parent, straightforward extensions to dis-
tributed systems. Not surprisingly, micro-
kernels are a suitable environment for
various migration experiments. The task
migration mechanism can be reused by
different OS personalities, as a common
denominator for different OS-specific pro-
cess migration mechanisms. In this sub-
section we describe process migrations for
RHODOS, Arcade, Chorus, Amoeba, Birlix
and Mach.

RHODOS consists of a nucleus that
supports trap and interrupt handling, con-
text switching, and local message pass-
ing. The kernel runs on top of the nu-
cleus and supports IPC, memory, process,
and migration managers [Gerrity et al.,
1991]. The migration mechanism is sim-
ilar to that in Sprite, with some modifica-
tions specific to the RHODOS kernel [Zhu,
1992].

Arcade considers groups of tasks for
migration [Cohn et al., 1989]. It is used
as a framework for investigating sharing
policies related to task grouping [Tracey,
1991]. The group management software
ensures that members of the group ex-
ecute on different machines, thereby ex-
ploiting parallelism.

The Chorus microkernel was extended
to support process migration [Philippe,
1993]. The migration mechanism is sim-
ilar to task migration on top of Mach (cf.
Section 5.3), however it is applied at the
process level, instead of the Actor level. Ac-
tors in Chorus correspond to Mach tasks.
Chorus migration is biased toward the
hypercube implementation (fast and reli-
able links). Some limitations were intro-
duced because Chorus did not support port
migration.

Steketee et al. implemented process mi-
gration for the Amoeba operating system
[Steketee et al., 1994]. Communication
transparency relies on the location inde-
pendence of the FLIP protocol [Kaashoek

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

264 D. S. Milojičić et al.

et al., 1993]. Since Amoeba does not sup-
port virtual memory, the memory transfer
for process migration is achieved by phys-
ical copying [Zhu et al., 1995].

Birlix supports adaptable object migra-
tion [Lux, 1995]. It is possible to spec-
ify a migration policy on a per-object ba-
sis. A meta-object encapsulates data for
the migration mechanism and information
collection. An example of the use of an
adaptable migration mechanism is to ex-
tend migration for improved reliability or
performance [Lux et al., 1993].

Mach [Accetta et al., 1986] was used
as a base for supporting task migration
[Milojičić et al., 1993b], developed at the
University of Kaiserslautern. The goals
were to demonstrate that microkernels
are a suitable substrate for migration
mechanisms and for load distribution in
general. The task migration implementa-
tion significantly benefited from the near
SSI provided by Mach, in particular from
distributed IPC and distributed memory
management. Process migration was built
for the OSF/1 AD 1 server using Mach
task migration [Paindaveine and Milojičić,
1996]. Task and process migration on top
of Mach are discussed in more detail in
Section 5.3.

4.5. User-space Migrations

While it is relatively straightforward to
provide process migration for distributed
operating systems, such as the V kernel,
Accent, or Sprite, it is much harder to sup-
port transparent process migration on in-
dustry standard operating systems, which
are typically non-distributed. Most work-
stations in the 1980s and 1990s run pro-
prietary versions of UNIX, which makes
them a more challenging base for process
migration than distributed operating sys-
tems. Source code is not widely available
for a proprietary OS; therefore, the only
way to achieve a viable and widespread
migration is to implement it in user space.

User-space migration is targeted to
long-running processes that do not pose
significant OS requirements, do not need
transparency, and use only a limited set of
system calls. The migration time is typi-

cally a function of the address space size,
since the eager (all) data transfer scheme
is deployed. This subsection presents a
few such implementations: Condor, the
work by Alonso and Kyrimis, the work
by Mandelberg and Sunderam, the work
by Petri and Langendoerfer, MPVM, and
LSF.

Condor is a software package that sup-
ports user-space checkpointing and pro-
cess migration in locally distributed sys-
tems [Litzkow, 1987; Litzkow et al., 1988;
Litzkow and Solomon, 1992]. Its check-
pointing support is particularly useful for
long-running computations, but is too ex-
pensive for short processes. Migration in-
volves generating a core file for a process,
combining this file with the executable
and then sending this on to the target
machine. System calls are redirected to a
“shadow” process on the source machine.
This requires a special version of the C
library to be linked with the migrated
programs.

Condor does not support processes that
use signals, memory mapped files, timers,
shared libraries, or IPC. The scheduler
activation period is 10 minutes, which
demonstrates the “heaviness” of migra-
tion. Nevertheless, Condor is often used
for long-running computations. It has
been ported to a variety of operating sys-
tems. Condor was a starting point for a few
industry products, such as LSF from Plat-
form Computing [Zhou et al., 1994] and
Loadleveler from IBM.

Alonso and Kyrimis perform minor
modifications to the UNIX kernel in order
to support process migration in user space
[Alonso and Kyrimis, 1988]. A new signal
for dumping process state and a new sys-
tem call for restarting a process are intro-
duced. This implementation is limited to
processes that do not communicate and
are not location- or process-dependent.
The work by Alonso and Kyrimis was done
in parallel with the early Condor system.

Mandelberg and Sunderam present
a process migration scheme for UNIX that
does not support tasks that perform I/O
on non-NFS files, spawn subprocesses,
or utilize pipes and sockets [Mandelberg
and Sunderam, 1988]. A new terminal

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Process Migration 265

interface supports detaching a process
from its terminal and monitors requests
for I/O on the process migration port.

Migratory Parallel Virtual Machine
(MPVM) extends the PVM system
[Beguelin et al., 1993] to support process
migration among homogeneous machines
[Casas et al., 1995]. Its primary goals are
transparency, compatibility with PVM,
and portability. It is implemented entirely
as a user-level mechanism. It supports
communication among migrating pro-
cesses by limiting TCP communication to
other MPVM processes.

Load Sharing Facility (LSF) sup-
ports migration indirectly through pro-
cess checkpointing and restart [Platform
Computing, 1996]. LSF can work with
checkpointing at three possible levels:
kernel, user, and application. The tech-
nique used for user-level check-pointing is
based on the Condor approach [Litzkow
and Solomon, 1992], but no core file
is required, thereby improving perfor-
mance, and signals can be used across
checkpoints, thereby improving trans-
parency. LSF is described in more detail in
Section 5.4.

4.6. Application-specific Migration

Migration can also be implemented as a
part of an application. Such an approach
deliberately sacrifices transparency and
reusability. A migrating process is typi-
cally limited in functionality and migra-
tion has to be adjusted for each new appli-
cation. Nevertheless, the implementation
can be significantly simplified and opti-
mized for one particular application. In
this subsection we describe work by Freed-
man, Skordos, and Bharat and Cardelli.

Freedman reports a process migration
scheme involving cooperation between the
migrated process and the migration mod-
ule [Freedman, 1991]. The author ob-
serves that long-running computations
typically use operating system services
in the beginning and ending phases of
execution, while most of their time is spent
in number-crunching. Therefore, little at-
tention is paid to supporting files, sock-
ets, and devices, since it is not expected

that they will be used in the predominant
phase of execution. This ad hoc process mi-
gration considers only memory contents.

Skordos integrates migration with par-
allel simulation of subsonic fluid dy-
namics on a cluster of workstations
[Skordos, 1995]. Skordos statically allo-
cates problem sizes and uses migration
when a workstation becomes overloaded.
Upon migration, the process is restarted
after synchronization with processes par-
ticipating in the application on other
nodes. At the same time, it is possible to
conduct multiple migrations. On a cluster
of 20 HP-Apollo workstations connected
by 10 Mbps Ethernet, Skordos notices ap-
proximately one migration every 45 min-
utes. Each migration lasts 30 seconds on
average. Despite the high costs, its rela-
tive impact is very low. Migrations happen
infrequently, and do not last long relative
to the overall execution time.

Bharat and Cardelli describe Migra-
tory Applications, an environment for mi-
grating applications along with the user
interface and the application context,
thereby retaining the same “look and feel”
across different platforms [Bharat and
Cardelli, 1995]. This type of migration is
particularly suitable for mobile applica-
tions, where a user may be travelling from
one environment to another. Migratory ap-
plications are closely related to the un-
derlying programming language Oblique
[Cardelli, 1995].

4.7. Mobile Objects

In this paper we are primarily concerned
with process and task migration. Object
migration and mobile agents are two other
forms of migration that we mention briefly
in this and the following subsection. Al-
though used in different settings, these
forms of migration serve a similar purpose
and solve some of the same problems as
process migration does. In this subsection,
we give an overview of object migration for
Emerald, SOS and COOL.

Emerald is a programming language
and environment for the support of dis-
tributed systems [Black et al., 1987]. It
supports mobile objects as small as a

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

266 D. S. Milojičić et al.

couple of bytes, or as large as a UNIX pro-
cess [Jul, 1988; Jul et al., 1988]. Objects
have a global, single name space. In addi-
tion to traditional process migration ben-
efits, Emerald improves data movement,
object invocation and garbage collection.

In Emerald, communication links are
pointers to other objects. Upon each ob-
ject migration, all object pointers need to
be updated. The Emerald compiler gen-
erates the templates that are associated
with the object data areas describing its
layout. The templates contain informa-
tion about which objects are associated
with the given object, including the point-
ers to other objects. These pointers are
changed if the referenced object moves.
Pointers are optimized for local invocation
because mobility is a relatively infrequent
case compared to local invocation. Objects
that become unreachable are garbage col-
lected. Moving a small passive object on a
cluster of 4 MicroVax II workstations con-
nected by a 10 megabit/second Ethernet
takes about 12 ms while moving a small
process takes about 40 ms. Some mod-
est experiments demonstrated the bene-
fits of Emerald for load distribution [Jul,
1989].

Shapiro investigates object migration
and persistence in SOS [Shapiro et al.,
1989]. The objects under consideration
are small to medium size (a few hun-
dred bytes). Of particular concern are
intra-object references and how they are
preserved across object migrations. Ref-
erences are expressed through a new
type, called a permanent pointer. After
migration, permanent pointers are lazily
evaluated, based on the proxy principle
[Shapiro, 1986]. A proxy is a new ob-
ject that represents the original object,
maintains a reference to it at the new
location, and provides a way to access it.
Proxies, and the term proxy principle de-
scribing its use, are extensively used in
distributed systems with or without mi-
gration (e.g. for distributed IPC [Barrera,
1991], distributed memory management
[Black et al. 1998], and proxy servers on
the Web [Brooks, et al. 1995]). Functional-
ity can be arbitrarily distributed between
a proxy and its principal object.

COOL provides an object-oriented layer
on top of Chorus [Amaral et al., 1992]. It
supports DSM-based object sharing, per-
sistent store, and object clustering. Trans-
parent remote invocation is achieved with
a simple communication model using the
COOL base primitives. When re-mapped
onto a new node, all internal references
are updated depending on the new lo-
cation by pointer swizzling [Lea et al.,
1993], which is a technique for convert-
ing the persistent pointers or object iden-
tifiers into the main memory pointers
(addresses). Conversion can be activated
upon an access to the object (swizzling
on discovery) or eagerly (all objects at
once upon the discovery of the first per-
sistent pointer). Pointer swizzling can also
be used for supporting large and persis-
tent address spaces [Dearle, et al., 1994]
and in very large data bases [Kemper and
Kossmann, 1995].

4.8. Mobile Agents

In the recent past, mobile agents have re-
ceived significant attention. A number of
products have appeared and many suc-
cessful research systems have been devel-
oped (see description of these systems be-
low). A patent has been approved for one of
the first mobile agent systems, Telescript
[White, et al. 1997] and a standard was
adopted by OMG [Milojičić et al., 1998b].

Mobile agents derive from two fields:
agents, as defined in the artificial in-
telligence community [Shoham, 1997],
and distributed systems, including mobile
objects and process migration [Milojičić
et al., 1999]. However, their popularity
started with the appearance of the Web
and Java. The former opened vast oppor-
tunities for applications suited for mobile
agents and the latter became a driving
programming language for mobile agents.

In a Web environment, programming
languages focus on platform indepen-
dence and safety. Innovations in OS
services take place at the middleware
level rather than in kernels [Bernstein,
1996]. Research in distributed systems
has largely refocused from local to wide-
area networks. Security is a dominant

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Process Migration 267

requirement for applications and sys-
tems connected to the Web. In this en-
vironment, mobile agents are a very
promising mechanism. Typical uses in-
clude electronic commerce and support
for mobile, sporadically-connected com-
puting for which agents overcome limita-
tions posed by short on-line time, reduced
bandwidth, and limited storage.

Java has proven to be a suitable pro-
gramming language for mobile agents be-
cause it supports mobile code and mobile
objects, remote object model and language
and run-time safety, and it is operating
system independent.

While a large amount of the OS-
level support for migration concentrated
on transparency issues, the agent ap-
proach has demonstrated less concern for
transparency.

We provide an overview a few commer-
cial mobile agent systems, such as Tele-
script, IBM Aglets, and Concordia, and a
few academic systems, such as Agent Tcl,
TACOMA and Mole.

Telescript first introduced the mobile
agent concepts [White, 1996]. It is tar-
geted for the MagicCap, a small hand-
held device. Telescript first introduced mo-
bile agent concepts place and permit and
mechanisms meet and go. IBM Aglets is
one of the first commercially available mo-
bile agent systems based on Java [Lange
and Oshima, 1998]. It is developed by
IBM Tokyo Research Lab IBM. Aglets has
a large community of users and applica-
tions, even a few commercial ones. Con-
cordia is a mobile agent system developed
at the Mitsubishi Electric ITA Laboratory
[Wong, et al., 1997]. It is a Java-based sys-
tem that addresses security (by extend-
ing the Java security manager) and reli-
ability (using message queuing based on
two-phase-commit protocol). Concordia is
used for many in-house applications.

Agent Tcl started as a Tcl/Tk-based
transportable agent, but it has been ex-
tended to support Java, Scheme and C/
C++ [Kotz, et al., 1997]. It is used for
the development of the DAIS system for
information retrieval and dissemination
in military intelligence [Hoffman, et al.,
1998]. Agent Tcl is optimized for mobile

computers, e.g. by minimizing connection
time and communication. The TACOMA
project is a joint effort by Tromso and
Cornell Universities [Johansen et al.,
1995]. Compared to other mobile agent
research, which addresses programming
languages aspects, TACOMA addresses
operating system aspects. The main re-
search topics include security and re-
liability. Mole is one of the first aca-
demic agent systems written in Java
[Baumann, et al., 1998]. It has been
used by industry (Siemens, Tandem, and
Daimler Benz), and academia (Univer-
sity of Geneva). Mole addresses groups of
agents, agent termination, and security
for protecting agents against malicious
hosts.

There are also many other mobile
agent systems, such as Ara [Peine and
Stolpmann, 1997], Messenger [Tschudin,
1997], MOA [Milojičić et al., 1998a], and
Sumatra [Ranganathan, et al., 1997]. A
lot of effort has been invested in security
of mobile agents, such as in the work by
Farmer, et al. [1996], Hohl [1998], Tardo
and Valente [1996], Vigna [1998], and
Vitek, et al. [1997]. A paper by Chess et al.
[1995] is a good introduction to mobile
agents.

5. CASE STUDIES

This section presents four case studies of
process migration: MOSIX, Sprite, Mach,
and LSF. At least one of the authors of
this survey directly participated in the de-
sign and implementation of each of these
systems. Because it is difficult to choose a
representative set of case studies, the se-
lection of systems was guided by the au-
thors’ personal experience with the chosen
systems.

5.1. MOSIX

MOSIX is a distributed operating system
from the Hebrew University of Jerusalem.
MOSIX is an ongoing project which be-
gan in 1981 and released its most recent
version in 1996. Automatic load balanc-
ing between MOSIX nodes is done by pro-
cess migration. Other interesting features

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

268 D. S. Milojičić et al.

Fig. 6. The MOSIX Architecture.

include full autonomy of each node in the
system, fully-decentralized control, single
system image, dynamic configuration and
scalability.

Various versions of MOSIX have been in
active use at the Hebrew University since
1983. The original version of MOSIX was
derived from UNIX Version 7 and ran on
a cluster of PDP-11/45 nodes connected by
a token passing ring [Barak and Litman,
1985]. The version of MOSIX documented
in the MOSIX book is a cluster of multipro-
cessor workstations which used a UNIX
System V.2 code base [Barak and Wheeler,
1989; Barak et al., 1993]. The most recent
version, developed in 1993, is called NOW
MOSIX [Barak et al., 1995]. This version
enhances BSDI UNIX by providing pro-
cess migration on a cluster of Intel Pen-
tium processor based workstations.

Goals of the MOSIX system include:

r Dynamic process migration. At context
switch time, a MOSIX node may elect to
migrate any process to another node. The
migrated process is not aware of the mi-
gration.r Single system image. MOSIX presents a
process with a uniform view of the file
system, devices and networking facili-
ties regardless of the process’s current
location.r Autonomy of each node. Each node in the
system is independent of all other nodes
and may selectively participate in the
MOSIX cluster or deny services to other

nodes. Diskless nodes in MOSIX rely on
a specific node for file services.r Dynamic configuration. MOSIX nodes
may join or leave a MOSIX cluster at any
time. Processes that are not running on
a node or using some node specific re-
source, are not affected by the loss of that
node.r Scalability. System algorithms avoid us-
ing any global state. By avoiding depen-
dence on global state or centralized con-
trol, the system enhances its ability to
scale to a large number of nodes.

Design. The system architecture sepa-
rates the UNIX kernel into a lower and
an upper kernel. Each object in MOSIX,
like an open file, has a universal object
pointer that is unique across the MOSIX
domain. Universal objects in MOSIX are
kernel objects (e.g. a file descriptor entry)
that can reference an object anywhere in
the cluster. For example, the upper kernel
holds a universal object for an open file;
the universal object migrates with the pro-
cess while only the host of the file has the
local, non-universal file information. The
upper kernel provides a traditional UNIX
system interface. It runs on each node and
handles only universal objects. The lower
kernel provides normal services, such as
device drivers, context switching, and so
on without having any knowledge or de-
pendence on other nodes. The third com-
ponent of the MOSIX system is the linker,
which maps universal objects into local ob-
jects on a specific node, and which provides
internode communication, data transfer,
process migration and load balancing al-
gorithms. When the upper kernel needs to
perform an operation on one of the univer-
sal objects that it is handling, it uses the
linker to perform a remote kernel proce-
dure call on the object’s host node.

MOSIX transfers only the dirty pages
and user area of the migrating process
at the time of the migration, an eager
(dirty) transfer strategy. Text and other
clean pages are faulted in as needed once
the process resumes execution on the tar-
get node.

Process migration in MOSIX is a com-
mon activity. A process has no explicit

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Process Migration 269

knowledge about what node it is actually
running on or any guarantees that it will
continue to run on its current node. The
migration algorithm is cooperative: for a
process to migrate to a node, the target
node must be willing to accept it. This
allows individual nodes control over the
extent of their own contribution to the
MOSIX system. Individual nodes can also
force all active processes to migrate away,
a procedure that is used when shutting
down an individual node.

Process migration in MOSIX relies on
the fact that the upper kernel context
of each process is site-independent: re-
gardless of where the process physically
runs, its local upper kernel and linker
route each system call to the appropri-
ate node. If the process decides to migrate
to a new node, the migration algorithm
queries the new node to ensure that it
is willing to accept a new process. If so,
the upper kernel invokes a series of re-
mote kernel procedure calls that create
an empty process frame on the new node,
moves the upper kernel context and any
dirty pages associated with the process
and then resumes the process on the new
node.

Fault Resilience. Failed nodes in
MOSIX affect only processes running on
the failed node or directly using resources
provided by the node. Nodes dynamically
join and leave a MOSIX cluster at will.
Detection of stale objects—those that sur-
vive past the reboot of the object’s server—
is done by maintaining per object version
numbers. (As an example of a stale object,
a universal pointer to a file object must
be reclaimed after the home node for the
file reboots.) Migrated processes leave no
traces on other nodes.

Transparency. Migration is com-
pletely transparent in MOSIX, except for
processes that use shared memory and
are not eligible for migration. Full single
system image semantics are presented
by MOSIX, making processes unaware of
their actual physical node. A new system
call, migrate(), was added to allow pro-
cesses to determine the current location
or to request migration to a specified
node.

Scalability. MOSIX was designed as
a scalable system. The system relies on
no centralized servers and maintains no
global information about the system state.
Each MOSIX node is autonomous and can
dynamically join or withdraw from the
MOSIX system. No remote system oper-
ations involve more than two nodes: the
initiating node and the node providing the
service. The process migration and load
balancing algorithms also support scala-
bility: load information is totally decen-
tralized. Currently, an 80-node MOSIX
system is running at Hebrew University.

Load Information Management and
Distributed Scheduling. Several types
of information are managed by MOSIX in
order to implement its dynamic load bal-
ancing policy: the load at each node, indi-
vidual process profiling, and load informa-
tion about other nodes in the system.

Each node computes a local load esti-
mate that reflects the average length of
its ready queue over a fixed time period.
By selecting an appropriate interval, the
impact of temporary local load fluctua-
tions is reduced without presenting obso-
lete information.

For each process in the system, an exe-
cution profile is maintained which reflects
its usage of remote resources like files or
remote devices, communication patterns
with other nodes, how long this process
has run and how often it has created new
child processes via the fork() system call.
This information is useful in determin-
ing where a process should migrate to
when selected for migration. For example,
a small process that is making heavy use
of a network interface or file on a specific
node would be considered for migration
to that node. This profiling information is
discarded when a process terminates.

The MOSIX load balancing algorithm
is decentralized. Each node in the system
maintains a small load information vector
about the load of a small subset of other
nodes in the system [Barak et al., 1989].
On each iteration of the algorithm, each
node randomly selects two other nodes, of
which at least one node is known to have
been recently alive. Each of the selected
nodes is sent the most recent half of the

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

270 D. S. Milojičić et al.

local load vector information. In addition,
when a load information message is re-
ceived, the receiving node acknowledges
receipt of the message by returning its
own load information back to the sending
node.

During each iteration of the algorithm,
the local load vector is updated by incorpo-
rating newly received information and by
aging or replacing older load information.
To discourage migration between nodes
with small load variations, each node ad-
justs its exported local load information
by a stability factor. For migration to take
place, the difference in load values be-
tween two nodes must exceed this stability
value.

The load balancing algorithm decides to
migrate processes when it finds another
node with a significantly reduced load. It
selects a local process that has accumu-
lated a certain minimum amount of run-
time, giving preference to processes which
have a history of forking off new subpro-
cesses or have a history of communica-
tion with the selected node. This prevents
short-lived processes from migrating.

Implementation and Performance.
Porting the original version of MOSIX to a
new operating system base required sub-
stantial modifications to the OS kernel in
order to layer the code base into the three
MOSIX components (linker, lower and up-
per kernels). Few changes took place at
the low level operating system code [Barak
and Wheeler, 1989].

In order to reduce the invasiveness of
the porting effort, a completely redesigned
version of NOW MOSIX was developed for
the BSDI version of UNIX [Barak et al.,
1995]. The NOW MOSIX provides process
migration and load balancing. without a
single system image. As in Sprite, system
calls that are location sensitive are for-
warded to the home node of a migrated
process as required (cf. Section 5.2).

The performance of a migrated pro-
cess in MOSIX depends on the nature
of the process. One measurement of the
effect that migration has on a process
is the slower performance of remote sys-
tem calls. Using the frequencies of system
calls measured by Douglis and Ouster-

Table 1. MOSIX System Call Performance

System Call Local Remote Slowdown

read (1K) 0.34 1.36 4.00
write (1K) 0.68 1.65 2.43
open/close 2.06 4.31 2.09
fork (256 Kb) 7.8 21.60 2.77
exec (256 KB) 25.30 51.50 2.04

hout [1987], system calls were 2.8 times
slower when executed on a remote 33MHz
MOSIX node [Barak et al., 1989]. Table 1
shows the measured performance and
slowdown of several commonly used sys-
tem calls. Many system calls, for example
getpid (), are always performed on the pro-
cesse’s current node and have no remote
performance degradation.

The performance of the MOSIX mi-
gration algorithm depends directly on
the performance of the linker’s data
transfer mechanism on a given network
and the size of the dirty address space
and user area of the migrating process.
The measured performance of the VME-
based MOSIX migration, from one node
of the cluster to the bus master, was
1.2 MB/second. The maximum data trans-
fer speed of the system’s VME bus was
3 MB/second.

Some applications benefit significantly
from executing in parallel on multiple
nodes. In order to allow such applications
to run on a system without negatively im-
pacting everyone else, one needs process
migration in order to be able to rebalance
loads when necessary. Arguably the most
important performance measurement is
the measurement of an actual user-level
application. Specific applications, for ex-
ample an implementation of a graph color-
ing algorithm, show a near-linear speedup
with increasing number of nodes [Barak
et al., 1993]. Of course, this speedup does
not apply to other types of applications
(non-CPU-bound, such as network or I/O
bound jobs). These applications may ex-
perience different speedups. No attempt
has been conducted to measure an average
speedup for such types of applications.

Lessons Learned. The MOSIX sys-
tem demonstrated that dynamic load bal-
ancing implemented via dynamic process

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Process Migration 271

migration is a viable technology for
a cluster of workstations. The earlier
MOSIX implementations required too
many changes to the structure of the base
operating system code in order to main-
tain the single system image nature of
the system. Giving up the single system
image while preserving process migration
delivers most of the benefits of the earlier
MOSIX systems without requiring inva-
sive kernel changes.

5.2. Sprite

The Sprite Network Operating System
was developed at U.C. Berkeley between
1984 and 1994 [Ousterhout et al., 1988].
Its primary goal was to treat a network
of personal workstations as a time-shared
computer, from the standpoint of shar-
ing resources, but with the performance
guarantees of individual workstations. It
provided a shared network file system
with a single-system image and a fully-
consistent cache that ensured that all
machines always read the most recently
written data [Nelson et al., 1988]. The
kernel implemented a UNIX-like proce-
dural interface to applications; internally,
kernels communicated with each other via
a kernel-to-kernel RPC. User-level IPC
was supported using the file system, with
either pipes or a more general mech-
anism called pseudo-devices [Welch and
Ousterhout, 1988]. Virtual memory was
supported by paging a process’s heap and
stack segments to a file on the local disk
or a file server.

An early implementation of migration
in Sprite [Douglis and Ousterhout, 1987]
suffered from some deficiencies [Douglis,
1989]:r processes accessing some types of files,

such as pseudo-devices, could not be mi-
grated;r there was no automatic host selection;
andr there was no automatic failure recovery.

After substantial modifications to the
shared file system to support increased
transparency and failure recovery [Welch,
1990], migration was ported to Sun-3

workstations, and later Sparcstation and
DECstation machines. Automatic host se-
lection went through multiple iterations
as well, moving from a shared file to a
server-based architecture. Migration was
used regularly starting in the fall of 1988.

Goals:r Workstation autonomy. Local users had
priority over their workstation. Dynamic
process migration, as opposed to merely
remote invocation, was viewed primarily
as a mechanism to evict other users’ pro-
cesses from a personal workstation when
the owner returned. In fact, without
the assurance of local autonomy through
process migration, many users would not
have allowed remote processes to start
on their workstation in the first place.r Location transparency. A process would
appear to run on a single workstation
throughout its lifetime.r Using idle cycles. Migration was meant
to take advantage of idle workstations,
but not to support full load balancing.r Simplicity. The migration system tried
to reuse other support within the Sprite
kernel, such as demand paging, even at
the cost of some performance. For ex-
ample, migrating an active process from
one workstation to another would re-
quire modified pages in its address space
to be written to a file server and faulted
in on the destination, rather than sent
directly to the destination.

Design. Transparent migration in
Sprite was based on the concept of a home
machine. A foreign process was one that
was not executing on its home machine.
Every process appeared to run on its
home machine throughout its lifetime,
and that machine was inherited by de-
scendants of a foreign process as well.
Some location-dependent system calls by
a foreign process would be forwarded au-
tomatically, via kernel-to-kernel RPC, to
its home; examples include calls dealing
with the time-of-day clock and process
groups. Numerous other calls, such as
fork and exec, required cooperation be-
tween the remote and home machines.
Finally, location-independent calls, which

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

272 D. S. Milojičić et al.

included file system operations, could be
handled locally or sent directly to the
machine responsible for them, such as a
file server.

Foreign processes were subject to
eviction—being migrated back to their
home machine—should a local user re-
turn to a previously idle machine. When
a foreign process migrated home, it left
no residual dependencies on its former
host. When a process migrated away from
its home, it left a shadow process there
with some state that would be used to
support transparency. This state included
such things as process identifiers and the
parent-child relationships involved in the
UNIX wait call.

As a performance optimization, Sprite
supported both full process migration, in
which an entire executing process would
migrate, and remote invocation, in which
a new process would be created on a dif-
ferent host, as though a fork and exec
were done together (like the Locus run
call [Walker et al., 1983]). In the latter
case, state that persists across an exec call,
such as open files, would be encapsulated
and transferred, but other state such as
virtual memory would be created from an
executable.

When migrating an active process,
Sprite writes dirty pages and cached file
blocks to their respective file server(s). The
address space, including the executable,
is paged in as necessary. Migration in the
form of remote invocation would result in
dirty cached file blocks being written, but
would not require an address space to be
flushed, since the old address space is be-
ing discarded.

The migration algorithm consists of the
following steps [Douglis, 1989]:

1. The process is signaled, to cause it to
trap into the kernel.

2. If the process is migrating away from
its home machine, the source contacts
the target to confirm its availability
and suitability for migration.

3. A “pre-migration” procedure is invoked
for each kernel module. This returns
the size of the state that will be trans-
ferred and can also have side effects,

such as queuing VM pages to be flushed
to the file system.

4. The source kernel allocates a buffer
and calls encapsulation routines for
each module. These too can have side
effects.

5. The source kernel sends the buffer via
RPC, and on the receiving machine each
module de-encapsulates its own state.
The target may perform other opera-
tions as a side effect, such as commu-
nicating with file servers to arrange for
the transfer of open files.

6. Each kernel module can execute a “post-
migration” procedure to clean up state,
such as freeing page tables.

7. The source sends an RPC to tell the tar-
get to resume the process, and frees the
buffer.

Fault Resilience. Sprite process mi-
gration was rather intolerant of faults.
During migration, the failure of the target
anytime after step 5 could result in the ter-
mination of the migrating process, for ex-
ample, once its open files have been moved
to the target. After migration, the failure
of either the home machine or the process’s
current host would result in the termina-
tion of the process. There was no facility to
migrate away from a home machine that
was about to be shut down, since there
would always be some residual dependen-
cies on that machine.

Transparency was achieved through
a conspiracy between a foreign process’s
current and home workstations. Opera-
tions on the home machine that involved a
foreign process, such as a ps listing of CPU
time consumed, would contact its current
machine via RPC. Operations on the cur-
rent host involving transparency, includ-
ing all process creations and terminations,
contacted the home machine. Waiting for a
child, even one co-resident on the foreign
machine, would be handled on the home
machine for simplicity.

All IPC in Sprite was through the file
system, even TCP connections. (TCP was
served through user-level daemons con-
tacted via pseudo-devices.) The shared
network file system provided transparent

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Process Migration 273

access to files or processes from different
locations over time.

As in MOSIX, processes that share
memory could not be migrated. Also, pro-
cesses that map hardware devices directly
into memory, such as the X server, could
not migrate.

Scalability. Sprite was designed for a
cluster of workstations on a local area net-
work and did not particularly address the
issue of scalability. As a result, neither
did the migration system. The central-
ized load information management sys-
tem, discussed next, could potentially be
a bottleneck, although a variant based on
the MOSIX probabilistic load dissemina-
tion algorithm was also implemented. In
practice, the shared file servers proved to
be the bottleneck for file-intensive opera-
tions such as kernel compilations with as
few as 4-5 hosts, while cpu-intensive simu-
lations scaled linearly with over ten hosts
[Douglis, 1990].

Load Information Management. A
separate, user-level process (migd) was
responsible for maintaining the state of
each host and allocating idle hosts to ap-
plications. This daemon would be started
on a new host if it, or its host, should
crash. It allocated idle hosts to request-
ing processes, up to one foreign “job” per
available processor. (A “job” consisted of
a foreign process and its descendants.)
It supported a notion of fairness, in that
one application could use all idle hosts
of the same architecture but would have
some of them reclaimed if another ap-
plication requested hosts as well. Re-
claiming due to fairness would look to
the application just like reclaiming due
to a workstation’s local user returning:
the foreign processes would be migrated
home and either run locally, migrated
elsewhere, or suspended, depending on
their controlling task’s behavior and host
availability.

Migration was typically performed by
pmake, a parallel make program like many
others that eventually became common-
place (e.g., [Baalbergen, 1988]) Pmake
would use remote invocation and then
remigrate processes if migd notified it
that any of its children were evicted. It

would suspend any process that could not
be remigrated.

Implementation and Performance.
Sprite ran on Sun (Sun 2, Sun 3,
Sun 4, SPARCstation 1, SPARCstation 2)
and Digital (DECstation 3100 and 5100)
workstations. The entire kernel consisted
of approximately 200,000 lines of heav-
ily commented code, of which approximate
10,000 dealt with migration.

The performance of migration in Sprite
can be measured in three respects. All
measurements in this subsection were
taken on SPARCstation 1 workstations
on a 10-Mbps Ethernet, as reported in
[Douglis and Ousterhout, 1991].

1. The time to migrate a process was a
function of the overhead of host selec-
tion (36ms to select a single host, amor-
tized over multiple selections when mi-
gration is performed in parallel); the
state for each open file (9.4ms/file);
dirty file and VM blocks that must
be flushed (480-660 Kbytes/second de-
pending on whether they are flushed
in parallel); process state such as exec
arguments and environment variables
during remote invocation (also 480
Kbytes/second); and a basic overhead
of process creation and message traffic
(76ms for the null process).

2. A process that had migrated away from
its home machine incurred run-time
overhead from forwarding location-
dependent system calls. Applications of
the sort that were typically migrated in
Sprite, such as parallel compilation and
LaTeX text processing, incurred only
1-3% degradation from running re-
motely, while other applications that
invoked a higher fraction of location-
dependent operations (such as access-
ing the TCP daemon on the home ma-
chine, or forking children repeatedly)
incurred substantial overhead.

3. Since the purpose of migration in Sprite
was to enable parallel use of many
workstations, application speedup is
an important metric. Speedup is af-
fected by a number of factors, in-
cluding the degree of parallelism, the
load on central resources such as the

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

274 D. S. Milojičić et al.

migd daemon, and inherently non-
parallelizable operations. By compar-
ing the parallel compilation of sev-
eral source directories, ranging from
24 to 276 files and 1 to 3 indepen-
dent link steps, one found that the
speedup compared to the sequential
case ranged from about 3 to 5.4 using
up to 12 hosts, considerably below lin-
ear speedup. During a 12-way pmake,
the processors on both the server stor-
ing the files being read and written, and
the workstation running pmake, were
saturated. Network utilization was not
a significant problem, however.

Lessons Learned. Here we summa-
rize the two most important lessons and
experiences in Sprite process migration
[Douglis, 1990; Douglis and Ousterhout,
1991].r Migration provided a considerable

source of processor cycles to the Sprite
community. Over a one-month period,
30% of user processor activity came from
migrated (foreign) processes. The host
that accounted for the greatest total us-
age (nearly twice as many cpu-seconds
as the next greatest) ran over 70% of its
cycles on other hosts.r Evictions accounted for 6% of all migra-
tions, with about half of these evictions
due to fairness considerations and the
other half due to users reclaiming their
machines. About 1% of all host alloca-
tions were revoked for one of these two
reasons. (Evictions counted for a rela-
tively higher fraction of all migrations
because one host revocation could result
in many processes being migrated.)

5.3. Mach

Mach is a microkernel developed at
the Carnegie Mellon University [Accetta
et al., 1986; Black et al., 1992], and later
at the OSF Research Institute [Bryant,
1995]. A migration mechanism on top of
the Mach microkernel was developed at
the University of Kaiserslautern, from
1991 to 1993 [Milojičić et al., 1993b].

Task migration was used for exper-
iments with load distribution. In this

Fig. 7. Task Migration Design.
Only task abstraction is migrated,
while process abstraction remains on
the source node.

phase, only tasks were addressed, while
UNIX processes were left on the source
machine, as described in Figure 7. This
means that only Mach task state was mi-
grated, whereas the UNIX process state
that was not already migrated as a part of
the Mach task state (e.g. state in the UNIX
“personailty server” emulating UNIX on
top of the Mach microkernel) remained on
the source machine. Therefore, most of the
UNIX system calls were forwarded back to
the source machine, while only Mach sys-
tem calls were executed on the destination
machine.

Process migration for the OSF/1 AD 1
server [Paindaveine and Milojičić, 1996]
was developed during 1994 at the Univer-
site Catholique de Louvain, Belgium, as a
part of a project on load-leveling policies
in a distributed system [Jacqmot, 1996].
OSF/1 AD 1 is a version of the OSF/1
operating system which provides a scal-
able, high-performance single-system im-
age version of UNIX. It is composed of
servers distributed across the different
nodes running the Mach microkernel. Pro-
cess migration relies on the Mach task mi-
gration to migrate microkernel-dependent
process state between nodes.

Mach task migration was also used at
the University of Utah, for the Schizo
project [Swanson et al., 1993]. Task and
process migration on top of Mach were
designed and implemented for clusters of
workstations.

Goals. The first goal was to provide a
transparent task migration at user-level

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Process Migration 275

with minimal changes to the microkernel.
This was possible by relying on Mach OS
mechanisms, such as (distributed) mem-
ory management and (distributed) IPC.
The second goal was to demonstrate that it
is possible to perform load distribution at
the microkernel level, based on the three
distinct parameters that characterize mi-
crokernels: processing, VM and IPC.

Design. The design of task migration
is affected by the underlying Mach mi-
crokernel. Mach supported various pow-
erful OS mechanisms for purposes other
than task and process migration. Exam-
ples include Distributed Memory Manage-
ment (DMM) and Distributed IPC (DIPC).
DIPC and DMM simplified the design and
implementation of task migration. DIPC
takes care of forwarding messages to mi-
grated process, and DMM supports remote
paging and distributed shared memory.
The underlying complexity of message
redirection and distributed memory man-
agement are heavily exercised by task
migration, exposing problems otherwise
not encountered. This is in accordance
with earlier observations about message-
passing [Douglis and Ousterhout, 1991].

In order to improve robustness and per-
formance of DIPC, it was subsequently
redesigned and reimplemented [Milojičić
et al., 1997]. Migration experiments have
not been performed with the improved
DIPC. However, extensive experiments
have been conducted with Concurrent Re-
mote Task Creation (CRTC), an in-kernel
service for concurrent creation of remote
tasks in a hierarchical fashion [Milojičić
et al., 1997]. The CRTC experiments are
similar to task migration, because a re-
mote fork of a task address space is per-
formed.

DMM enables cross-node transparency
at the Mach VM interface in support
of a distributed file system, distributed
file system, distributes processes, and dis-
tributed shared memory [Black, et al.,
1998]. The DMM support resulted in sim-
plified design and implementation of the
functionality built on top of it, such as
SSI UNIX and remote tasking, and it
avoided pager modifications by interpos-
ing between the VM system and the

pager. However, the DMM became too
complex, and had performance and scal-
ability problems. The particular design
mistakes include the interactions between
DSM support and virtual copies in a dis-
tributed system; transparent extension of
Mach copy-on-write VM optimization to
distributed systems; and limitations im-
posed by Mach’s external memory man-
agement while transparently extending it
to distributed systems. (Copy-on-write is
an optimization introduced to avoid copy-
ing pages until it is absolutely needed,
and otherwise sharing the same copy. It
has also been used in Chorus [Rozier,
1992] and Sprite [Nelson and Ousterhout,
1988].)

DMM had too many goals to be success-
ful; it failed on many general principles,
such as “do one thing, but do it right,” and
“optimize the common case” [Lampson,
1983]. Some of the experiments with task
migration reflect these problems. Varia-
tions of forking an address space and mi-
grating a task significantly suffered in
performance. While some of these cases
could be improved by optimizing the al-
gorithm (as was done in the case of CRTC
[Milojičić et al., 1997]), it would only add
to an already complex and fragile XMM
design and implementation. Some of the
DMM features are not useful for task mi-
gration, even though they were motivated
by task migration support. Examples in-
clude DSM and distributed copy-on-write
optimizations. DSM is introduced in order
to support the transparent remote forking
of address spaces (as a consequence of re-
mote fork or migration) that locally share
memory. Distributed copy-on-write is mo-
tivated by transparently forking address
spaces that are already created as a con-
sequence of local copy-on-write, as well as
in order to support caching in distributed
case.

Even though the DIPC and DMM inter-
faces support an implementation of user-
level task migration, there are two excep-
tions. Most of the task state is accessible
from user space except for the capabilities
that represent tasks and threads and ca-
pabilities for internal memory state. Two
new interfaces are provided for exporting

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

276 D. S. Milojičić et al.

the aforementioned capabilities into user
space.

A goal of one of the user-space migration
servers is to demonstrate different data
transfer strategies. An external memory
manager was used for implementation of
this task migration server. The following
strategies were implemented: eager copy,
flushing, copy-on-reference, precopy and
read-ahead [Milojičić et al., 1993b]. For
most of the experiments, a simplified mi-
gration server was used that relied on the
default in-kernel data transfer strategy,
copy-on-reference.

The task migration algorithm steps
are:

1. Suspend the task and abort the threads
in order to clean the kernel state.1

2. Interpose task/thread kernel ports on
the source node.

3. Transfer the address space, capabili-
ties, threads and the other task/thread
state.

4. Interpose back task/thread kernel ports
on the destination node.

5. Resume the task on the destination
node.

Process state is divided into several cat-
egories: the Mach task state; the UNIX
process local state; and the process-
relationship state. The local process state
corresponds to the typical UNIX proc and
user structures. Open file descriptors, al-
though part of the UNIX process state, are
migrated as part of the Mach task state.

Fault Resilience of Mach task migra-
tion was limited by the default transfer
strategy, but even more by the DIPC and
DMM modules. Both modules heavily
employ the lazy evaluation principle,
leaving residual dependencies throughout
the nodes of a distributed system. For
example, in the case of DIPC, proxies of
the receive capabilities remain on the
source node after receive capability is
migrated to a remote node. In the case

1 Aborting is necessary for threads that can wait in
the kernel arbitrarily long, such as in the case of wait-
ing for a message to arrive. The wait operation is
restartable on the destination node.

of DMM, the established paging paths
remain bound to the source node even
after eager copying of pages is performed
to the destination node.

Transparency was achieved by delay-
ing access or providing concurrent access
to a migrating task and its state during
migration. The other tasks in the sys-
tem can access the migrating task either
by sending messages to the task kernel
port or by accessing its memory. Send-
ing messages is delayed by interposing
the task kernel port with an interpose
port. The messages sent to the interpose
port are queued on the source node and
then restarted on the destination node.
The messages sent to other task ports
are transferred as a part of migration of
the receive capabilities for these ports.
Access to the task address space is sup-
ported by DMM even during migration.
Locally shared memory between two tasks
becomes distributed shared memory after
migration of either task.

In OSF/1 AD, a virtual process (Vprocs)
framework supports transparent opera-
tions on the processes independently of
the actual process’s location [Zajcew et al.,
1993]. By analogy, vprocs are to processes
what vnodes are to files, both providing lo-
cation and heterogeneity transparency at
the system call interface. Distributed pro-
cess management and the single system
image of Mach and OSF/1 AD eased the
process migration implementation.

A single system image is preserved by
retaining the process identifier and by
providing transparent access to all UNIX
resources. There are no forwarding stub
processes or chains. No restrictions are
imposed on the processes considered for
migration: for example, using pipes or sig-
nals does not prevent a process from being
migrated.

Scalability. The largest system that
Mach task migration ran on at University
of Kaiserslautern consisted of five nodes.
However, it would have been possible to
scale it closer towards the limits of the
scalability of the underlying Mach micro-
kernel, which is up to a couple of thou-
sand nodes on the Intel Paragon super-
computer.

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Process Migration 277

Table 2. Processing, IPC and VM Intensive Applications

User/Total IPC VM
Type Application Time (msg/s) ((pagin+ out)/s)

Processing Dhrystone 1.00 3.49 0.35+ 0
IPC find 0.03 512.3 2.75+ 0
VM WPI Jigsaw 0.09 2.46 28.5+38.2

Migration of the address space relies
heavily on the Mach copy-on-write VM op-
timization, which linearly grows the inter-
nal VM state for each migration [Milojičić
et al., 1997]. In practice, when there are
just few migrations, this anomaly is not
noticeable. However for many consecutive
migrations it can reduce performance.

Load Information and Distributed
Scheduling. Mach was profiled to reflect
remote IPC and remote paging activ-
ity in addition to processing information.
This information was used to improve
load distribution decisions. [Milojičić,
1993c]. Profiling was performed inside
of the microkernel by collecting statis-
tics for remote communication and for re-
mote paging and in user space, by in-
terposing application ports with profiler
ports.

A number of applications were profiled
and classified in three categories: process-
ing, communication and paging intensive.
Table 2 gives representatives of each class.

Extended load information is used for
applying more appropriate distributed
scheduling decisions [Milojičić et al.,
1993a]. An application that causes a
significant amount of remote paging,
or communicates with another node, is
considered for migration to the appropri-
ate node. CPU-bound applications have
no such preference and can be migrated
based only on the processing load criteria.
For applications consisting of a number of
processes that communicate among them-
selves, improvements achieved by con-
sidering IPC/VM information in addition
to CPU load is proportional to the load
and it can reach up to 20-50% for dis-
tributed scheduling strategies [Milojičić
et al., 1993a]. Improvements of the perfor-
mance of a simple application due to local-
ity of reference can be multifold [Milojičić
et al., 1993b].

Implementation and Performance.
Milojičić et al. built three implementa-
tions: two user-level migrations (an op-
timized and a simple migration server);
and a kernel implementation. The size of
the simplified migration server is approx-
imately 400 lines of code that took about 3
months to design and implement. A lot of
this time was spent in debugging the DIPC
parts of code that were never before exer-
cised. Task migration, especially load dis-
tribution experiments using task migra-
tion, turned out to be a very stressful test
for DIPC.

The size of the in-kernel version is close
to the simplified migration server, from
which it was derived. These two imple-
mentations relied on the in-kernel sup-
port for address space transfer. However,
the size of the DIPC and DMM modules
was significantly higher. One of the lat-
est versions of optimized DIPC (nmk21b1)
consisted of over 32,000 lines of code. It
took over 10 engineer-years to release the
second version of DIPC. The DMM, which
was never optimized, consists of 24,000
lines of code.

The optimized migration server is
largest in size with a few thousand lines
of code. Most of this implemented a pager
supporting different data transfer strate-
gies. The optimized migration server did
not rely on in-kernel data transfer strat-
egy, except for the support of distributed
shared memory.

Although there is an underlying dis-
tributed state in the microkernel, no dis-
tributed state is involved in the process
migration facility at the server level, ren-
dering the design of the migration mech-
anism simple. The process migration code
consists of approximately 800 lines of code.
However, adding distributed process man-
agement requires about 5000 lines of addi-
tional code. The main (initial and runtime)

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

278 D. S. Milojičić et al.

Fig. 8. Task migration performance as a function of VM size: initial
costs are independent of task address space size (aside of variations
due to other side effects).

costs of migration are due to task mi-
gration. Process migration has very little
overhead in addition to task migration.

Performance measurements were con-
ducted on a testbed consisting of three In-
tel 33MHz 80486 PCs with 8MB RAM. The
NORMA14 Mach and UNIX server UX28
were used. Performance is independent of
the address space size (see Figure 8), and
is a linear function of the number of ca-
pabilities. It was significantly improved in
subsequent work [Milojičić et al., 1997].

Lessons Learned

r Relying on DIPC and DMM is crucial
for the easy design and implementation
of transparent task migration, but these
modules also entail most of the complex-
ity and they limit performance and fault
resilience.r Task migration is sufficient for mi-
crokernel applications. In contrast, as
mentioned above, UNIX applications
would forward most system calls back
to the source node, resulting in an
order-of-magnitude performance degra-
dation. Migrating the full UNIX pro-

cess state would presumably have
alleviated this overhead, similar to
the evolution in Sprite toward dis-
tinguishing between location-dependent
and location-independent calls [Douglis,
1989].r Applications on microkernels can be pro-
filed as a function of processing, IPC and
VM and this information can be used
for improved load distribution. Improve-
ment ranges from 20-55% for collabora-
tive types of applications.

5.4. LSF

LSF (Load Sharing Facility) is a load shar-
ing and batch scheduling product from
Platform Computing Corporation [Plat-
form Computing, 1996]. LSF is based on
the Utopia system developed at the Uni-
versity of Toronto [Zhou et al., 1994],
which is in turn based on the earlier Ph.D.
thesis work of Zhou at UC Berkeley [Zhou,
1987; Zhou and Ferrari, 1988].

LSF provides some distributed op-
erating system facilities, such as dis-
tributed process scheduling and transpar-
ent remote execution, on top of various

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Process Migration 279

operating system kernels without change.
LSF primarily relies on initial process
placement to achieve load balancing, but
also uses process migration via check-
pointing as a complement. LSF currently
runs on most UNIX-based operating sys-
tems.

Checkpointing and Migration
Mechanisms. LSF’s support for process
user-level process migration is based on
Condor’s approach [Litzkow and Solomon,
1992]. A checkpoint library is provided
that must be linked with application code.
Part of this library is a signal handler
that can create a checkpoint file of the
process so that it can be restarted on a
machine of compatible architecture and
operating system. Several improvements
have been made to the original Condor
checkpoint design, such as:

r No core dump is required in order to gen-
erate the checkpoint file. The running
state of the process is directly extracted
and saved in the checkpoint file together
with the executable in a format that can
be used to restart the process. This not
only is more efficient, but also preserves
the original process and its ID across the
checkpoint.r UNIX signals can be used by the check-
pointed process. The state information
concerning the signals used by the pro-
cess is recorded in the checkpoint file and
restored at restart time.

In addition to user-level transparent
process checkpointing, LSF can also take
advantage of checkpointing already sup-
ported in the OS kernel (such as in Cray
Unicos and ConvexOS), and application-
level checkpointing. The latter is achiev-
able in classes of applications by the pro-
grammer writing additional code to save
the data structures and execution state in-
formation in a file that can be interpreted
by the user program at restart time in
order to restore its state. This approach,
when feasible, often has the advantage of
a much smaller checkpoint file because it
is often unnecessary to save all the dirty
virtual memory pages as must be done
in user-level transparent checkpointing.

Application-level checkpointing may also
allow migration to work across heteroge-
neous nodes.

The checkpoint file is stored in a user-
specified directory and, if the directory is
shared among the nodes, the process may
be restarted on another node by accessing
this file.

Load Information Exchange. Simi-
lar to Sprite, LSF employs a centralized
algorithm for collecting load information.
One of the nodes acts as the master, and
every other node reports its local load to
the master periodically. If the master node
fails, another node immediately assumes
the role of the master. The scheduling re-
quests are directed to the master node,
which uses the load information of all the
nodes to select the one that is likely to pro-
vide the best performance.

Although many of the load information
updates may be wasted if no process need
to be scheduled between load informa-
tion updates, this algorithm has the ad-
vantage of making (reasonably up-to-date)
load information of all nodes readily avail-
able, thus reducing the scheduling delay
and considering all nodes in scheduling.
Zhou et al. [1994] argue that the network
and CPU overhead of this approach is
negligible in modern computers and net-
works. Measurements and operational ex-
perience in clusters of several hundred
hosts confirm this observation. Such a cen-
tralized algorithm also makes it possible
to coordinate all process placements - once
a process is scheduled to run on a node,
this node is less likely to be considered for
other processes for a while to avoid over-
loading it. For systems with thousands
of nodes, several clusters can be formed,
with selective load information exchange
among them.

Scheduling Algorithms. LSF uses
checkpoint and restart to achieve process
migration, which in turn is used to achieve
load balancing. If a node is overloaded or
needed by some higher priority processes,
a process running on it may be migrated
to another node. The load conditions that
trigger process migration can be config-
ured to be different for various types of
jobs. To avoid undesirable migration due

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

280 D. S. Milojičić et al.

to temporary load spikes and to control
migration frequency, LSF allows users to
specify a time period for which a process
is suspended on its execution node. Only
if the local load conditions remain unfa-
vorable after this period would the sus-
pended process be migrated to another
node.

The target node is selected based on the
dynamic load conditions and the resource
requirements of the process. Recognizing
that different processes may require dif-
ferent types of resources, LSF collects a
variety of load information for each node,
such as average CPU run queue length,
available memory and swap space, disk
paging and I/O rate, and the duration of
idle period with no keyboard and mouse
activities. Correspondingly, a process may
be associated with resource requirement
expressions such as

select[sparc && swap >= 120 &&
mem >= 64] order[cpu : mem]

which indicates that the selected node
should have a resource called “sparc,” and
should have at least 120 MB of swap space
and 64 MB of main memory. Among the
eligible nodes, the one with the fastest,
lightly loaded CPU, as well as large mem-
ory space, should be selected. A heuristic
sorting algorithm is employed by LSF to
consider all the (potentially conflicting) re-
source preferences and select a suitable
host. Clearly, good host allocation can only
be achieved if the load condition of all
nodes is known to the scheduler.

The resource requirements of a process
may be specified by the user when sub-
mitting the process to LSF, or may be
configured in a system process file along
with the process name. This process file
is automatically consulted by LSF to de-
termine the resource requirement of each
type of process. This process file also stores
information on the eligibility of each type
of process for remote execution and mi-
gration. If the name of a process is not
found in this file, either it is excluded from
migration consideration, or only nodes of
the same type as the local node would be
considered.

Process Migration vs. Initial Place-
ment. Although LSF makes use of pro-
cess migration to balance the load, it is
used more as an exception rather than the
rule, for three reasons. First, transparent
user-level checkpointing and migration
are usable by only those processes linked
with the checkpoint library, unless the OS
kernel can be modified; in either case,
their applicability is limited. Secondly,
intelligent initial process placement has
been found to be effective in balancing the
load in many cases, reducing the need for
migration [Eager et al., 1988]. Finally, and
perhaps most importantly, the same load
balancing effect can often be achieved by
process placement with much less over-
head. The remote process execution mech-
anism in LSF maintains the connection
between the application and the Remote
Execution Server on the execution node
and caches the application’s execution con-
text for the duration of the application ex-
ecution, so that repeated remote process
executions would incur low overhead (0.1
seconds as measured by Zhou et al. on a
network of UNIX workstations [1994]).

In contrast, it is not desirable to main-
tain per-application connections in a ker-
nel implementation of process migration
to keep the kernel simple, thus every pro-
cess migration to a remote node is “cold”.
Per-application connections and cached
application state are rather “heavyweight”
for kernel-level migration mechanisms,
and the kernel-level systems surveyed
in this paper treat each migration sepa-
rately (though the underlying communi-
cation systems, such as kernel-to-kernel
RPC, may cache connection state). The
benefits of optimizing remote execution
are evident by comparing LSF to an ear-
lier system such as Sprite. In the case of
Sprite, the overhead of exec time migra-
tion was measured to be approximately
330ms on Sparcstation 1 workstations
over the course of one month [Douglis
and Ousterhout, 1991]. Even taking dif-
ferences in processor speed into account
as well as underlying overheads such as
file system cache flushing, LSF shows a
marked improvement in remote invoca-
tion performance.

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Process Migration 281

6. COMPARISON

In this section, we compare the various
migration implementations described in
the paper. We cover the case studies, as
well as some other systems mentioned in
Section 4.

Table 3 summarizes the process migra-
tion classification provided in Section 4.
We mention examples of each class of
migration, followed by the main charac-
teristic of each class. These columns are
self-explanatory. The OS v. Application
Modification column describes where
the majority of modifications to support
migration are performed. Migration in the
early work, UNIX-like systems, message
passing and microkernels require modifi-
cations to the underlying OS. User-space
and application-specific systems require
modifications to the application, typically
relinking and in certain cases also recom-
piling. Mobile objects and agents require
modifications to the underlying program-
ming environment. However, they also
have the least transparency, as described
below.

The Migration Complexity column
describes the amount of effort required
to design and implement migration. Com-
plexity is high for kernel implementations.
Exceptions are message-passing kernels,
which already provide much of the re-
quired functionality in their support for
message passing. This results in a sim-
pler migration mechanism. Microkernels
also support migration more easily be-
cause of simpler abstractions and reduced
functionality (for example, no UNIX com-
patibility). However, extensive complexity
is introduced for supporting distributed
IPC and distributed memory manage-
ment. The least complex implementations
are those done at user level and those done
as part of an application.

The “other complexity” subfield de-
scribes where the complexity in the system
exists. Early work incurred complexity in
infrastructure support for the underlying
hardware and software, such as Alto com-
puters in the case of Worms, and the
X-Tree architecture in the case of XOS.
Transparent migration on UNIX-like sys-

tems incurs a lot of complexity for the
support of Single System Image and ex-
tending UNIX semantics to a distributed
system. As already pointed out, message
passing typically requires a lot of com-
plexity; examples include Charlotte and
the V kernel, as well as some of the
microkernels, such as Mach and Chorus.
In addition, some of the microkernels (e.g.
Mach) also support distributed memory
management, which is even harder to sup-
port. User-space migrations trade off the
simplicity of the underlying support for
redirecting system calls or imposing limits
on them. Application-specific migrations
require knowledge of the application se-
mantics in order to integrate migration
calls at appropriate places.

Extensibility describes how easy it is
to extend a process migration implemen-
tation. Examples include support for mul-
tiple data transfer and location strategies.
In most cases, extensibility is inversely
proportional to complexity. An exception
to this rule are message-passing kernels,
which have simple migration implementa-
tions, but are not as extensible. Extensions
to a migration mechanism for performance
and improved fault resilience typically re-
quire complex changes to the underlying
mechanism for message passing. Porta-
bility describes how easy it is to port the
migration mechanism to another operat-
ing system or computer. User-space and
application-specific implementations have
superior portability. Condor and LSF run
on numerous versions of operating sys-
tems and computers. Kernel-level imple-
mentations are typically closely related to
the underlying system and consequently
their portability is limited to the portabil-
ity of the operating system. For example
Mach and MOSIX were ported to a num-
ber of computer architectures.

It is hard to compare the performance
of various migration mechanisms because
the implementations were done on a
number of different architectures. It is
also hard and inaccurate to normalize
performance (some attempts toward nor-
malizations were done by Roush [1995]).
Therefore, we have not provided a column
describing performance. Nevertheless,

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

282 D. S. Milojičić et al.

Ta
bl

e
3.

S
um

m
ar

y
of

th
e

D
iff

er
en

tM
ig

ra
tio

n
Im

pl
em

en
ta

tio
ns

M
ig

ra
ti

on
/

E
xa

m
pl

es
M

ai
n

O
S

v.
A

pp
l.

M
ig

ra
ti

on
C

om
pl

ex
it

y
E

xt
en

si
bi

li
ty

T
ra

n
sp

ar
en

cy
C

h
ar

ac
te

ri
st

ic
s

C
h

ar
ac

te
ri

st
ic

s
M

od
ifi

ca
ti

on
(O

th
er

C
om

pl
ex

it
y)

&
P

or
ta

bi
li

ty

E
ar

ly
W

or
k

X
O

S,
W

or
m

,
ad

-h
oc

so
lu

ti
on

s,
O

S
lo

w
(l

ac
k

of
po

or
li

m
it

ed
D

E
M

O
S,

B
u

tl
er

H
W

de
pe

n
de

n
t

in
fr

as
tr

u
ct

u
re

)

T
ra

n
sp

.M
ig

ra
ti

on
L

oc
u

s,
M

O
S

IX
,

m
aj

or
ch

an
ge

s
to

th
e

O
S

h
ig

h
fa

ir
fu

ll
in

U
N

IX
-l

ik
e

O
S

S
pr

it
e

u
n

de
rl

yi
n

g
en

v.
(S

u
pp

or
ti

n
g

S
S

I)
(O

S
de

pe
n

d.
)

M
es

sa
ge

-P
as

si
n

g
O

S
C

h
ar

lo
tt

e,
A

cc
en

t,
co

m
pl

ex
O

S
su

pp
or

t
O

S
lo

w
fa

ir
fu

ll
V

K
er

n
el

ea
sy

P
M

im
pl

em
en

t.
(M

es
sa

ge
P

as
si

n
g)

(O
S

de
pe

n
d.

)

M
ic

ro
ke

rn
el

s
A

m
oe

ba
,A

rc
ad

e,
B

ir
li

X
,

n
o

U
N

IX
se

m
an

ti
cs

O
S

lo
w

(D
M

M
go

od
fu

ll
C

h
or

u
s,

M
ac

h
,R

H
O

D
O

S
co

m
pl

ex
O

S
su

pp
or

t
an

d
D

IP
C

)
(O

S
de

pe
n

d.
)

U
se

r
S

pa
ce

C
on

do
r,

A
lo

n
so

&
K

yr
im

is
,

le
ss

tr
an

sp
ar

en
cy

ap
pl

ic
at

io
n

lo
w

(f
or

w
ar

di
n

g
ve

ry
go

od
li

m
it

ed
M

an
de

lb
er

g,
L

S
F

(r
el

in
ke

d)
sy

st
em

ca
ll

s)
(a

pp
l.

de
p.

)

A
pp

li
ca

ti
on

F
re

ed
m

an
,S

ko
rd

os
,

m
in

.t
ra

n
sp

ar
en

cy
,

ap
pl

ic
at

io
n

lo
w

es
t

(a
pp

m
ig

ra
ti

on
ve

ry
go

od
m

in
im

al
B

h
ar

at
&

C
ar

de
ll

i
m

or
e

ap
pl

.k
n

ow
le

dg
e

(r
ec

om
pi

le
d)

aw
ar

en
es

s)

M
ob

il
e

ob
je

ct
s

E
m

er
al

d,
S

O
S,

ob
je

ct
or

ie
n

te
d

pr
og

ra
m

m
in

g
m

od
er

at
e

go
od

fu
ll

C
O

O
L

en
vi

ro
n

m
en

t
(c

om
m

u
n

ic
at

io
n

)

M
ob

il
e

A
ge

n
ts

A
ge

n
t-

T
C

L
,A

gl
et

s
h

et
er

og
en

ei
ty

pr
og

ra
m

m
in

g
lo

w
es

t
(s

ec
u

ri
ty

go
od

fa
ir

T
A

C
O

M
A

,T
el

es
cr

ip
t

en
vi

ro
n

m
en

t
&

sa
fe

ty
)

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Process Migration 283

Table 4. Transparency “Checklist”

Migration/ Open Fork Communication Need to Relink Changes to Shared
Supported Files Children Channels Application Kernel Memory

MOSIX yes yes yes no yes no
Sprite yes yes yes no yes no
Mach & OSF/1 AD yes yes yes no yes yes
LSF some no no yes no no

we note that the performance of user-
and application-level migrations typically
fall in the range of seconds, even min-
utes, when migrating processes with large
address spaces. The kernel supported
migrations, especially the newer imple-
mentations, fall in the range of tens of
milliseconds. The most optimized ker-
nel implemented migration (Choices) has
initial costs of only 14ms [Roush and
Campbell, 1996], and it is better even if
some rough normalization is accounted for
(see [Roush, 1995]).

As mentioned earlier, the dominant per-
formance element is the cost to transfer
the address space. Kernel-level optimiza-
tions can cut down this cost, whereas user-
level implementations do not have access
to the relevant data structures and cannot
apply these optimizations.

Recently, trends are emerging that
allow users more access to kernel data,
mechanism, and policies [Bomberger
et al., 1992]. For example, microkernels
export most of the kernel state needed for
user-level implementations of migration
[Milojičić, 1993c]. Extensible kernels pro-
vide even more support in this direction
[Bershad et al., 1995; Engler et al., 1995].
These trends decrease the relevance of
user versus kernel implementations.

Transparency describes the extent to
which a migrated process can continue
execution after migration as if migra-
tion has not happened. It also determines
whether a migrated process is allowed to
invoke all system functions. Many user- or
application-level implementations do not
allow a process to invoke all system calls.
Migration that is implemented inside the
kernel typically supports full functional-
ity. In general, the higher the level of
the implementation, the less transparency
is provided. User-space implementations

are aware of migration and they can in-
voke migration only at predefined places
in the code. Kernel-supported imple-
mentations typically have higher lev-
els of transparency. Single system image
supports transparent migration at any
point of application code; migration can
transparently be initiated either by the
migrating process or by another process.
Most mobile agent implementations do
not allow transparent migration invoca-
tion by other applications; only the mi-
grating agent can initiate it. Even though
less transparent, this approach simplifies
implementation.

More specifics on transparency in the
case studies are presented in Table 4.
Migration for each case study is catego-
rized by whether it transparently sup-
ports open files, forking children, commu-
nication channels, and shared memory. If
migration requires changes to the kernel
or relinking the application, that is also
listed.

Support for shared memory of migrated
tasks in Mach is unique. In practice, it
was problematic due to a number of de-
sign and implementation issues [Black
et al. 1998]. Other systems that supported
both shared memory and migration ei-
ther chose not to provide transparent ac-
cess to shared memory after migration
(e.g. Locus [Walker and Mathews, 1989;
Fleisch and Popek, 1989]), or disallowed
migration of processes using shared mem-
ory (e.g., Sprite [Ousterhout et al., 1988]).

Kernel-level migration typically sup-
ports all features transparently, whereas
user-level migrations may limit access to
NFS files and may not support communi-
cation channels or interprocess communi-
cation. In addition, a user-level migration
typically requires relinking applications
with special libraries. Migration done as

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

284 D. S. Milojičić et al.

Table 5. Summary of Various Data Transfer Strategies

Data Transfer Example Freeze Freeze Residual Residual Initial
Strategy Time Costs Time & Costs Dependency Migration Time

eager (all) most user-level and high high none none high
early migrations

eager (dirty) MOSIX, Locus moderate moderate none none moderate

precopy V kernel very low high none none high

copy on Accent, Mach low small high yes low
reference

flushing Sprite moderate moderate moderate none moderate

part of an application requires additional
re-compilation.

In Table 5, we compare different data
transfer strategies with respect to freeze
time, freeze costs, residual time and
costs, residual dependencies, and
initial migration time (time passed
since request for migration until process
started on remote node).

We can see that different strategies
have different goals and introduce differ-
ent costs. At one end of the spectrum,
systems that implement an eager (all)
strategy in user space eliminate residual
dependencies and residual costs, but suf-
fer from high freeze time and freeze costs.

Modifying the operating system allows
an eager (dirty) strategy to reduce the
amount of the address space that needs to
be copied to the subset of its dirty pages.
This increases residual costs and depen-
dencies while reducing freeze time and
costs.

Using a precopy strategy further im-
proves freeze time, but has higher freeze
costs than other strategies. Applications
with real-time requirements can bene-
fit from this. However, it has very high
migration time because it may require
additional copying of already transferred
pages.

Copy on reference requires the most ker-
nel changes in order to provide sophis-
ticated virtual mappings between nodes.
It also has more residual dependencies
than other strategies, but it has the lowest
freeze time and costs, and migration time
is low, because processes can promptly
start on the remote node.

Finally, the flushing strategy also re-
quires some amount of change to the
kernel, and has somewhat higher freeze
time than copy-on-reference, but improves
residual time and costs by leaving residual
dependencies only on a server, but not on
the source node. Process migration in the
Choices system, not listed in the table, rep-
resents a highly optimized version of eager
(dirty) strategy.

The data transfer strategy dominates
process migration characteristics such as
performance, complexity, and fault re-
silience. The costs, implementation details
and residual dependencies of other pro-
cess elements (e.g. communication chan-
nels, and naming) are also important but
have less impact on process migration.

In the Mach case study, we saw that
most strategies can be implemented in
user space. However, this requires a pager-
like architecture that increases the com-
plexity of OS and migration design and
implementation.

Table 6 summarizes load information
database characteristics. Database type
indicates whether the information is
maintained as a distributed or a cen-
tralized database. Centralized databases
have shown surprising scalability for some
systems, in particular LSF. Neverthe-
less, achieving the highest level of scal-
ability requires distributed information
management.

Maximum nodes deployed is defined
as the number of nodes that were ac-
tually used. It is hard to make predic-
tions about the scalability of migration
and load information management. An

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Process Migration 285

Table 6. Load Information Database

Migration/ Maximum Nodes Database Fault Knowledge
Charact. Database type Deployed Scope Tolerance Relevance

MOSIX distributed 64 partial yes aging
Sprite centralized 30 global limited verification, update on

state change or periodic
Mach distributed 5 global no negotiation
LSF centralized 500 global yes none

approximate prediction is that centralized
load information management could scale
up to 500 nodes without hierarchical or-
ganization, such as in Sprite. With hier-
archical organization, such as in LSF, it
could scale beyond 2000 nodes. Decentral-
ized information management, such as in
MOSIX, can scale to an even larger num-
ber of nodes. Even though Mach task mi-
gration has not been used on larger sys-
tems than a 5-node Ethernet cluster, most
of its components that can impact scalabil-
ity (distributed IPC, distributed memory
management, and remote address space
creation) have been demonstrated to scale
well. The Intel Paragon computer, the
largest MMP machine that runs Mach,
has over 2000 nodes [Zajcew et al., 1993].
However, in order to use migration for load
distribution some decentralized informa-
tion management algorithm would have
to be deployed, similar to the one used for
TNC.

Database scope defines the amount
of information that is considered. Some
systems, like MOSIX, maintain partial
system information in order to enhance
scalability. Large systems need to address
fault tolerance. One drawback of cen-
tralized databases is that storing the data
on one node introduces a single point of
failure. This problem can be alleviated by
replicating the data.

Once knowledge about the state of a
system is collected and disseminated, it
starts to lose its relevance as the state of
the system changes. This is an intrinsic
characteristic of distributed systems. The
last column, knowledge relevance, lists
the methods used by the load information
management modules to account for this.

Table 7 describes the type of informa-
tion managed by load information col-
lection and dissemination. Load informa-

tion is maintained for each process in
a system, as well as for each machine
in a system. Process parameters lists
the information gathered about individ-
ual processes while system parameters
shows the information gathered per node.
All systems use processor utilization infor-
mation while some of them also consider
system communication patterns and ac-
cess to off-node devices.

Disseminated parameters describes
how much of the information is passed on
to other nodes in a system. In most cases,
only system information is disseminated,
and the average ready queue length is of
most interest. In some systems, not all
available information is retained, as de-
scribed in the retained information col-
umn. For example, MOSIX retains only a
subset of collected information during dis-
semination phase. Negotiation parame-
ters details the information exchanged at
the time of an attempted migration. Pro-
cess parameters are used during negoti-
ation phase. Finally, the collection and
dissemination columns detail the fre-
quency of collection and dissemination in
four case studies. In all cases both collec-
tion and dissemination are periodic, with
the exception of Sprite—it also dissemi-
nates upon a state change.

Table 8 summarizes the characteristics
of distributed scheduling. The migration
class column indicates the type of migra-
tion mechanism employed. The consid-
ered costs column indicates whether and
how systems weigh the actual cost of mi-
gration. The migration costs are consid-
ered in the case of MOSIX and LSF, and
not in the case of Sprite and Mach. In ad-
dition to CPU costs, MOSIX also accounts
for communication costs.

Migration trigger summarizes
the reasons for migration activation.

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

286 D. S. Milojičić et al.

Ta
bl

e
7.

Lo
ad

In
fo

rm
at

io
n

C
ol

le
ct

io
n

an
d

D
is

se
m

in
at

io
n

C
ol

le
ct

io
n

D
is

se
m

in
at

io
n

M
ig

ra
ti

on
/

P
er

P
ro

ce
ss

S
ys

te
m

P
ar

am
et

er
s

R
et

ai
n

ed
N

eg
ot

ia
ti

on
-p

er
io

di
c

(f
re

q.
)

-p
er

io
di

c
(f

re
q.

)
C

h
ar

ac
t.

P
ar

am
et

er
s

(a
ls

o
di

ss
em

in
at

ed
)

In
fo

rm
at

io
n

P
ar

am
et

er
s

-e
ve

n
t

dr
iv

.(
ev

en
t)

-e
ve

n
t

dr
iv

.(
ev

en
t)

M
O

S
IX

ag
e,

I/
O

pa
tt

er
n

s,
av

er
ag

e
re

ad
y

qu
eu

e
pa

rt
ia

l
m

ig
ra

ti
n

g
pr

oc
es

s
pe

ri
od

ic
pe

ri
od

ic
(1

-6
0s

)
fi

le
ac

ce
ss

(r
an

do
m

su
bs

et
)

m
ay

be
re

fu
se

d
(w

or
m

-l
ik

e)

S
pr

it
e

n
on

e
ti

m
e

si
n

ce
la

st
lo

ca
l

al
li

n
fo

re
ta

in
ed

m
ig

ra
ti

on
pe

ri
od

ic
(5

s)
pe

ri
od

ic
(1

m
in

)
an

d
u

se
r

in
pu

t,
re

ad
y

ve
rs

io
n

u
po

n
a

st
at

e
ch

an
ge

qu
eu

e
le

n
gt

h

M
ac

h
ag

e,
re

m
ot

e
IP

C
,

av
er

ag
e

re
ad

y
qu

eu
e,

al
li

n
fo

re
ta

in
ed

de
st

in
at

io
n

lo
ad

,
pe

ri
od

ic
(1

s)
pe

ri
od

ic
(1

s)
an

d
re

m
ot

e
re

m
ot

e
IP

C
,r

em
ot

e
fr

ee
pa

gi
n

g
sp

ac
e

pa
gi

n
g

pa
gi

n
g

L
S

F
n

on
e

ar
bi

tr
ar

y
al

li
n

fo
re

ta
in

ed
sy

st
em

pa
ra

m
et

er
s

pe
ri

od
ic

pe
ri

od
ic

co
n

fi
gu

ra
bl

e
of

al
ln

od
es

Ta
bl

e
8.

D
is

tr
ib

ut
ed

S
ch

ed
ul

in
g

S
ys

te
m

/
M

ig
ra

ti
on

C
on

si
de

re
d

M
ig

ra
ti

on
A

P
ri

or
i

L
ea

rn
in

g
fr

om
S

ta
bi

li
ty

C
h

ar
ac

te
ri

st
ic

s
C

la
ss

C
os

ts
T

ri
gg

er
K

n
ow

le
dg

e
th

e
P

as
t

M
O

S
IX

pr
oc

es
s

m
ig

ra
ti

on
C

P
U

&
th

re
sh

ol
d

cr
os

s
+

n
on

el
ig

ib
le

ag
in

g
lo

ad
ve

ct
or

m
in

im
u

m
re

si
de

n
cy

(U
N

IX
-l

ik
e

O
S

)
co

m
m

u
n

ic
at

io
n

lo
ad

di
ff

er
en

ce
pr

oc
es

se
s

pr
oc

es
s

re
si

de
n

cy
n

od
e

re
fu

sa
l

in
fo

w
ei

gh
ti

n
g

S
pr

it
e

pr
oc

es
s

m
ig

ra
ti

on
n

o
pm

ak
e,

m
ig

ra
to

ry
sh

el
l,

n
on

el
ig

ib
le

pr
oc

es
se

s
n

on
e

bi
as

to
w

ar
d

(U
N

IX
-l

ik
e

O
S

)
ev

ic
ti

on
(d

u
e

to
u

se
r

or
li

st
of

el
ig

ib
le

lo
n

g-
id

le
ac

ti
vi

ty
or

fa
ir

n
es

s)
on

es
m

ac
h

in
es

M
ac

h
ta

sk
m

ig
ra

ti
on

n
o

th
re

sh
ol

d
cr

os
s

pr
ed

efi
n

ed
n

on
-

li
m

it
co

n
se

cu
ti

ve
h

ig
h

th
re

sh
ol

d
(m

ic
ro

ke
rn

el
)

el
ig

ib
le

ta
sk

s
m

ig
ra

ti
on

L
S

F
pr

oc
es

s
m

ig
ra

ti
on

C
P

U
ov

er
h

ea
d

co
n

fi
gu

ra
bl

e
th

re
sh

ol
ds

pr
ed

efi
n

ed
n

on
-

lo
w

er
in

g
st

an
da

rd
h

ig
h

th
re

sh
ol

ds
(u

se
r-

le
ve

lm
ig

r.
)

el
ig

ib
le

co
m

m
an

ds
de

vi
at

io
n

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Process Migration 287

Examples include crossing a load thresh-
old on a single node or on demand after
an application-specific request, or only for
specific events like process eviction. Sprite
process migration can be initiated as a
part of the pmake program or a migratory
shell, or as a consequence of the eviction
of a remotely executed process.

Some of the systems use a priori
knowledge, typically in the form of spec-
ifying which processes are not allowed
to migrate. These are for example well
known system processes, such as in the
case of MOSIX, Sprite and Mach, or com-
mands in the case of LSF. The learning
from the past column indicates how some
systems adapt to changing loads. Exam-
ples include aging load vectors and pro-
cess residency in MOSIX, and limiting
consecutive migrations in Mach. Stabil-
ity is achieved by requiring a minimum
residency for migrated processes after a
migration (such as in MOSIX), by intro-
ducing a high threshold per node (such as
in Mach and LSF), or by favoring long-
idle machines (such as in Sprite). It can
also be achieved by manipulating load in-
formation as was investigated in MOSIX.
For example, dissemination policies can be
changed, information can be weighed sub-
ject to current load, and processes can be
refused.

7. WHY PROCESS MIGRATION
HAS NOT CAUGHT ON

In this section, we attempt to identify
the barriers that have prevented a wider
adoption of process migration and to ex-
plain how it may be possible to overcome
them. We start with an analysis of each
case study; we identify misconceptions;
we identify those barriers that we con-
sider the true impediments to the adop-
tion of migration; and we conclude by out-
lining the likelihood of overcoming these
barriers.

7.1. Case Analysis

MOSIX. The MOSIX distributed operat-
ing system is an exception to most other
systems supporting transparent process
migration in that it is still in general

use. Several things worked against the
wider adoption of the MOSIX system: the
implementation was done on a commer-
cial operating system which prevented
wide-spread distribution of the code. One
commercial backer of MOSIX withdrew
from the operating system business.

The current outlook is much brighter.
The latest versions of MOSIX support pro-
cess migration on BSDI’s version of UNIX
and Linux. The Linux port eliminates the
legal barriers that prevented the distribu-
tion of early versions of the system.

Sprite. Sprite as a whole did not
achieve a long-lasting success, so its pro-
cess migration facility suffered with it.
Sprite’s failure to expand significantly be-
yond U.C. Berkeley was due to a conscious
decision among its designers not to in-
vest the enormous effort that would have
been required to support a large external
community. Instead, individual ideas from
Sprite, particularly in the areas of file sys-
tems and virtual memory, have found their
way into commercial systems over time.

The failure of Sprite’s process migration
facility to similarly influence the commer-
cial marketplace has come as a surprise.
Ten years ago we would have predicted
that process migration in UNIX would be
commonplace today, despite the difficul-
ties in supporting it. Instead, user-level
load distribution is commonplace, but it is
commonly limited to applications that can
run on different hosts without ill effects,
and relies either on explicit checkpointing
or the ability to run to completion.

Mach and OSF/1. Compared to other
systems, Mach has gone the furthest
in technology transfer. Digital UNIX
has been directly derived from OSF/1,
NT internals resemble the Mach design,
and a lot of research was impacted by
Mach. However, almost no distributed
support was transferred elsewhere. The
distributed memory management and dis-
tributed IPC were extremely complex, re-
quiring significant effort to develop and to
maintain. The redesign of its distributed
IPC was accomplished within the OSF
RI [Milojičić et al., 1997], but distributed
memory management has never been
redesigned and was instead abandoned

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

288 D. S. Milojičić et al.

[Black et al. 1998]. Consequently, task and
process migration have never been trans-
ferred elsewhere except to Universities
and Labs.

LSF. Platform Computing has not ag-
gressively addressed process migration
because the broad market is still not
ready—partially due to an immature dis-
tributed system structure, and partially
due to a lack of cooperation from OS
and application vendors. But most impor-
tantly there was no significant customer
demand.

Since a vast majority of users run Unix
and Windows NT, for which dynamic pro-
cess migration is not supported by the OS
kernel, Platform Computing has been us-
ing user-level job checkpointing and mi-
gration as an indirect way to achieve
process migration for the users of LSF.
A checkpoint library based on that of
Condor is provided that can be linked
with Unix application programs to en-
able transparent process migration. This
has been integrated into a number of im-
portant commercial applications. For ex-
ample, a leading circuit simulation tool
from Cadence, called Verilog, can be check-
pointed on one workstation and resumed
on another.

It is often advantageous to have check-
pointing built into the applications and
have LSF manage the migration process.
The checkpoint file is usually smaller
compared to user-level, because only cer-
tain data structures need to be saved,
rather than all dirty memory pages. With
more wide-spread use of workstations and
servers on the network, Platform Comput-
ing is experiencing a rapidly increasing
demand for process migration.

7.2. Misconceptions

Frequently, process migration has been
dismissed as an academic exercise with
little chance for wide deployment [Eager
et al., 1988; Kremien and Kramer, 1992;
Shivaratri et al., 1992]. Many rationales
have been presented for this position,
such as:r significant complexity,r unacceptable costs,

r the lack of support for transparency, andr the lack of support for heterogeneity.

Some implementations, even success-
ful ones, indeed have reinforced such be-
liefs. Despite the absence of wide spread
deployment, work on process migration
has persisted. In fact, recently we have
seen more and more attempts to provide
migration and other forms of mobility
[Steensgaard and Jul, 1995; Roush and
Campbell, 1996; Smith and Hutchinson,
1998]. Checkpoint/restart systems are be-
ing deployed for the support of long-
running processes [Platform Computing,
1996]. Finally, mobile agents are being in-
vestigated on the Web.

If we analyze implementations, we see
that technical solutions exist for each
of these problems (complexity, cost, non-
transparency and homogeneity). Migra-
tion has been supported with various de-
grees of complexity: as part of kernel
mechanisms; as user-level mechanisms;
and even as a part of an application (see
Sections 4.2–4.6). The time needed to mi-
grate has been reduced from the range
of seconds or minutes [Mandelberg and
Sunderam, 1988; Litzkow and Solomon,
1992] to as low as 14ms [Roush and
Campbell, 1996]. Various techniques have
been introduced to optimize state transfer
[Theimer et al., 1985; Zayas, 1987a; Roush
and Campbell, 1996] (see Section 3.2).
Transparency has been achieved to dif-
ferent degrees, from limited to complete
(see Section 3.3). Finally, recent work
demonstrates improvements in support-
ing heterogeneous systems, as done in
Emerald [Steensgaard and Jul, 1995],
Tui [Smith and Hutchinson, 1998] and
Legion [Grimshaw and Wulf, 1996] (see
Section 3.6).

7.3. True Barriers to Migration Adoption

We believe that the true impediments to
deploying migration include the following:r A lack of applications. Scientific

applications and academic loads (e.g.
pmake and simulations) represent a
small percentage of today’s applications.
The largest percentage of applications

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Process Migration 289

today represent standard PC applica-
tions, such as word-processing, and desk-
top publishing. Such applications do not
significantly benefit from migration.r A lack of infrastructure. There has
not been a widely-used distributed op-
erating system. Few of the distributed
features of academically successful re-
search operating systems, such as Mach,
Sprite, or the V kernel, have been trans-
ferred to the marketplace despite ini-
tial enthusiasm. This lack increases
the effort needed to implement process
migration.r Migration is not a requirement for
users. Viable alternatives, such as re-
mote invocation and remote data access,
might not perform as uniformly as pro-
cess migration but they are able to meet
user expectations with a simpler and
well understood approach [Eager et al.,
1986a, Kremien and Kramer, 1992].r Sociological factors have been im-
portant in limiting the deployment of
process migration. In the workstation
model, each node belongs to a user. Users
are not inclined to allow remote pro-
cesses to visit their machines. A lot
of research has addressed this prob-
lem, such as process eviction in Sprite
[Douglis and Ousterhout, 1991], or low-
ering the priority of foreign processes
in the Stealth scheduler [Krueger and
Chawla, 1991]. However, the psychologi-
cal effects of workstation ownership still
play a role today.

7.4. How these Barriers Might be Overcome

It often takes a long time for good re-
search ideas to become widely adopted
in the commercial arena. Examples in-
clude object-orientation, multi-threading,
and the Internet. It may be the case that
process mobility is not ripe enough to be
adopted by the commercial market.

We address each of the barriers iden-
tified in previous section and try to pre-
dict how migration might fit the future
needs. The rest of the section is highly
speculative because of the attempts to ex-
trapolate market needs and technology.

Applications. To become popular in
the marketplace, migration needs a “killer
application” that will provide a compelling
reason for commercial operating system
vendors to devote the resources needed
to implement and support process migra-
tion. The types of application that are
well-suited for process migration include
processor-intensive tasks such as paral-
lel compilation and simulation, and I/O-
intensive tasks that would benefit from
the movement of a process closer to some
data or another process (see also Section
2.4). These applications are exceedingly
rare by comparison to the typical uses of
today’s computers in the home and work-
place, such as word processing, spread-
sheets, and games. However, applications
are becoming more distributed, modular,
and dependent on external data. In the
near future, because of the exceeding dif-
ference in network performance, it will be
more and more relevant to execute (mi-
grate) applications close to the source of
data. Modularity will make paralleliza-
tion easier (e.g. various component mod-
els, such as Java Beans and Microsoft
DCOM).

Infrastructure. The NT operating
system is becoming a de facto standard,
leading to a common environment. UNIX
is also consolidating into fewer ver-
sions. All these systems start to address
the needs for clustering, and large-scale
multicomputers. Both environments are
suitable for process migration. These
operating systems are becoming more and
more distributed. A lot of missing infras-
tructure is becoming part of the standard
commercial operating systems or its
programming environments.

Convenience vs. requirement (im-
pact of hardware technology). The fol-
lowing hardware technology trends may
impact process migration in the future:
high speed networks, large scale systems,
and the popularity of hardware mobile
gadgets. With the increasing difference
in network speeds (e.g. between a mobile
computer and a fiber-channel), the differ-
ence between remote execution and migra-
tion becomes greater. Being able to move
processes during execution (e.g. because it

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

290 D. S. Milojičić et al.

was realized that there is a lot of remote
communication) can improve performance
significantly. Secondly, with the larger
scale of systems, the failures are more fre-
quent, thereby increasing the relevance
of being able to continue program execu-
tion at another node. For long-running or
critical applications (those that should not
stop executing) migration becomes a more
attractive solution. Finally, the increas-
ing popularity of hardware mobile gadgets
will require mobility support in software.
Examples include migrating applications
from a desktop, to a laptop, and eventually
to a gadget (e.g. future versions of cellular
phones or palmtops).

Sociology. There are a few factors re-
lated to sociology. The meaning and rel-
evance of someone’s own workstation is
blurring. There are so many computers in
use today that the issue of computing cy-
cles becomes less relevant. Many comput-
ers are simply servers that do not belong
to any single user, and at the same time
the processing power is becoming increas-
ingly cheap. A second aspect is that as the
world becomes more and more connected,
the idea of someone else’s code arriving on
one’s workstation is not unfamiliar any-
more. Many security issues remain, but
they are being actively addressed by the
mobile code and agents community.

In summary, we do not believe that
there is a need for any revolutionary de-
velopment in process migration to make it
widely used. We believe that it is a matter
of time, technology development, and the
changing needs of users that will trigger a
wider use of process migration.

8. SUMMARY AND FURTHER RESEARCH

In this paper we have surveyed process
migration mechanisms. We have classi-
fied and presented an overview of a num-
ber of systems, and then discussed four
case studies in more detail. Based on this
material, we have summarized various
migration characteristics. Throughout the
text we tried to assess some misconcep-
tions about process migration, as well as
to discover the true reasons for the lack of
its wide acceptance.

We believe there is a future for process
migration. Different streams of develop-
ment may well lead to a wider deploy-
ment of process migration. Below we in-
clude some possible paths.

One path is in the direction of LSF,
a user-level facility that provides much
of the functionality of full-fledged pro-
cess migration systems, but with fewer
headaches and complications. The check-
point/restart model of process migration
has already been relatively widely de-
ployed. Packages such as Condor, LSF
and Loadleveler are used for scientific and
batch applications in production environ-
ments. Those environments have high de-
mands on their computer resources and
can take advantage of load sharing in a
simple manner.

A second path concerns clusters of work-
stations. Recent advances in high speed
networking (e.g. ATM [Partridge, 1994]
and Myrinet [Boden et al., 1995]) have re-
duced the cost of migrating processes, al-
lowing even costly migration implementa-
tions to be deployed.

A third path, one closer to the con-
sumers of the vast majority of today’s
computers (Windows systems on Intel-
based platforms), would put process mi-
gration right in the home or office. Sun re-
cently announced their Jini architecture
for home electronics [Sun Microsystems,
1998] and other similar systems are sure
to follow. One can imagine a process start-
ing on a personal computer, and migrat-
ing its flow of control into another device
in the same domain. Such activity would
be similar to the migratory agents ap-
proach currently being developed for the
Web [Rothermel and Hohl, 1998].

Still another possible argument for pro-
cess migration, or another Worm-like fa-
cility for using vast processing capability
across a wide range of machines, would
be any sort of national or international
computational effort. Several years ago,
Quisquater and Desmedt [1991] suggested
that the Chinese government could solve
complex problems (such as factoring large
numbers) by permitting people to use the
processing power in their television sets,
and offering a prize for a correct answer

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Process Migration 291

as an incentive to encourage television
owners to participate. In case of ex-
traordinary need, process migration could
provide the underlying mechanism for
large-scale computation across an ever-
changing set of computers.

Finally, the most promising new op-
portunity is the use of mobile agents in
the Web. In this setting, both technical
and sociological conditions differ from the
typical distributed system where process
migration has been de-ployed (see the
analysis in Section 7.2). Instead of the
processor pool and workstation models,
the Web environment connects computers
as interfaces to the “network-is-computer”
model. The requirements for transparency
are relaxed, and user-specific solutions are
preferred. Performance is dominated by
network latency and therefore state trans-
fer is not as dominant as it is on a lo-
cal area network; remote access and re-
mote invocation are not competitive with
solutions based on mobility. Users are
ready to allow foreign code to be down-
loaded to their computer if this code is
executed within a safe environment. In
addition, there are plenty of dedicated
servers where foreign code can execute.
Heterogeneity is supported at the lan-
guage level. Generally speaking, the use of
mobile agents in a Web environment over-
comes each of the real impediments to de-
ploying process migration, and will be a
growing application of the technology (al-
beit with new problems, such as security,
that are currently being addressed by the
mobile agents community). Mobile agents
bear a lot of similarity and deploy similar
techniques as process migration.

Process migration will continue to at-
tract research independently of its success
in market deployment. It is deemed an
interesting, hard, and unsolved problem,
and as such is ideal for research. How-
ever, reducing the amount of transparency
and the OS-level emphasis is common for
each scenario we outlined above. Eventu-
ally this may result in a less transpar-
ent OS support for migration, reflecting
the lack of transparency to the application
level while still providing certain guaran-
tees about connectivity.

ACKNOWLEDGMENTS

We would like to thank Amnon Barak, David Black,
Don Bolinger, Bill Bryant, Luca Cardelli, Steve
Chapin, Alan Downey, Shai Guday, Mor Harchol-
Balter, Dag Johansen, and Dan Teodosiu for pro-
viding many useful suggestions that significantly
improved the paper. The anonymous reviewers pro-
vided an extensive list of general, as well as very de-
tailed, suggestions that have strengthened our focus,
presentation and correctness of the paper. We are in-
debted to them and to the ACM Computing Surveys
editor, Fred Schneider.

REFERENCES

ACCETTA, M., BARON, R., BOLOSKY, W., GOLUB, D.,
RASHID, R., TEVANIAN, A., AND YOUNG, M. 1986.
Mach: A New Kernel Foundation for UNIX De-
velopment. Proceedings of the Summer USENIX
Conference, 93–112.

AGRAWAL, R. AND EZZAT, A. 1987. Location Indepen-
dent Remote Execution in NEST. IEEE Trans-
actions on Software Engineering 13, 8, 905–912.

ALON, N., BARAK, A., AND MANBER, U. 1987. On Dis-
seminating Information Reliably without Broad-
casting. Proceedings of the 7th International
Conference on Distributed Computing Systems,
74–81.

ALONSO, R. AND KYRIMIS, K. 1988. A Process Migra-
tion Implementation for a UNIX System. Pro-
ceedings of the USENIX Winter Conference, 365–
372.

AMARAL, P., JACQEMOT, C., JENSEN, P., LEA, R., AND

MIROWSKI, A. 1992. Transparent Object Migra-
tion in COOL-2. Proceedings of the ECOOP.

ANDERSEN, B. 1992. Load Balancing in the Fine-
Grained Object-Oriented Language Ellie. Pro-
ceedings of the Workshop on Dynamic Object
Placement and Load Balancing in Parallel and
Distributed Systems Programs, 97–102.

ANDERSON, T. E., CULLER, D. E., AND PATTERSON, D. A.
1995. A Case for NOW (Networks of Worksta-
tions). IEEE Micro 15, 1, 54–64.

ARTSY, Y., CHANG, Y., AND FINKEL, R. 1987. Interpro-
cess Communication in Charlotte. IEEE Soft-
ware, 22–28.

ARTSY, Y. AND FINKEL, R. 1989. Designing a Process
Migration Facility: The Charlotte Experience.
IEEE Computer, 47–56.

BAALBERGEN, E. H. 1988. Design and Implementa-
tion of Parallel Make. Computing Systems 1,
135–158.

BANAWAN, S. A. AND ZAHORJAN, J. 1989. Load Sharing
in Hierarchical Distributed Systems. Proceed-
ings of the 1989 Winter Simulation Conference,
963–970.

BARAK, A. AND LITMAN, A. 1985. MOS: a Multicom-
puter Distributed Operating System. Software-
Practice and Experience 15, 8, 725–737.

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

292 D. S. Milojičić et al.

BARAK, A. AND SHILOH, A. 1985. A Distributed Load-
Balancing Policy for a Multicomputer. Software-
Practice and Experience 15, 9, 901–913.

BARAK, A. AND WHEELER, R. 1989. MOSIX: An
Inte-grated Multiprocessor UNIX. Proceedings
of the Winter 1989 USENIX Conference, 101–
112.

BARAK, A., SHILOH, A., AND WHEELER, R. 1989.
Flood Prevention in the MOSIX Load-Balancing
Scheme. IEEE Technical Committee on Operat-
ing Systems Newsletter 3, 1, 24–27.

BARAK, A., GUDAY, S., AND WHEELER, R. G. 1993. The
MOSIX Distributed Operating System. Springer
Verlag.

BARAK, A., LADEN, O., AND BRAVERMAN, A. 1995. The
NOW MOSIX and its Preemptive Process Mi-
gration Scheme. Bulletin of the IEEE Technical
Committee on Operating Systems and Applica-
tion Environments 7, 2, 5–11.

BARBOU DES PLACES, F. B., STEPHEN, N., AND REYNOLDS,
F. D. 1996. Linux on the OSF Mach3 Micro-
kernel. Proceedings of the First Conference on
Freely Redistributable Software, 33–46.

BARRERA, J. 1991. A Fast Mach Network IPC Imple-
mentation. Proceedings of the Second USENIX
Mach Symposium, 1–12.

BASKETT, F., HOWARD, J., AND MONTAGUE, T. 1977. Task
Communication in DEMOS. Proceedings of the
6th Symposium on OS Principles, 23–31.

BAUMANN, J., HOHL, F., ROTHERMEL, K., AND STRABER,
M. 1998. Mole—Concepts of a Mobile Agent
System. World Wide Web 1, 3, 123–137.

BEGUELIN, A., DONGARRA, J., GEIST, A., MANCHEK, R.,
OTTO, S., AND WALPOLE, J. 1993. PVM: Experi-
ences, Current Status and Future Directions.
Proceedings of Supercomputing 1993, 765–766.

BERNSTEIN, P. A. 1996. Middleware: A Model for Dis-
tributed System Services. Communications of
the ACM 39, 2, 86–98.

BERSHAD, B., SAVAGE, S., PARDYAK, P., SIRER, E. G.,
FIUCZINSKI, M., BECKER, D., CHAMBERS, C., AND

EGGERS, S. 1995. Extensibility, Safety and Per-
formance in the SPIN Operating System. Pro-
ceedings of the 15th Symposium on Operating
Systems Principles, 267–284.

BHARAT, K. A. AND CARDELLI, L. 1995. Migratory Ap-
plications. Proceedings of the Eight Annual ACM
Symposium on User Interface Software Technol-
ogy.

BLACK, A., HUTCHINSON, N., JUL, E., LEVY, H.,
AND CARTER, L. 1987. Distributed and Abstract
Types in Emerald. IEEE Transactions on Soft-
ware Engineering, SE-13, 1, 65–76.

BLACK, D., GOLUB, D., JULIN, D., RASHID, R., DRAVES,
R., DEAN, R., FORIN, A., BARRERA, J., TOKUDA, H.,
MALAN, G., AND BOHMAN, D. 1992. Microkernel
Operating System Architecture and Mach. Pro-
ceedings of the USENIX Workshop on Micro-
Kernels and Other Kernel Architectures, 11–30.

BLACK, D., MILOJIČIĆ, D., DEAN, R., DOMINIJANNI,
M., LANGERMAN, A., SEARS, S. 1998. Extended

Memory Management (XMM): Lessons Learned.
Software-Practice and Experience 28, 9, 1011–
1031.

BODEN, N., COHEN, D., FELDERMAN, R. E., KULAWIK, A.
E., SEITZ, C. L., SEIZOVIC, J. N., AND SU, W.-K. 1995.
Myrinet: A Gigabit-per-Second Local Area Net-
work. IEEE Micro 15, 1, 29–38.

BOKHARI, S. H. 1979. Dual Processor Scheduling
with Dynamic Reassignment. IEEE Transac-
tions on Software Engineering, SE-5, 4, 326–334.

BOMBERGER, A. C., FRANTZ, W. S., HARDY, A. C.,
HARDY, N., LANDAU, C. R., AND SHAPIRO, J. S.
1992. The Key-KOS (R) Nanokernel Architec-
ture. USENIX Workshop on Micro-Kernels and
Other Kernel Architectures, 95–112.

BOND, A. M. 1993. Adaptive Task Allocation in
a Distributed Workstation Environment. Ph.D.
Thesis, Victoria University at Wellington.

BONOMI, F. AND KUMAR, A. 1988. Adaptive Optimal
Load Balancing in a Heterogeneous Multiserver
System with a Central Job Scheduler. Proceed-
ings of the 8th International Conference on Dis-
tributed Computing Systems, 500–508.

BORGHOFF U. M. 1991. Catalogue of Distributed
File/Operating Systems. Springer Verlag.

BOWEN, N. S., NIKOLAOU, C. N., AND GHAFOOR, A.
1988. Hierarchical Workload Allocation for
Distributed Systems. Proceedings of the 1988 In-
ternational Conference on Parallel Processing,
II:102–109.

BROOKS, C., MAZER, M. S., MEEKS, S., AND MILLER,
J. 1995. Application-Specific Proxy Servers as
HTTP Stream Transducers. Proceedings of the
Fourth International World Wide Web Confer-
ence, 539–548.

BRYANT, B. 1995. Design of AD 2, a Distributed
UNIX Operating System. OSF Research Insti-
tute.

BRYANT, R. M. AND FINKEL, R. A. 1981. A Stable Dis-
tributed Scheduling Algorithm. Proceedings of
the 2nd International Conference on Distributed
Computing Systems, 314–323.

BUGNION, E., DEVINE, S., GOVIL, K., AND ROSENBLUM, M.
1997. Disco: running commodity operating sys-
tems on scalable multiprocessors. ACM Transac-
tions on Computer Systems 15, 4, 412–447.

BUTTERFIELD, D. A. AND POPEK, G. J. 1984. Network
Tasking in the Locus Distributed UNIX System.
Proceedings of the Summer USENIX Conference,
62–71.

CABRERA, L. 1986. The Influence of Workload on
Load Balancing Strategies. Proceedings of the
Winter USENIX Conference, 446–458.

CARDELLI, L. 1995. A Language with Distributed
Scope. Proceedings of the 22nd Annual ACM
Symposium on the Principles of Programming
Languages, 286–297.

CASAS, J., CLARK, D. L., CONURU, R., OTTO, S. W., PROUTY,
R. M., AND WALPOLE, J. 1995. MPVM: A Migra-
tion Transparent Version of PVM. Computing
Systems 8, 2, 171–216.

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Process Migration 293

CASAVANT, T. L. AND KUHL, J. 1988a. A Taxonomy
of Scheduling in General-Purpose Distributed
Computing Systems. IEEE Transactions on Soft-
ware Engineering, SE-14(2), 141–152.

CASAVANT, T. L. AND KUHL, J. 1988b. Effects of Re-
sponse and Stability on Scheduling in Dis-
tributed Computing systems. IEEE Transac-
tions on Software Engineering, SE-14(11), 1578–
1588.

CHAPIN, J., ROSENBLUM, M., DEVINE, S., LAHIRI, T., TEO-
DOSIU, D., AND GUPTA, A. 1995. Hive: Fault Con-
tainment for Shared-Memory Multiprocessors.
Proceedings of the Fifteenth ACM Symposium on
Operating Systems Principles, 12–25.

CHAPIN, S. J. 1995. Distributed Scheduling Support
in the Presence of Autonomy. Proceedings of the
4th Heterogeneous Computing Workshop, IPPS,
22–29.

CHAPIN, S. J. 1993. Scheduling Support Mecha-
nisms for Autonomous, Heterogeneous, Dis-
tributed Systems. Ph.D. Thesis, Technical Report
CSD-TR-93-087, Purdue University.

CHAPIN, S. J. AND SPAFFORD, E. H. 1994. Support
for Implementing Scheduling Algorithms Using
MESSIAHS. Scientific Programming, 3, 325–
340.

CHAPIN, S. J. 1996. Distributed and Multiprocessor
Scheduling. ACM Computing Surveys 28, 1, 233–
235.

CHASE, J. S., AMADOR, F. G., LAZOWSKA, E. D., LEVY,
H. M., AND LITTLEFIELD, R. J. 1989. The Am-
ber System: Parallel Programming on a Net-
work of Multiprocessors. Proceedings of the 12th
ACM Symposium on Operating Systems Princi-
ples, 147–158.

CHERITON, D. R. 1988. The V Distributed System.
Communications of the ACM 31, 3, 314–333.

CHERITON, D. 1990. Binary Emulation of UNIX Us-
ing the V Kernel. Proceedings of the Summer
USENIX Conference, 73–86.

CHESS, D., B., G., HARRISON, C., LEVINE, D., PARRIS,
C., AND TSUDIK, G. 1995. Itinerant Agents for
Mobile Computing. IEEE Personal Communica-
tions Magazine.

CHOU, T. C. K. AND ABRAHAM, J. A. 1982. Load Balanc-
ing in Distributed Systems. IEEE Transactions
on Software Engineering, SE-8, 4, 401–419.

CHOU, T. C. K. AND ABRAHAM, J. A. 1983. Load Redis-
tribution under Failure in Distributed Systems.
IEEE Transactions on Computers, C-32, 9, 799–
808.

CHOW, Y.-C. AND KOHLER, W. H. 1979. Models for Dy-
namic Load Balancing in a Heterogeneous Mul-
tiple Processor System. IEEE Transactions on
Computers, C-28, 5, 354–361.

COHN, D. L., DELANEY, W. P., AND TRACEY, K. M.
1989. Arcade: A Platform for Distributed Op-
erating Systems. Proceedings of the USENIX
Workshop on Experiences with Distributed
and Multiprocessor Systems (WEBDMS), 373–
390.

CONCEPCION, A. I. AND ELEAZAR, W. M. 1988. A
Testbed for Comparative Studies of Adap-
tive Load Balancing Algorithms. Proceedings
of the Distributed Simulation Conference, 131–
135.

DANNENBERG, R. B. 1982. Resource Sharing in a Net-
work of Personal Computers. Ph.D. Thesis, Tech-
nical Report CMU-CS-82-152, Carnegie Mellon
University.

DANNENBERG, R. B. AND HIBBARD, P. G. 1985. A But-
ler Process for Resource Sharing on a Spice Ma-
chine. IEEE Transactions on Office Information
Systems 3, 3, 234–252.

DEARLE A. DI BONA R., FARROW J., HENSKENS F.,
LINDSTROM A., ROSENBERG J. AND VAUGHAN F. 1994.
Grasshopper: An Orthogonally Persistent Oper-
ating System. Computer Systems 7, 3, 289–312.

DEDIU, H., CHANG, C. H., AND AZZAM, H. 1992. Heavy-
weight Process Migration. Proceedings of the
Third Workshop on Future Trends of Distributed
Computing Systems, 221–225.

DENNING, P. J. 1980. Working Sets Past and Present.
IEEE Transactions on Software Engineering,
SE-6, 1, 64–84.

DIKSHIT, P., TRIPATHI, S. K., AND JALOTE, P. 1989. SA-
HAYOG: A Test Bed for Evaluating Dynamic
Load-Sharing Policies. Software-Practice and
Experience, 19, 411–435.

DOUGLIS, F. AND OUSTERHOUT, J. 1987. Process Migra-
tion in the Sprite Operating System. Proceedings
of the Seventh International Conference on Dis-
tributed Computing Systems, 18–25.

DOUGLIS, F. 1989. Experience with Process Migra-
tion in Sprite. Proceedings of the USENIX Work-
shop on Experiences with Distributed and Mul-
tiprocessor Systems (WEBDMS), 59–72.

DOUGLIS, F. 1990. Transparent Process Migration in
the Sprite Operating System. Ph.D. Thesis, Tech-
nical Report UCB/CSD 90/598, CSD (EECS),
University of California, Berkeley.

DOUGLIS, F. AND OUSTERHOUT, J. 1991. Transparent
Process Migration: Design Alternatives and the
Sprite Implementation. Software-Practice and
Experience 21, 8, 757–785.

DUBACH, B. 1989. Process-Originated Migration in a
Heterogeneous Environment. Proceedings of the
17th ACM Annual Computer Science Conference,
98–102.

EAGER, D., LAZOWSKA, E., AND ZAHORJAN, J. 1986a. A
Comparison of Receiver-Initiated and Sender-
Initiated Adaptive Load Sharing. Performance
Evaluation 6, 1, 53–68.

EAGER, D., LAZOWSKA, E., AND ZAHORJAN, J. 1986b.
Dynamic Load Sharing in Homogeneous Dis-
tributed Systems. IEEE Transactions on Soft-
ware Engineering 12, 5, 662–675.

EAGER, D., LAZOWSKA, E., AND ZAHORJAN, J. 1988.
The Limited Performance Benefits of Migrat-
ing Active Processes for Load Sharing. Proceed-
ings of the 1988 ACM SIGMETRICS Confer-
ence on Measurement and Modeling of Computer

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

294 D. S. Milojičić et al.

Systems, Performance Evaluation Review 16, 1,
63–72.

EFE, K. 1982. Heuristic Models of Task Assignment
Scheduling in Distributed Systems. IEEE Com-
puter, 15, 6, 50–56.

EFE, K. AND GROSELJ, B. 1989. Minimizing Control
Overheads in Adaptive Load Sharing. Proceed-
ings of the 9th International Conference on Dis-
tributed Computing Systems, 307–315.

ENGLER, D. R., KAASHOEK, M. F., AND O’TOOLE, J. J.
1995. Exokernel: An Operating System Archi-
tecture for Application-Level Resource Manage-
ment. Proceedings of the 15th Symposium on Op-
erating Systems Principles, 267–284.

ESKICIOGLU, M. R. 1990. Design Issues of Process
Migration Facilities in Distributed Systems.
IEEE Technical Committee on Operating Sys-
tems Newsletter 4, 2, 3–13.

EZZAT, A., BERGERON, D., AND POKOSKI, J. 1986. Task
Allocation Heuristics for Distributed Comput-
ing Systems. Proceedings of the 6th International
Conference on Distributed Computing Systems.

FARMER, W. M., GUTTMAN, J. D., AND SWARUP, V. 1996.
Security for Mobile Agents: Issues and Require-
ments. Proceedings of the National Information
Systems Security Conference, 591–597.

FEITELSON, D. G. AND RUDOLPH, L. 1990. Mapping
and Scheduling in a Shared Parallel Environ-
ment Using Distributed Hierarchical Control.
Proceedings of the 1990 International Conference
on Parallel Processing, I: 1–8.

FERRARI, D. AND ZHOU., S. 1986. A Load Index for Dy-
namic Load Balancing. Proceedings of the 1986
Fall Joint Computer Conference, 684–690.

FINKEL, R., SCOTT, M., ARTSY, Y., AND CHANG, H. 1989.
Experience with Charlotte: Simplicity and Func-
tion in a Distributed Operating system. IEEE
Transactions on Software Engineering, SE-15, 6,
676–685.

FLEISCH, B. D. AND POPEK, G. J. 1989. Mirage: A Co-
herent Distributed Shared Memory Design. Pro-
ceedings of the 12th ACM Symposium on Oper-
ating System Principles, 211–223.

FREEDMAN, D. 1991. Experience Building a Process
Migration Subsystem for UNIX. Proceedings of
the Winter USENIX Conference, 349–355.

GAIT, J. 1990. Scheduling and Process Migration in
Partitioned Multiprocessors. Journal of Parallel
and Distributed Computing 8, 3, 274–279.

GAO, C., LIU, J. W. S., AND RAILEY, M. 1984. Load Bal-
ancing Algorithms in Homogeneous Distributed
Systems. Proceedings of the 1984 International
Conference on Parallel Processing, 302–306.

GERRITY, G. W., GOSCINSKI, A., INDULSKA, J., TOOMEY, W.,
AND ZHU, W. 1991. Can We Study Design Issues
of Distributed Operating Systems in a Gener-
alized Way? Proceedings of the Second USENIX
Symposium on Experiences with Distributed and
Multiprocessor Systems, 301–320.

GOLDBERG, A. AND JEFFERSON, D. 1987. Transparent
Process Cloning: A Tool for Load Management

of Distributed Systems. Proceedings of the 8th
International Conference on Parallel Processing,
728–734.

GOLUB, D., DEAN, R., FORIN, A., AND RASHID, R. 1990.
UNIX as an Application Program. Proceedings
of the Summer USENIX Conference, 87–95.

GOPINATH, P. AND GUPTA, R. 1991. A Hybrid Ap-
proach to Load Balancing in Distributed Sys-
tems. Proceedings of the USENIX Symposium
on Experiences with Distributed and Multipro-
cessor Systems, 133–148.

GOSCINSKI, A. 1991. Distributed Operating Systems:
The Logical Design. Addison Wesley.

GOSLING, J., JOY, B., AND STEELE, G. 1996. The Java
Language Specification. Addison Wesley.

GRAY, R. 1995. Agent Tcl: A flexible and secure
mobileagent system. Ph.D. thesis, Technical Re-
port TR98-327, Department of Computer Sci-
ence, Dartmouth College, June 1997.

GRIMSHAW, A. AND WULF, W. 1997. The Legion Vision
of a Worldwide Virtual Computer. Communica-
tions of the ACM 40, 1, 39–45.

GUPTA, R. AND GOPINATH, P. 1990. A Hierarchical Ap-
proach to Load Balancing in Distributed Sys-
tems. Proceedings of the Fifth Distributed Mem-
ory Computing Conference, II, 1000–1005.

HAC, A. 1989a. A Distributed Algorithm for Perfor-
mance Improvement Through File Replication,
File Migration, and Process Migration. IEEE
Transactions on Software Engineering 15, 11,
1459–1470.

HAC, A. 1989b. Load Balancing in Distributed Sys-
tems: A Summary. Performance Evaluation Re-
view, 16, 17–25.

HAERTIG, H., KOWALSKI, O. C., AND KUEHNHAUSER, W. E.
1993. The BirliX Security Architecture.

HAGMANN, R. 1986. Process Server: Sharing Pro-
cessing Power in a Workstation Environment.
Proceedings of the 6th International Conference
on Distributed Computing Systems, 260–267.

HAMILTON, G. AND KOUGIOURIS, P. 1993. The Spring
Nucleus: A Microkernel for Objects. Proceedings
of the 1993 Summer USENIX Conference, 147–
160.

HAN, Y. AND FINKEL, R. 1988. An Optimal Scheme for
Disseminating Information. Proceedings of the
1988 International Conference on Parallel Pro-
cessing, II, 198–203.

HARCHOL-BALTER, M. AND DOWNEY, A. 1997. Exploit-
ing Process Lifetime Distributions for Dynamic
Load Balancing. ACM Transactions on Com-
puter Systems 15, 3, 253–285. Previously ap-
peared in the Proceedings of ACM Sigmetrics
1996 Conference on Measurement and Modeling
of Computer Systems, 13–24, May 1996.

HILDEBRAND, D. 1992. An Architectural Overview of
QNX. Proceedings of the USENIX Workshop on
Micro-Kernels and Other Kernel Architectures,
113–126.

HOFMANN, M.O., MCGOVERN, A., AND WHITEBREAD, K.
1998. Mobile Agents on the Digital Battlefield.

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Process Migration 295

Proceedings of the Autonomous Agents ’98, 219–
225.

HOHL, F. 1998. A Model of Attacks of Malicious
Hosts Against Mobile Agents. Proceedings of the
4th Workshop on Mobile Objects Systems, INRIA
Technical Report, 105–120.

HWANG, K., CROFT, W., WAH, B., BRIGGS, F., SIMONS,
W., AND COATES, C. 1982. A UNIX-Based Local
Computer Network with Load Balancing. IEEE
Computer, 15, 55–66.

JACQMOT, C. 1996. Load Management in Dis-
tributed Computing Systems: Towards Adaptive
Strategies. Technical Report, Ph.D. Thesis, De-
partement d’Ingenierie Informatique, Universite
catholique de Louvain.

JOHANSEN, D., VAN RENESSE, R., AND SCHNEIDER, F. 1995.
Operating System Support for Mobile Agents.
Proceedings of the 5th Workshop on Hot Topics
in Operating Systems, 42–45.

JUL, E., LEVY, H., HUTCHINSON, N., AND BLACK, A. 1988.
Fine-Grained Mobility in the Emerald System.
ACM Transactions on Computer Systems 6, 1,
109–133.

JUL, E. 1988. Object Mobility in a Distributed
Object-Oriented System. Technical Report 88-
12-06, Ph.D. Thesis, Department of Computer
Science, University of Washington, Also Techni-
cal Report no. 98/1, University of Copenhagen
DIKU.

JUL, E. 1989. Migration of Light-weight Processes
in Emerald. IEEE Technical Committee on Op-
erating Systems Newsletter, 3(1)(1):20–23.

KAASHOEK, M. F., VAN RENESSE, R., VAN STAVEREN, H.,
AND TANENBAUM, A. S. 1993. FLIP: An Internet-
work Protocol for Supporting Distributed Sys-
tems. ACM Transactions on Computer Systems,
11(1).

KEMPER, A., KOSSMANN, D. 1995. Adaptable Pointer
Swizzling Strategies in Object Bases: Design,
Realization, and Quantitative Analysis. VLDB
Journal 4(3): 519-566(1995).

KHALIDI, Y. A., BERNABEU, J. M., MATENA, V., SHIRIFF,
K., AND THADANI, M. 1996. Solaris MC: A Multi-
Computer OS. Proceedings of the USENIX 1996
Annual Technical Conference, 191–204.

KLEINROCK, L. 1976. Queueing Systems vol. 2: Com-
puter Applications. Wiley, New York.

KNABE, F. C. 1995. Language Support for Mo-
bile Agents. Technical Report CMU-CS-95-223,
Ph.D. Thesis, School of Computer Science,
Carnegie Mellon University, Also Technical Re-
port ECRC-95-36, European Computer Industry
Research Centre.

KOTZ, D., GRAY, R., NOG, S., RUS, D., CHAWLA, S., AND

CYBENKO., G. 1997. Agent Tcl: Targeting the
needs of mobile computers. IEEE Internet Com-
puting 1, 4, 58–67.

KREMIEN, O. AND KRAMER, J. 1992. Methodical Anal-
ysis of Adaptive Load Sharing Algorithms. IEEE
Transactions on Parallel and Distributed Sys-
tems 3, 6, 747–760.

KRUEGER, P. AND LIVNY, M. 1987. The Diverse
Objectives of Distributed Scheduling Policies.
Proceedings of the 7th International Conference
on Distributed Computing Systems, 242–249.

KRUEGER, P. AND LIVNY, M. 1988. A Comparison of
Preemptive and Non-Preemptive Load Balanc-
ing. Proceedings of the 8th International Con-
ference on Distributed Computing Systems, 123–
130.

KRUEGER, P. AND CHAWLA, R. 1991. The Stealth Dis-
tributed Scheduler. Proceedings of the 11th Inter-
national Conference on Distributed Computing
Systems, 336–343.

KUNZ, T. 1991. The Influence of Different Work-
load Descriptions on a Heuristic Load Balancing
Scheme. IEEE Transactions on Software Engi-
neering 17, 7, 725–730.

LAMPSON, B. 1983. Hints for Computer System De-
sign. Proceedings of the Ninth Symposium on
Operating System Principles, 33–48.

LANGE, D. AND OSHIMA, M. 1998. Programming Mo-
bile Agents in JavaTM -With the Java Aglet API.
Addison Wesley Longman.

LAZOWSKA, E. D., LEVY, H. M., ALMES, G. T., FISHER,
M. J., FOWLER, R. J., AND VESTAL, S. C. 1981. The
Architecture of the Eden System. Proceedings of
the 8th ACM Symposium on Operating Systems
Principles, 148–159.

LEA, R., JACQUEMOT, C., AND PILLVESSE, E. 1993.
COOL: System Support for Distributed Pro-
gramming. Communications of the ACM 36, 9,
37–47.

LELAND, W. AND OTT, T. 1986. Load Balancing
Heuristics and Process Behavior. Proceedings of
the SIGMETRICS Conference, 54–69.

LIEDTKE, J. 1993. Improving IPC by Kernel Design.
Proceedings of the Fourteenth Symposium on Op-
erating Systems Principles, 175–188.

LITZKOW, M 1987. Remote UNIX-Turning Idle
Work-stations into Cycle Servers. Proceedings
of the Summer USENIX Conference, 381–
384.

LITZKOW, M., LIVNY, M., AND MUTKA, M. 1988. Condor
A Hunter of Idle Workstations. Proceedings of
the 8th International Conference on Distributed
Computing Systems, 104–111.

LITZKOW, M. AND SOLOMON, M. 1992. Supporting
Checkpointing and Process Migration outside
the UNIX Kernel. Proceedings of the USENIX
Winter Conference, 283–290.

LIVNY, M. AND MELMAN, M. 1982. Load Balancing in
Homogeneous Broadcast Distributed Systems.
Proceedings of the ACM Computer Network Per-
formance Symposium, 47–55.

LO, V. 1984. Heuristic Algorithms for Task Assign-
ments in Distributed Systems. Proceedings of
the 4th International Conference on Distributed
Computing Systems, 30–39.

LO, V. 1989. Process Migration for Communication
Performance. IEEE Technical Committee on Op-
erating Systems Newsletter 3, 1, 28–30.

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

296 D. S. Milojičić et al.

LO, V. 1988. Algorithms for Task Assignment and
Contraction in Distributed Computing Systems.
Proceedings of the 1988 International Conference
on Parallel Processing, II, 239–244.

LOUBOUTIN, S. 1991. An Implementation of a Pro-
cess Migration Mechanism using Minix. Pro-
ceedings of 1991 European Autumn Conference,
Budapest, Hungary, 213–224.

LU, C., CHEN, A., AND LIU, J. 1987. Protocols for Re-
liable Process Migration. INFOCOM 1987, The
6th Annual Joint Conference of IEEE Computer
and Communication Societies.

LU, C. 1988. Process Migration in Distributed Sys-
tems. Ph.D. Thesis, Technical Report, University
of Illinois at Urbana-Champaign.

LUX, W., HAERTIG, H., AND KUEHNHAUSER, W. E. 1993.
Migrating Multi-Threaded, Shared Objects.
Proceedings of 26th Hawaii International Con-
ference on Systems Sciences, II, 642–649.

LUX, W. 1995. Adaptable Object Migration: Concept
and Implementation. Operating Systems Review
29, 2, 54–69.

MA, P. AND LEE, E. 1982. A Task Allocation Model for
Distributed Computing Systems. IEEE Transac-
tions on Computers, C-31, 1, 41–47.

MAGUIRE, G. AND SMITH, J. 1988. Process Migra-
tions: Effects on Scientific Computation. ACM
SIGPLAN Notices, 23, 2, 102–106.

MALAN, G., RASHID, R., GOLUB, D., AND BARON, R. 1991.
DOS as a Mach 3.0 Application. Proceedings
of the Second USENIX Mach Symposium, 27–
40.

MANDELBERG, K. AND SUNDERAM, V. 1988. Process
Migration in UNIX Networks. Proceedings of
USENIX Winter Conference, 357–363.

MEHRA, P. AND WAH, B. W. 1992. Physical Level Syn-
thetic Workload Generation for Load-Balancing
Experiments. Proceedings of the First Sympo-
sium on High Performance Distributed Comput-
ing, 208–217.

MILLER, B. AND PRESOTTO, D. 1981. XOS: an Operat-
ing System for the XTREE Architecture. Oper-
ating Systems Review, 2, 15, 21–32.

MILLER, B., PRESOTTO, D., AND POWELL, M. 1987. DE-
MOS/ MP: The Development of a Distributed Op-
erating System. Software-Practice and Experi-
ence 17, 4, 277–290.

MILOJIČIĆ, D. S., BREUGST, B., BUSSE, I., CAMPBELL, J.,
COVACI, S., FRIEDMAN, B., KOSAKA, K., LANGE, D.,
ONO, K., OSHIMA, M., THAM, C., VIRDHAGRISWARAN,
S., AND WHITE, J. 1998b. MASIF, The OMG Mo-
bile Agent System Interoperability Facility. Pro-
ceedings of the Second International Workshop
on Mobile Agents, pages 50–67. Also appeared
in Springer Journal on Personal Technologies, 2,
117–129, 1998.

MILOJIČIĆ, D. S., CHAUHAN, D., AND LAFORGE, W.
1998a. Mobile Objects and Agents (MOA), De-
sign, Implementation and Lessons Learned.
Proceedings of the 4th USENIX Conference on
Object-Oriented Technologies (COOTS), 179–

194. Also appeared in IEE Proceedings—
Distributed Systems Engineering, 5, 1–14, 1998.

MILOJIČIĆ, D., DOUGLIS, F., WHEELER, R. 1999. Mobil-
ity: Processes, Computers, and Agents. Addison-
Wesley Longman and ACM Press.

MILOJIČIĆ, D., GIESE, P., AND ZINT, W. 1993a. Expe-
riences with Load Distribution on Top of the
Mach Microkernel. Proceedings of the USENIX
Symposium on Experiences with Distributed and
Multiprocessor Systems.

MILOJIČIĆ, D., ZINT, W., DANGEL, A., AND GIESE, P.
1993b. Task Migration on the top of the Mach
Microkernel. Proceedings of the third USENIX
Mach Symposium, 273–290.fc

MILOJIČIĆ, D. 1993c. Load Distribution, Implemen-
tation for the Mach Microkernel. Ph.D. Thesis,
Technical Report, University of Kaiserslautern.
Also Vieweg, Wiesbaden, 1994.

MILOJIČIĆ, D., LANGERMAN, A., BLACK, D., SEARS, S.,
DOMINIJANNI, M., AND DEAN, D. 1997. Concur-
rency, a Case Study in Remote Tasking and Dis-
tributed IPC. IEEE Concurrency 5, 2, 39–49.

MIRCHANDANEY, R., TOWSLEY, D., AND STANKOVIC, J.
1989. Analysis of the Effects of Delays on Load
Sharing. IEEE Transactions on Computers 38,
11, 1513–1525.

MIRCHANDANEY, R., TOWSLEY, D., AND STANKOVIC, J.
1990. Adaptive Load Sharing in Heteroge-
neous Distributed Systems. Journal of Parallel
and Distributed Computing, 331–346.

MULLENDER, S. J., VAN ROSSUM, G., TANENBAUM, A.
S., VAN RENESSE, R., AND VAN STAVEREN, H.
1990. Amoeba—A Distributed Operating Sys-
tem for the 1990s. IEEE Computer 23, 5, 44–
53.

MUTKA, M. AND LIVNY, M. 1987. Scheduling Remote
Processing Capacity in a Workstation Processor
Bank Computing System. Proceedings of the 7th
International Conference on Distributed Com-
puting Systems, 2–7.

NELSON, M. N., AND OUSTERHOUT, J. K. 1988. Copy-
on-Write for Sprite. Proceedings of the Summer
1988 USENIX Conference, 187–201.

NELSON, M. N., WELCH, B. B., AND OUSTERHOUT, J. K.
1988. Caching in the Sprite Network File Sys-
tem. ACM Transaction on Computer Systems 6,
1, 134–54.

NELSON, R. AND SQUILLANTE, M. 1995. Stochastic
Analysis of Affinity Scheduling and Load Bal-
ancing in Parallel Processing Systems. IBM Re-
search Report RC 20145.

NI, L. M. AND HWANG, K. 1985. Optimal Load Bal-
ancing in a Multiple Processor System with
Many Job Classes. IEEE Transactions on Soft-
ware Engineering, SE-11, 5, 491–496.

NICHOLS, D. 1987. Using Idle Workstations in a
Shared Computing Environment. Proceedings of
the 11th Symposium on OS Principles, 5–12.

NICHOLS, D. 1990. Multiprocessing in a Network
of Workstations. Ph.D. Thesis, Technical Report
CMU-CS-90-107, Carnegie Mellon University.

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Process Migration 297

NUTTAL, M. 1994. Survey of Systems Providing Pro-
cess or Object Migration. Operating System Re-
view, 28, 4, 64–79.

OMG, 1996. Common Object Request Broker Archi-
tecture and Specification. Object Management
Group Document Number 96.03.04.

OUSTERHOUT, J., CHERENSON, A., DOUGLIS, F., NELSON,
M., AND WELCH, B. 1988. The Sprite Network
Operating System. IEEE Computer, 23–26.

OUSTERHOUT, J. 1994. TcL and the Tk Toolkit.
Addison-Wesley Longman.

PAINDAVEINE, Y. AND MILOJIČIĆ, D. 1996. Process v.
Task Migration. Proceedings of the 29th Annual
Hawaii International Conference on System Sci-
ences, 636–645.

PARTRIDGE, C. 1994. Gigabit Networking. Addison
Wesley.

PEINE, H. AND STOLPMANN, T. 1997. The Architecture
of the Ara Platform for Mobile Agents. Proceed-
ings of the First International Workshop on Mo-
bile Agents (MA’97). LNCS 1219, Springer Ver-
lag, 50–61.

PETRI, S. AND LANGENDORFER, H. 1995. Load Balanc-
ing and Fault Tolerance in Workstation Clusters
Migrating Groups of Communicating Processes.
Operating Systems Review 29 4, 25–36.

PHELAN, J. M. AND ARENDT, J. W. 1993. An OS/2
Personality on Mach. Proceedings of the third
USENIX Mach Symposium, 191–202.

PHILIPPE, L. 1993. Contribution à l’étude et la
réalisation d’un système d’exploitation à im-
age unique pour multicalculateur. Ph.D. Thesis,
Technical Report 308, Université de Franche-
comté.

PIKE, R., PRESOTTO, D., THOMPSON, K., AND TRICKEY, H.
1990. Plan 9 from Bell Labs. Proceedings of the
UKUUG Summer 1990 Conference, 1–9.

PLATFORM COMPUTING. 1996. LSF User’s and Admin-
istrator’s Guides, Version 2.2, Platform Comput-
ing Corporation.

POPEK, G., WALKER, B. J., CHOW, J., EDWARDS, D.,
KLINE, C., RUDISIN, G., AND THIEL, G. 1981. Lo-
cus: a Network-Transparent, High Reliability
Distributed System. Proceedings of the 8th Sym-
posium on Operating System Principles, 169–
177.

POPEK, G. AND WALKER, B. 1985. The Locus Dis-
tributed System Architecture. MIT Press.

POWELL, M. AND MILLER, B. 1983. Process Migra-
tion in DEMOS/MP. Proceedings of the 9th Sym-
posium on Operating Systems Principles, 110–
119.

PU, C., AUTREY, T., BLACK, A., CONSEL, C., COWAN, C., IN-
OUYE, J., KETHANA, L., WALPOLE, J., AND ZHANG, K.
1995. Optimistic Incremental Specialization.
Proceedings of the 15th Symposium on Operat-
ing Systems Principles, 314–324.

QUISQUATER, J.-J. AND DESMEDT, Y. G. 1991. Chinese
Lotto as an Exhaustive Code-Breaking Machine.
IEEE Computer 24, 11, 14–22.

RANGANATHAN, M., ACHARYA, A., SHARMA, S. D.,
AND SALTZ, J. 1997. Networkaware Mobile Pro-
grams. Proceedings of the USENIX 1997 Annual
Technical Conference, 91–103.

RASHID, R. AND ROBERTSON, G. 1981. Accent: a Com-
munication Oriented Network Operating Sys-
tem Kernel. Proceedings of the 8th Symposium
on Operating System Principles, 64–75.

RASHID, R. 1986. From RIG to Accent to Mach: The
Evolution of a Network Operating System. Pro-
ceedings of the ACM/IEEE Computer Society
Fall Joint Computer Conference, 1128–1137.

ROSENBERRY, W., KENNEY, D., AND FISHER, G. 1992.
Understanding DCE. O’Reilly & Associates, Inc.

ROTHERMEL, K., AND HOHL, F. 1998. Mobile Agents.
Proceedings of the Second International Work-
shop, MA’98, Springer Verlag.

ROUSH, E. T. 1995. The Freeze Free Algorithm
for process Migration. Ph.D. Thesis, Techni-
cal Report, University of Illinois at Urbana-
Champaign.

ROUSH, E. T. AND CAMPBELL, R. 1996. Fast Dynamic
Process Migration. Proceedings of the Interna-
tional Conference on Distributed Computing Sys-
tems, 637–645.

ROWE, L. AND BIRMAN, K. 1982. A Local Network
Based on the UNIX Operating System. IEEE
Transactions on Software Engineering, SE-8, 2,
137–146.

ROZIER, M. 1992. Chorus (Overview of the Chorus
Distributed Operating System). USENIX Work-
shop on Micro Kernels and Other Kernel Archi-
tectures, 39–70.

SCHILL, A. AND MOCK, M. 1993. DC++: Distributed
Object Oriented System Support on top of OSF
DCE. Distributed Systems Engineering 1, 2,
112–125.

SCHRIMPF, H. 1995. Migration of Processes, Files
and Virtual Devices in the MDX Operating Sys-
tem. Operating Systems Review 29, 2, 70–81.

SHAMIR, E. AND UPFAL, E. 1987. A Probabilistic Ap-
proach to the Load Sharing Problem in Dis-
tributed Systems. Journal of Parallel and Dis-
tributed Computing, 4, 5, 521–530.

SHAPIRO, M. 1986. Structure and Encapsulation
in Distributed Systems: The PROXY Princi-
ple. Proceedings of the 6th International Con-
ference on Distributed Computing Systems, 198–
204.

SHAPIRO, M., DICKMAN, P., AND PLAINFOSSÉ, D. 1992.
Robust, Distributed References and Acyclic
Garbage Collection. Proceedings of the Sympo-
sium on Principles of Distributed Computing,
135–146.

SHAPIRO, M., GAUTRON, P., AND MOSSERI, L. 1989. Per-
sistence and Migration for C++ Objects. Pro-
ceedings of the ECOOP 1989-European Confer-
ence on Object-Oriented Programming.

SHIVARATRI, N. G. AND KRUEGER, P. 1990. Two Adap-
tive Location Policies for Global Scheduling Al-
gorithms. Proceedings of the 10th International

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

298 D. S. Milojičić et al.

Conference on Distributed Computing Systems,
502–509.

SHIVARATRI, N., KRUEGER, P., AND SINGHAL, M. 1992.
Load Distributing for Locally Distributed Sys-
tems. IEEE Computer, 33–44.

SHOHAM, Y. 1997. An Overview of Agent-oriented
Programming. in J. M. Bradshaw, editor, Soft-
ware Agents, 271–290. MIT Press.

SHOCH, J. AND HUPP, J. 1982. The Worm Programs—
Early Experience with Distributed Computing.
Communications of the ACM 25, 3, 172–180.

SHUB, C. 1990. Native Code Process-Originated Mi-
gration in a Heterogeneous Environment. Pro-
ceedings of the 18th ACM Annual Computer Sci-
ence Conference, 266–270.

SINGHAL, M. AND SHIVARATRI, N. G. 1994. Advanced
Concepts in Operating Systems. McGraw-Hill.

SINHA, P., MAEKAWA, M., SHIMUZU, K., JIA, X., ASHIHARA,
UTSUNOMIYA, N., PARK, AND NAKANO, H. 1991.
The Galaxy Distributed Operating System.
IEEE Computer 24, 8, 34–40.

SKORDOS, P. 1995. Parallel Simulation of Subsonic
Fluid Dynamics on a Cluster of Workstations.
Proceedings of the Fourth IEEE International
Symposium on High Performance Distributed
Computing.

SMITH, J. M. 1988. A Survey of Process Migration
Mechanisms. Operating Systems Review 22, 3,
28–40.

SMITH, J. M. AND IOANNIDIS, J. 1989. Implement-
ing Remote fork() with Checkpoint-Restart.
IEEE Technical Committee on Operating Sys-
tems Newsletter 3, 1, 15–19.

SMITH, P. AND HUTCHINSON, N. 1998. Heterogeneous
Process Migration: The Tui System. Software-
Practice and Experience 28, 6, 611–639.

SOH, J. AND THOMAS, V. 1987. Process Migration for
Load Balancing in Distributed Systems. TEN-
CON, 888–892.

SQUILLANTE, M. S. AND NELSON, R. D. 1991. Analysis
of Task Migration in Shared-Memory Multipro-
cessor Scheduling. Proceedings of the ACM SIG-
METRICS Conference 19, 1, 143–155.

STANKOVIC, J. A. 1984. Simulation of the three Adap-
tive Decentralized Controlled Job Scheduling al-
gorithms. Computer Networks, 199–217.

STEENSGAARD, B. AND JUL, E. 1995. Object and Na-
tive Code Thread Mobility. Proceedings of the
15th Symposium on Operating Systems Princi-
ples, 68–78.

STEKETEE, C., ZHU, W., AND MOSELEY, P. 1994. Imple-
mentation of Process Migration in Amoeba. Pro-
ceedings of the 14th International Conference on
Distributed Computer Systems, 194–203.

STONE, H. 1978. Critical Load Factors in Two-
Processor Distributed Systems. IEEE Transac-
tions on Software Engineering, SE-4, 3, 254–258.

STONE, H. S. AND BOKHARI, S. H. 1978. Control of Dis-
tributed Processes. IEEE Computer 11, 7, 97–
106.

STUMM, M. 1988. The Design and Implementation
of a Decentralized Scheduling Facility for a
Workstation Cluster. Proceedings of the Sec-
ond Conference on Computer Workstations, 12–
22.

SUN MICROSYSTEMS. 1998. JiniTM Software Simpli-
fies Network Computing. http://www.sun.com/
980713/jini/feature.jhtml.

SVENSSON, A. 1990. History, an Intelligent Load
Sharing Filter. Proceedings of the 10th Interna-
tional Conference on Distributed Computing Sys-
tems, 546–553.

SWANSON, M., STOLLER, L., CRITCHLOW, T., AND KESSLER,
R. 1993. The Design of the Schizophrenic
Workstation System. Proceedings of the third
USENIX Mach Symposium, 291–306.

TANENBAUM, A. S., RENESSE, R. VAN, STAVEREN, H. VAN.,
SHARP, G. J., MULLENDER, S. J., JANSEN, A. J.,
AND VAN ROSSUM, G. 1990. Experiences with the
Amoeba Distributed Operating System. Com-
munications of the ACM, 33, 12, 46–63.

TANENBAUM, A. 1992. Modern Operating Systems.
Prentice Hall, Englewood Cliffs, New Jersey.

TARDO, J. AND VALENTE, L. 1996. Mobile Agent
Security and Telescript. Proceedings of
COMPCON’96, 52–63.

TEODOSIU, D. 2000. End-to-End Fault Containment
in Scalable Shared-Memory Multiprocessors.
Ph.D. Thesis, Technical Report, Stanford Univer-
sity.

THEIMER, M. H. AND HAYES, B. 1991. Heterogeneous
Process Migration by Recompilation. Proceed-
ings of the 11th International Conference on Dis-
tributed Computer Systems, 18–25.

THEIMER, M. AND LANTZ, K. 1988. Finding Idle Ma-
chines in a Workstation-Based Distributed Sys-
tem. IEEE Transactions on Software Engineer-
ing, SE-15, 11, 1444–1458.

THEIMER, M., LANTZ, K., AND CHERITON, D. 1985. Pre-
emptable Remote Execution Facilities for the V
System. Proceedings of the 10th ACM Sympo-
sium on OS Principles, 2–12.

TRACEY, K. M. 1991. Processor Sharing for Coopera-
tive Multi-task Applications. Ph.D. Thesis, Tech-
nical Report, Department of Electrical Engineer-
ing, Notre Dame, Indiana.

TRITSCHER, S. AND BEMMERL, T. 1992. Seitenorien-
tierte Prozessmigration als Basis fuer Dynamis-
chen Lastausgleich. GI/ITG Pars Mitteilungen,
no 9, 58–62.

TSCHUDIN, C. 1997. The Messenger Environment
M0 - A condensed description. In Mobile Object
Systems: Towards the Programmable Internet,
LNCS 1222, Springer Verlag, 149–156.

VAN DIJK, G. J. W. AND VAN GILS, M. J. 1992. Efficient
process migration in the EMPS multiprocessor
system. Proceedings 6th International Parallel
Processing Symposium, 58–66.

VAN RENESSE, R., BIRMAN, K. P., AND MAFFEIS, S. 1996.
Horus: A Flexible Group Communication Sys-
tem. Communication of the ACM 39, 4, 76–85.

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Process Migration 299

VASWANI, R. AND ZAHORJAN, J. 1991. The implications
of Cache Affinity on Processor Scheduling for
Multiprogrammed Shared Memory Multiproces-
sors. Proceedings of the Thirteenth Symposium
on Operating Systems Principles, 26–40.

VENKATESH, R. AND DATTATREYA, G. R. 1990. Adap-
tive Optimal Load Balancing of Loosely Cou-
pled Processors with Arbitrary Service Time
Distributions. Proceedings of the 1990 Interna-
tional Conference on Parallel Processing, I, 22–
25.

VIGNA, G. 1998. Mobile Agents Security, LNCS
1419, Springer Verlag.

VITEK, I., SERRANO, M., AND THANOS, D. 1997. Secu-
rity and Communication in Mobile Object Sys-
tems. In Mobile Object Systems: Towards the
Programmable Internet, LNCS 1222, Springer
Verlag, 177–200.

WALKER, B., POPEK, G., ENGLISH, R., KLINE, C., AND

THIEL, G. 1983. The LOCUS Distributed Oper-
ating System. Proceedings of the 9th Symposium
on Operating Systems Principles 17, 5, 49–70.

WALKER, B. J. AND MATHEWS, R. M. 1989. Process Mi-
gration in AIX’s Transparent Computing Facil-
ity (TCF). IEEE Technical Committee on Oper-
ating Systems Newsletter, 3, 1, (1) 5–7.

WANG, Y.-T. AND MORRIS, R. J. T. 1985. Load Sharing
in Distributed Systems. IEEE Transactions on
Computers, C-34, 3, 204–217.

WANG, C.-J., KRUEGER, P., AND LIU, M. T. 1993. In-
telligent Job Selection for Distributed Schedul-
ing. Proceedings of the 13th International Con-
ference on Distributed Computing Systems, 288–
295.

WELCH, B. B. AND OUSTERHOUT, J. K. 1988. Pseudo-
Devices: User-Level Extensions to the Sprite File
System. Proceedings of the USENIX Summer
Conference, 7–49.

WELCH, B. 1990. Naming, State Management and
User-Level Extensions in the Sprite Distributed
File System. Ph.D. Thesis, Technical Report
UCB/CSD 90/567, CSD (EECS), University of
California, Berkeley.

WHITE, J. 1997. Telescript Technology: An Intro-
duction to the Language. White Paper, General
Magic, Inc., Sunnyvale, CA. Appeared in Brad-
shaw, J., Software Agents, AAAI/MIT Press.

WHITE, J. E., HELGESON, S., AND STEEDMAN, D. A. 1997.
System and Method for Distributed Computa-
tion Based upon the Movement, Execution, and
Interaction of Processes in a Network. United
States Patent no. 5603031.

WIECEK, C. A. 1992. A Model and Prototype of VMS
Using the Mach 3.0 Kernel. Proceedings of the
USENIX Workshop on Micro-Kernels and Other
Kernel Architectures, 187–204.

WONG, R., WALSH, T., AND PACIOREK, N. 1997. Con-
cordia: An Infrastructure for Collaborating
Mobile Agents. Proceedings of the First Interna-
tional Workshop on Mobile Agents, LNCS 1219,
Springer Verlag, 86–97.

XU, J. AND HWANG, K. 1990. Heuristic Methods for
Dynamic Load Balancing in a Message-Passing
Supercomputer. Proceedings of the Supercom-
puting’90, 888–897.

ZAJCEW, R., ROY, P., BLACK, D., PEAK, C., GUEDES,
P., KEMP, B., LOVERSO, J., LEIBENSPERGER, M.,
BARNETT, M., RABII, F., AND NETTERWALA, D. 1993.
An OSF/1 UNIX for Massively Parallel Multi-
computers. Proceedings of the Winter USENIX
Conference, 449–468.

ZAYAS, E. 1987a. Attacking the Process Migration
Bottleneck. Proceedings of the 11th Symposium
on Operating Systems Principles, 13–24.

ZAYAS, E. 1987b. The Use of Copy-on-Reference in
a Process Migration System. Ph.D. Thesis, Tech-
nical Report CMU-CS-87-121, Carnegie Mellon
University.

ZHOU, D. 1987. A Trace-Driven Simulation Study of
Dynamic Load Balancing. Ph.D. Thesis, Techni-
cal Report UCB/CSD 87/305, CSD (EECS), Uni-
versity of California, Berkeley.

ZHOU, S. AND FERRARI, D. 1987. An Experimen-
tal Study of Load Balancing Performance. Pro-
ceedings of the 7th IEEE International Confer-
ence on Distributed Computing Systems, 490–
497.

ZHOU, S. AND FERRARI, D. 1988. A Trace-Driven Sim-
ulation Study of Dynamic Load Balancing. IEEE
Transactions on Software Engineering 14, 9,
1327–1341.

ZHOU, S., ZHENG, X., WANG, J., AND DELISLE, P. 1994.
Utopia: A Load Sharing Facility for Large,
Heterogeneous Distributed Computer Systems.
Software-Practice and Experience.

ZHU, W. 1992. The Development of an Environment
to Study Load Balancing Algorithms, Process
migration and load data collection. Ph.D. The-
sis, Technical Report, University of New South
Wales.

ZHU, W., STEKETEE, C., AND MUILWIJK, B. 1995.
Load Balancing and Workstation Autonomy on
Amoeba. Australian Computer Science Commu-
nications (ACSC’95) 17, 1, 588–597.

Received October 1996; revised December 1998 and July 1999; accepted August 1999

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

