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Abstract 
 

Transmission Control Protocol (TCP) performs well in a wired network.  However, in the 

field of mobile ad-hoc networks, significant work has been performed to enhance TCP 

performance.  This is because transport connections set up in a mobile ad-hoc network 

face many problems.  These problems occur due to the nature of a wireless ad-hoc 

network. Wireless networks are prone to losses due to mobility and transmission errors.  

These lead to high bit error rates. Mobility of nodes causes frequent re-computation of 

routes and network partitions.  Bandwidth in a wireless channel is limited and varies 

during transmission due to mobility and obstacles.  Packet losses due to transmission 

errors are very common in wireless networks.  Running TCP over such connections 

leads to low throughput since TCP treats lost or delayed acknowledgements as 

congestion.  

 

In this paper, I discuss reasons for low TCP performance in ad-hoc networks and 

describe a technique put forth to provide a better connection protocol in a wireless ad-

hoc network and overcome the limitations of TCP.  Specifically, I discuss one TCP 

enhancement technique: ATCP.  This technique suggests a solution to improve the 

performance of the transport connections in a wireless ad-hoc network.  ATCP is 

implemented as a thin layer between the existing TCP and IP layers. 

 



 
Introduction 

 

Wireless ad-hoc networks are gaining increasing popularity and indications are that 

these will play an important role in the future.  Ad hoc networks are formed by collection 

of “peer” hosts which may be mobile.  These nodes could be laptops mounted on 

vehicles or carried by people; or simple autonomous sensors.  The nodes are capable of 

communicating with each other without help from a fixed infrastructure.  The connections 

between nodes can change on a continual and arbitrary basis.  Nodes within each 

other’s radio range communicate directly via wireless links, while those that are far apart 

use other nodes as relays in a multi-hop routing style.  These types of networks are also 

very useful in situations where temporary network connectivity is needed, such as 

disaster relief areas or in a battle zone. 

Ad-hoc networks; therefore, have certain characteristics that are different from traditional 

computer networks.  Firstly, there is no fixed infrastructure.  The mobile hosts 

themselves serve as peer-to-peer relays since there are no dedicated routers.  

Secondly, hosts in the network are mobile.  From the perspective of end-to-end 

connections, not only are the end hosts mobile, but the “routers” are also mobile.  

Thirdly, the communication channel is shared and lastly, these networks are 

characterized by bandwidth that is not only scarce but also varies significantly during 

transmission due to mobility or some obstacles.  

 

TCP is a connection-oriented transport layer protocol that provides reliable, in-order 

delivery of data.  This protocol is designed to perform well in wired networks where 

packet losses are mainly due to congestion.  Research has shown that the performance 

of these TCP control mechanisms is insufficient for a wireless network.  This is because 

wireless networks are characterized by losses due to mobility and transmission errors 

due to high bit error rates.  In mobile ad-hoc networks, node connectivity changes over 

time.  There are a couple of effects of this change in node connectivity.  Nodes may 

have to re-compute routes to some of the destinations and it is likely that the ad-hoc 



network may be temporarily partitioned due to node mobility.  This change in node 

connectivity can cause throughput to drop to very low levels.  

 

In the next section, we discuss the characteristics of a mobile ad hoc network and what 

problems it causes with TCP.  The section following that discusses an enhancement 

technique to TCP.  Several schemes have been proposed to alleviate the effects of non-

congestion-related losses on TCP performance over networks that have wireless links. 

These schemes choose from a variety of mechanisms, such as local retransmissions, 

split-TCP connections, and forward error correction, to improve end-to-end throughput.  

Recent work has also focused on developing MAC layer protocols and routing protocols 

for these types of networks.  In this paper, however, we pay attention to a transport layer 

protocol – ATCP.  We will discuss the design of this protocol and provide pros and cons 

of this approach.  We then succinctly compare a few other enhancement techniques. 

Finally, I provide the summary and conclusions. 

 

 
Effects of a mobile ad hoc network on TCP 
 
Let us first consider the negative effects of each of the characteristics of a mobile ad-hoc 

network on TCP throughput: 
 

High Bit Error Rate 

Bit errors lead to packet corruption, which result in TCP data segments or 

acknowledgements getting lost.  The TCP sender is expecting the acknowledgement to 

arrive within a certain amount of time (retransmit timeout – RTO).  If the 

acknowledgement does not arrive within this time, the sender retransmits the segment, 

exponentially backs off its retransmit timer for the next transmission, and invokes 

congestion control.  Repeated errors will cause the congestion window to remain small 

resulting in low throughput. 

 

Route Re-computations 



The network layer at the sender tries to compute new routes when old routes are no 

longer available.  There are a few different ad hoc routing protocols – DSDV, DSR and 

AODV.  We will not get into details of these routing protocols, since this paper 

concentrates at the transport layer.  However, brief mentions to these protocols will be 

made as necessary.  The route computations are done via route discovery messages in 

DSR (Dynamic Source Routing) while in DSDV (destination-sequenced distance-

vectoring) table exchanges are triggered that eventually result in a new route being 

found.  It is possible that discovering a new route may take much longer than the RTO at 

the sender. As a result, the TCP sender times out, retransmits the packet, and invokes 

congestion control. Thus, when a new route is discovered, the throughput will continue 

to be small for some time because TCP at the sender grows its congestion window using 

the slow start and congestion avoidance algorithm. This is not the desired behavior 

because the TCP connection will be very inefficient. If we imagine a network in which 

route computations are done frequently (due to high node mobility), the TCP connection 

will never get an opportunity to transmit at the maximum negotiated rate. This means 

that the congestion window will always be significantly smaller than the advertised 

window size from the receiver. 

 

 

Network Partitions 

It is possible that the ad hoc network may occasionally get partitioned for several 

seconds at a time. If the sender and the receiver of a TCP connection are in different 

partitions, all the sender’s packets get dropped by the network resulting in the sender 

invoking congestion control. If the partition lasts for a significant amount of time (several 

times longer than the RTO), the situation gets even worse because of a phenomena 

called serial timeouts. A serial timeout is a condition wherein multiple consecutive 

retransmissions of the same segment are transmitted to the receiver while it is 

disconnected from the sender. All these retransmissions are, thus, lost.  Since the 

retransmission timer at the sender is doubled with each unsuccessful retransmission 

attempt (until it reaches 64 s), several consecutive failures can lead to inactivity lasting 

one or two minutes even when the sender and receiver get reconnected.  



 

The picture below [1] shows a network getting partitioned at time T+5, causing the 

source and destination nodes to lie in different partitions. 

 

 
 

 

Multipath Routing 

Some routing protocols, such as temporally-ordered routing algorithm (TORA) maintain 

multiple routes between source destination pairs, the purpose of which is to minimize the 

frequency of route re-computation. This sometimes results, undesirably, in a significant 

number of out-of-sequence packets arriving at the receiver. The effect of this is that the 

receiver generates duplicate acknowledgments which cause the sender (on receipt of 

three duplicate acknowledgements) to invoke congestion control.  

 

 

ATCP (Ad hoc TCP) 
 
ATCP is implemented as a thin layer between IP and TCP.  It does not modify TCP itself 

to maintain compatibility with the standard TCP/IP suite.  They carefully consider what 

congestion window means in ad hoc networks - The congestion window in TCP imposes 

an acceptable data rate for a particular connection based on congestion information that 

is derived from timeout events as well as from duplicate acknowledgements.  



 

In an ad-hoc network, since routes change during the lifetime of a connection, the 

relationship between the CWND size and the tolerable data rate for the route is lost. In 

other words, the CWND as computed for one route may be too large for a newer route, 

resulting in network congestion when the sender transmits at the full rate allowed by the 

old CWND.  This approach utilizes network layer feedback (from intermediate hops) to 

put the TCP sender into either a persist state, congestion control state or retransmit 

state.  Thus, when the network is partitioned, the TCP sender is put into persist mode so 

that it does not needlessly transmit and retransmit packets.  Alternatively, when packets 

are lost due to error, as opposed to congestion, the TCP sender retransmits packets 

without invoking congestion control.  Finally, when the network is truly congested, the 

TCP sender invokes congestion control normally.  ATCP listens to the network state 

information provided by ECN (explicit congestion notification) messages and by ICMP 

“Destination Unreachable” messages and then puts TCP at the sender into the 

appropriate state. Thus, on receipt of a “Destination Unreachable” message, TCP state 

at the sender is frozen (the sender enters the persist state) until a new route is found 

ensuring that the sender does not invoke congestion control. 

 

When the TCP connection is initially established, ATCP at the sender is in the “normal” 

state and does nothing. If the connection from the sender to the receiver is lossy, 

segments may be lost or may arrive out-of-order. The receiver generates duplicate 

ACKs in response. ATCP, in its “normal state”, counts the number of duplicate ACKs 

received for any segment and forwards the first two to TCP. On receiving the third 

duplicate ACK, it is not forwarded and TCP is put into “persist” mode. Similarly, when 

RTO expires, ATCP moves TCP to “persist” mode. Hence, TCP sender does not invoke 

congestion control because both these events correspond to lossy links wherein both 

data segments and ACKs could be lost. Then ATCP enters “loss” state and retransmits 

all the unacknowledged segments from the TCP’s buffer, reusing the TCP’s timers. 

Finally, when a new ACK arrives ATCP forwards it to TCP, which removes it from 

“persist” mode and ATCP returns to “normal” state. 

 



 
 

When the network gets congested, the sender receives ECNs. Then ATCP moves to 

“congested state” and does not interfere with TCP’s congestion control behavior. If 

ATCP is in “loss” state, ATCP removes TCP from “persist” mode. ATCP ignores all the 

duplicate ACKs and RTO expirations. Once TCP transmits a new segment, ATCP 

returns to “normal” state. 

 

Node mobility could result in either route re-computation or temporary network partition 

that result in the generation of ICMP “destination unreachable” messages. When the 

sender receives this message, ATCP (in “normal”, “congested” or “loss” state) puts TCP 

into “persist” mode, sets TCP’s CWND to one segment and itself into “disconnected” 

state. Setting CWND to one segment ensures that TCP probes the network to determine 

the correct value of CWND using the new route. In “persist” mode, TCP periodically 

generates “probe” packets, with the interval between them equal to RTO. When the 

receiver gets connected to the network, it responds to the “probe” packets with an ACK 

(or a data packet). This removes TCP from “persist” mode and ATCP goes back to 

“normal” state. 

 

 
 
 



Benefits 
 

The benefits of the ATCP solution include the fact that the TCP/IP suite is unmodified.  

ATCP is not visible to TCP; this allows for interoperability between nodes running ATCP 

and those without.   
 
 
Drawbacks 
 
ATCP heavily depends on ECN messages to recognize a congested network.  There is 

a possibility that an ECN sent by the receiver will not reach the sender. 

 

Since ATCP allows for interoperability with nodes not running ATCP, nodes without 

ATCP will see all the usual problems of running standard TCP over a mobile ad hoc 

network. 

 

Another issue is that, when ATCP is in “loss” state, all unacknowledged packets in 

TCP’s buffers are retransmitted unnecessarily. Probably the receiver did not receive only 

one segment and it suffices if only that particular segment is re-transmitted. In an ad-hoc 

network, each mobile node is a router and the queue size of the mobile nodes is limited. 

Hence retransmitting all the packets in the TCP’s buffer could also lead to unnecessary 

congestion in the network.  

 

Another drawback is that it consumes more power of all the intermediate nodes 

unnecessarily. 

 

 

Possible Solutions 
 
To handle scenarios when ECNs do not make it to the sender, a possible solution in [3] 

has been proposed.  This is an enhancement that times-out only a certain number of 



times and later gives control back to TCP.  A threshold is maintained for this purpose. 

This threshold needs to be fixed through experimentation. Another possible 

enhancement is that when ATCP is in the “loss” state, only the lost packet be re-

transmitted. 

 

 
Other related TCP enhancements 
 
Earlier research work in this area concentrated mostly on wireless networks with a fixed 

infrastructure and did not directly apply to ad hoc networks.  However, recently, some 

research on improving TCP performance over mobile ad-hoc networks has also gained 

some momentum. Most of these works depend on notification or feedback from the 

network or a lower layer. They differ in how to obtain feedback and how to respond 

accordingly. Some of the other relevant enhancements include Explicit Link Failure 

Notification (ELFN), TCP-Feedback (TCP-F) and fixed RTO.  We quickly introduce ELFN 

and TCP-F and provide some general thoughts on these schemes. 

 

ELFN is described in [5].  This technique is also based on feedback.  The main objective 

is to provide the TCP sender with information about link and route failures so it does not 

treat these failures similar to failures due to congestion.  ELFN is based upon the DSR 

routing protocol.  DSR is an on-demand routing protocol where the sender finds a route 

to the destination by flooding route request packets.  To implement this technique the 

route failure message of DSR was modified to carry a payload similar to the ICMP 

message - "Host Unreachable".  When a TCP sender receives an ELFN, it disables its 

retransmission timers and enters a stand-by mode.  In the stand-by mode, the TCP 

sender periodically sends a packet to probe the network to see if a route has been 

established.  When a new route is found, TCP leaves the stand-by mode, restores its 

transmission timers and resumes transmission as normal. 

 

TCP-F is described in [4].  TCP-F relies on the network layer at intermediate hosts to 

detect route failures due to mobility of downstream neighbors along the route. A sender 



can be in an active state or a snooze state. In the active state, transport is controlled by 

the normal TCP. As soon as an intermediate host detects a link failure, it explicitly sends 

a route failure notification (RFN) packet to the sender and records this event. After 

receiving the RFN, the sender goes into the snooze state by stopping sending further 

packets and freezing the values of state variables such as retransmission timer and 

congestion window size. The sender remains in the snooze state until it is notified of the 

restoration of the route through a route reestablishment notification (RRN) packet from 

an intermediate host. Then it enters the active state again.   

 

Critics of this method mention that in TCP-F the source continues using the old 

congestion window size for the new route.  This is a problem because the congestion 

window size route specific.  It also does not consider the effects of congestion, out-of-

order packets and bit error. 
 
 
Conclusions and Discussions 
 

Ad hoc networks have characteristics like high BER, frequent route re-computations, 

network partitions and multi-path routing that lead to bad TCP performance over these 

networks.  This is mainly because TCP is a transport layer protocol designed for wire 

line networks.  Older techniques that addressed issues of TCP performance over 

wireless networks did so by keeping the TCP sender unaware of the loss characteristics 

of the wireless link, and thus preventing those from affecting the congestion control 

mechanism of TCP.  However, such techniques cannot be deployed over ad hoc 

networks because they require infrastructure support.  They also did not address the 

issue of losses due to route failures.   

 

Recent work suggests various transport layer mechanisms to solve the problems caused 

due to mobility. Some of the techniques for improving TCP performance over multi-hop 

mobile ad-hoc networks include explicit link failure notification technique (ELFN) and 



TCP-Feedback.  In this paper, I focused on a different technique however, called ATCP, 

which is implemented as a thin layer between IP and TCP.  

It is easy to conclude that many components of TCP are not suitable for the 

characteristics of ad-hoc networks. Various reasons are discussed.  

ATCP addresses many of the issues TCP faces when deployed over ad-hoc networks, 

and thus shows considerable performance improvement. 
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