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Abstract 
 
The explosive growth in Internet traffic has made it critical to look for ways to accommodate the 
increasing number of users while preventing excessive delays, congestion, and widespread 
blackouts. For the past several years web browsing and most of the web related traffic have 
generated a large amount of Internet traffic [1]. Insufficient bandwidth causing high latency is 
one of the problems faced by the web users [2]. Several techniques have been developed to meet 
the requirements for a faster and efficient Internet. Push Pull caching is one of them. 
 
1  Introduction 
 
User requests on the Web are often served by a single machine, which can easily become a 
bottleneck. Even worse, that server represents a single point of failure—if it is down, access to 
the information is lost. 
 
To preserve the usability of the World Wide Web, the following issues need to be addressed at 
the server level: 
 

1. Document retrieval latency times must be decreased. 
2. Document availability must be increased, by distributing resources among several 

servers. 
3. The amount of duplicate data transfer must be reduced—certainly an important issue for 

anyone paying for network usage. 
4. Network access must be redistributed to avoid peak hours. 

 
A popular and widely accepted approach to address at least some of these problems is the use of 
caching proxies. Others can be solved by an approach that combines caching and replication. 
 
2  Traditional Caching techniques 
 
The first approach to caching on the Web was the establishment of a client local disk and/or in-
memory cache in Web browsers. It was soon realized that the notion of memory hierarchy could 
be extended to consider Web servers as another external level of memory. Because the 
effectiveness of caching is dependent on the number of times the same document is requested, it 
was clear that the gains realized would noticeably increase if the cache were shared among 
several users.  
 



  

- 2 - 

These facts led to the development of a second approach of caching now in use on the Web; that 
of caching proxies. A proxy acts as a middleware between the users’ machine and the outside 
world. From the users’ point of view, the proxy acts like a Web server: each request is sent to 
and answered by the proxy. From the servers’ point of view the proxy acts like a client: it 
forwards requests to the original web server. The proxy is therefore an ideal place to a second 
level of cache. It is shared among several users, so there is an increased probability of data being 
accessed more than once. It also confers the significant benefit of being able to act as a firewall 
between the local machines and the outside world [2]. 
 
3  Push/Pull Caching 
 
It is necessary to differentiate between Push and pull caching before we go any further. Pull 
caching is client initiated whereas the Push caching is Web Server Initiated. 
 
The push caching has rapidly gained considerable popularity since its emergence in April 1996; 
at the time PointCast announced its ‘PointCast Network’, which soon became extremely popular. 
The push caching was created to alleviate problems facing users of the Internet, e.g. information 
overload and low bandwidth. 
 
As shown in figure 1, in the push-based data delivery, the server tracks all proxies that have 
requested objects. If a web page has been modified, it notifies each proxy and when the client 
requests for the file, it is served from the proxy’s cache instead of the request going directly to 
the server. This improves network utilization. 
 
There are 2 kinds of notifications between the server and the proxy [3] 

1. Indicate that the object has been changed (Invalidate) 
2. Send new version of the object (Update) 

 
The kind of notification that has to be selected by the Server depends on the rate at which the 
modifications occur. The Update notification can be used for frequently changing objects 
whereas invalidation can be used for rest. 
 
 
 
 
 
          Send (push) new content 
 
    Request Document 
 
   Return Document 

Figure 1: Push technology - A content provider (server) sends new information to proxy and 
client is notified about it. 

 

SERVER PROXY CLIENT 
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Push based systems are used in applications where information feeds as stock quotes and sport 
tickets, electronic newsletters, mailing lists, and weather information systems, cable TV on the 
Internet [4] 
 
Pull-based data delivery is also known as demand data delivery. As shown in Figure 2, a proxy 
explicitly requests data items from the server [4] when the client requests for a document. The 
proxy instead of the request going directly to the server form the client can service subsequent 
requests for the same file by clients. In the pull-based approach, the proxy is entirely responsible 
for maintaining consistency. The proxy maintains data constancy by setting a TTL on the 
document cached and this copy is served until the TTL expires [3]. 

 
 
 

 
 
    Get Document 
       Get Document 
 
  Return Document   Return Document 
  

   Get Document 
 
 

 Return Document 
 
 
Figure 2: Pull Technology [1] 

 
3.1  Advantages of the Push approach 
 

1. The push technology can reduce the burden of acquiring data for tasks in which there is a 
large information flow. Push technologies improve efficiency by downloading 
information to the users’ system in a scheduled fashion so it can be rapidly viewed, and 
thereby eliminating the risk of the user being served stale data. 

 
2. Pushing alerts to the user (e.g. in the form of e-mail or the change itself), improves the 

efficiency of Web-based time-sensitive information distribution (such as stock quotes or 
trouble tickets in a technical support system). 

 
3. Automatic downloading of software upgrades and fixes is a way to deliver software 

faster, and at the same time, reduce costs. 
 

4. The push technology enables intelligent information filtering based on personalized user 
profiles describing required information needs. 

 

SERVER PROXY CLIENT 
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3.2  Push Vs Pull 
 
In the push approach, the server repetitively transmits (multicasts) the data to the proxy services. 
In such a system, data items are periodically sent from the server to the proxy service without 
requiring a specific request from the clients. In contrast, the pull-based approach explicitly 
requests data items by sending messages to the web server [6]. Pull based access has the 
advantage of allowing proxy service to play a more active role in obtaining the data, rather than 
relying solely on push enabled web servers.  
 
4  Prototype Design 
 
The objective of our project is to develop a middleware that resides between conventional 
browsers and caching enabled servers.  In order to achieve this, we have simulated the Internet.  
The browser was build to receive all kinds of files, including htm, and non-htm, from the servers.  
We introduce the proxy service that resides between client and the web servers.  The assumption 
here is that the proxy service, residing within the LAN, is serving large number of local clients 
and all the traffic for clients pass through this service.  The unique feature of our proxy service is 
that it transforms into a web server when it caches data in its local web space, hence, reducing 
traffic in WAN and greatly improves QoS on the Internet.  Thus, our design of this prototype 
revolves largely around reducing network traffic while maintaining data consistency.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 3:Push Pull Model 
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4.1  Architectural Overview 
 

This architecture is based on push and pull model of caching, which allows server to store data in 
proxy services and allow clients and proxy services to request for data from the web servers.  
Figure 3 gives an overview of push and pull model.  There are three basic components to our 
prototype design: Client, Proxy Service, and Web Server.  Figure 3 depicts many clients 
accessing www.cnn.com from CNN’s web server through different state proxy services.  Clients 
in the figure simulate individual users in the LAN.  Proxy Services provides services to the 
requests made by LAN Clients.  Web Servers are the servers where the file being requested 
resides, for ex. www.cnn.com resides at CNN Web Server; this server can also be an ftp web 
server with large data storage.  As illustrated, no clients directly access the file from web servers, 
instead they are routed through proxy services, which can provide them with the cache copy of 
the requested page or a fresh copy of the page from the web servers. 
 
4.2  Components of the Prototype 
 
Figure 4 describes components of our pull-push prototype model. These are divided into three 
levels.  Following is a detail description of each of the levels. 

 
 

 
Figure 4: Component Model of Pull-push prototype 
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Level 1: 
 
This level is where the local user is surfing the web or accessing database from the network. 
There can be 1 to n number of such clients accessing files from the network.  There is also a 
fixed storage space allocated to individual clients for caching.  In our implementation, we have 
made this dynamically configurable.  Clients use pull-based model to cache its data from the web 
servers.  We have implemented cache manager at this level for caching and removing unused 
cached files from the storage.  Least Recently Used (LRU) algorithm is used to maintain cache 
size and remove last used files from the storage space.  In addition to cache manager, we have 
prefetch algorithm that allows Clients to cache files in advance based on user access record.   
 
Level 2: 
 
This level acts as a middleware between clients and web servers.  There can be 1 to n number of 
such services serving its LAN clients.  Proxy service in level 2 processes requests made by 
clients at level 1.  Proxy service also act as a client to the level 3 Web Servers, which is 
discussed shortly.  Proxy services also incorporate DNS, which provide clients with IP address 
for the requested server address. As in client cache, there is also a fixed storage space allocated 
for caching at this level.  Unlike level 1 cache, which is pull-based, cache in proxy services can 
be either a push or pull-based.  Cache model is push-based if the web server initiates the cache at 
this level. Pull-based model is used if the cache is initiated and maintained by the proxy service.  
To maintain cache consistency, cache size, and remove the least used files from the storage 
space, proxy service uses pull cache manager.  We implemented Least Frequently Used (LFU) 
algorithm at this level for removal of files that are accessed the least number of times.  In 
summary, at this level the page requests from the clients are handled and the requested file(s) are 
sent to the clients.  The file send to the client can be either cache copy or file from the web server 
depending on the availability of the page requested and cache validity if the page/document was 
available in the cache. 
 
Level 3: 
 
Web Server at this level is the main site where the pages requested by the client reside. There can 
also be 1 to n number of web servers each with a number of pages/files. In the World Wide Web, 
the clients directly access this web server.  In our prototype, the proxy services requests the page 
on behalf of the clients.  Hence, proxy service in level 2 becomes client which requests pages 
from the web server.  Web server uses the push-based model for caching.  As its name implies, 
push-caching is the pushing of the requested page to the proxy service in our implementation. 
Web Server makes the decision on when to push-cache and where to push-cache based on the 
history and frequency of the page requested.  After initial push-caching, the cache copy at 
individual proxy services are maintained by periodically sending the updated copy of the page to 
all the services that have been push-cached.  Multicasting is the technique used for updating the 
cache from the web server to reduce bandwidth requirements.  Multicasting is to send updated 
page to a group of proxy services that web server originally pushed its cached copy to.  This 
requires web server to keep track of where it did push-cached and maintain the table for 
multicasting.  Multicasting has less load on the bandwidth but more computation in part of the 
web server.     
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In the following section, we give example for pull-caching and push-caching which shows the 
role of each level in page request. 
 
5  Operational Procedures 
 
We have the following class files that simulate our pull-push cache strategy: 
  
Browse.java        : simulates client interaction at level 1§.  
WebService.java : simulates proxy service at level 2§. 
Server.java     : simulates Web Server at level 3§. 
 
§ Levels here corresponds to the levels in figure 4. 
 
Start up procedure: 

1. Web Server – “Java Server 90” will start Web Server at port 90. 
2. Proxy Services – “Java WebServer” will start proxy service at default port 80.  
3. Client – “Java Browse” will start the browser that will allow the user to request for 

pages/files. 
 
Values for proxy service cache size, client cache size, and network bandwidth for the simulation 
are entered in the configuration GUI from the menu. 
 
5.1  Pull-based cache example 
 
Once start up procedure is complete, Web Server continuously listens to requests made by proxy 
services at port 90.  Mean while, there are two threads running in the proxy service that listens 
for client requests.  One of the threads is to handle DNS requests and one if for page requests.  
Following steps describes the flow of our program when client initiates the request for a 
page/file. 
 

1. Client requests IP address for the web domain from DNS. 
2. DNS receives the request from the client and returns the corresponding IP address for the 

requested domain name from its lookup table. 
3. Client sends IP address and the requested file name to the proxy service. 
4. The following scenario is handled by the proxy service: 

• If the file is not frequently used then, it will return the page from the Web Server 
to the client without caching it.   

• If the file is requested frequently, proxy service will cache the file to its storage 
space and return the cache copy to the client.   

• If the file is already in the cache and is valid then it will return the cache copy to 
the client.   

• If the file is already cache and not valid then it will update the cache by requesting 
updated page from the Web Server and then return the cache copy to the Client.﻿ 
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5. Client receives the page/file from the proxy service and caches the page every time to its 
storage space.  Client keeps the record of all the files that user requested and prefetches 
the page [17] based on the previous request behavior.﻿ 

 
﻿  Due to limitation on the cache size, LFU and LRU algorithms are used to remove least 
frequently accessed cache files from the storage space in the Web Services and the Client 
respectively. 
 
5.2  Push-based cache example 
 
Once start up procedure is complete, Web Server continuously listens to requests made by proxy 
services at port 90.  Mean while, there are two threads running in the proxy service that listens 
for client requests.  One of the threads is to handle DNS requests and one if for page requests.  
Following steps describes the flow of our program when client initiates the request for a 
page/file. 

 
1. Client requests IP address for the web domain from DNS. 
2. DNS receives the request from the client and returns the corresponding IP address for the 

requested domain name from its lookup table. 
3. Client sends IP address and the requested file name to the proxy service. 
4. Proxy service send page request to the Web Server. ﻿ 
5. Web server receives the request and keeps the record of the request in the two lists that 

are file specific.  One list is to keep tract of how many times that page/file is requested 
and by whom it was requested.  Second list is for the push-caching when the hit counter 
goes above threshold value for the file.  So, 

• If the hit count for the page requested is below its threshold value then it will send 
the page without doing push caching.   

• If the hit count goes above the threshold value, web server will add the file to the 
push list and sends first two bytes of the response to the proxy service that will 
instruct proxy service to cache the file to its storage space.  Proxy service will 
send response back saying that it has cached the file to its storage space.  Next 
time the client requests the cached page/file, proxy service will return the cached 
page.﻿  After the file has been pushed to the proxy services, it will multicast 
periodically to the proxy services to update the cached copy.  Web Server will 
send a delete cache request to the proxy service to delete its cached copy if that 
cache is not accessed.   

6. Client receives the page requested from the proxy service which might be cache copy or 
non-cached copy. 

 
﻿  Due to limitation on the cache size, LFU and LRU algorithms are used to remove least 
frequently accessed cache files from the storage space in the Web Services and the Client 
respectively. 
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6  Features: 
 
The final utility of the caching technique should be to impose fewer overheads on the network 
and take fewer resources, while at the same time making more data available to the users. Thus 
the caching system has many desirable features, which include transparency, scalability, 
efficiency, stability, and simplicity. A few of these features is displayed in our simulation model 
and we discuss them here: 
 
Dynamic Adaptability: The nature of the Internet is dynamic and it is desirable to adapt to these 
changes. For efficient utilization of network resources only those contents that have been 
frequently accessed should be cached. This is essential to achieve optimal performance. With 
regard to the dynamic adaptability, caching is better adapted than replication because replication 
copies whole server data or parts of server data. However, most of the contents replicated are not 
frequently accessed: this leads to delays and wastes network resources. 
 
Transparency: The web browser need not have knowledge about the existence of the proxy 
service and this is how proxies work. The only effect that is perceived by the user should be a 
faster access to data and higher data availability. This is a stumbling block for replication servers 
because they need explicit redirection mechanism to locate nearby servers. In fact, it has been 
shown many times that the replicated server chosen is farther away than the original server. 
 
Document retrieval latency: Access latency is an important quality of techniques that are 
designed to improve document retrieval latencies. Research has shown that there is a definite 
pattern of browsing; latency is reduced by fetching frequently accessed documents from nearby 
proxy caches instead of the web server where the data resides. Once these documents are cached, 
the latency for clients being served from that proxy server drops dramatically. 
 
Network Utilization: Cached copies that are served from the proxy service need not be 
downloaded from the web server while the copy is still valid. There are several ways in which 
such cache validation can be made without affecting retrieval latency. This not only improves 
document latency but also improves scalability for the web server, which has to handle fewer 
requests. In contrast, replication often times leads to wastage of network resources due to poor 
location of these replication servers. The inability of such servers to quickly adapt to the 
changing geographic access pattern of the Internet will result in longer delays and inefficient 
usage of network resources in replicating data on remote servers. 
 
7  Measured Characteristics 
 
A simulation project of this nature is impossible to manipulate to reflect the actual browsing 
behavior on the Internet. Such an interpretation could be dangerously misleading and imprecise 
in its nature. The pull-push caching scheme that we have implemented resembles real-world 
implementation closely. The actual difference arises from the fact that we have a single level of 
cache mediation, whereas in the real-world we might have a hierarchy of proxy services. A lot of 
data have been collected at such proxy servers to observe how caching improves latency and 
help reduce the network utilization. A study that was carried out appeared in a technical report 
published by USENIX [18].  
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The data was collected from proxy caches located all across the world and for a twenty-one days 
of access traces from each proxy, totaling 23,700 clients and 47.4 million accesses. Some of the 
proxies that were used are listed: 
 

1. The University of Hannover, Germany (HAN)  
2. The Nation Wide Caching Project of Korea (KOR)  
3. Digital Equipment Corporation (DEC)  
4. Grant MacEwan Community College, Alberta, Canada (GMCC)  
5. A major American University that has chosen to remain anonymous (AU)  
6. Utrecht University, the Netherlands (UU)  
7. The National Laboratory for Applied Network Research (NLANR) 

 
The most relevant data collected is summarized here in the form of graphs: 
 
 

 
Figure 5: Cache hit rate for each trace as a function of cache size 

 
Here was can observe that approximately 10 GB of disk space is usually enough to give as fill 
coverage of the cache hits that can be expected. Depending on the proxy service profiles and the 
number of clients that each of these services were able to serve it was observed that on average 
30-40% of the requests result in a cache hit. This is a general performance efficiency that has 
been observed with caching proxies. 
 
The other relevant study that was conducted was the efficiency of caching itself. A study was 
conducted to determine how many times the cache consistency protocols [19] were able to 
effectively deliver valid data. The following trend was observed: 
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Figure 6: Portion of requests resulting in consistency misses 
 
The height of the ‘valid miss’ bar is an indication of the efficiency of cache coherence protocols. 
The invalid miss bar indicates that the document had to be retrieved again due to TTL expiry or 
due to a if-modified-since reference made by the coherence protocol. In conclusion we can see 
that valid misses account for only 2% and 7% of all references.  
 
 
8  Conclusion 
 
Over the past decade the number of static web pages has grown exponentially and is estimated to 
be more than 7 billion static pages [16]. Having fully exploited the hardware resources that are 
available to us, it has become crucial to organize the World Wide Web to achieve the best 
performance and minimize resource utilization. One effective strategy that we can employ as is 
the provisioning of web resources through caching. By organizing and efficiently managing 
these resources, we can minimize document retrieval latencies and maximize network resources. 
In this paper we gave an overview of such an implementation, which shows that web caching is 
indeed an effective technique to improve the overall situation. However, there are improvements 
that can be made such as group caching [15], transparent proxies, improved data consistency, 
security etc. The future of the Internet will be shaped by the development and deployment of 
stable caching systems that can effectively co-ordinate and serve users so as to make browsing 
an informative and enjoyable experience for the future generation. 
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