
Space/Time Trade-offs in 
Hash Coding with 
Allowable Errors 

BURTON H. BLOOM 
Computer Usage Company, Newton Upper Falls, Mass. 

In this paper trade-offs among certain computational factors 
in hash coding are analyzed. The paradigm problem con- 
sidered is that of testing a series of messages one-by-one 
for membership in a given set of messages. Two new hash- 
coding methods are examined and compared with a par- 
ticular conventional hash-coding method. The computational 
factors considered are the size of the hash area (space), the 
time required to identify a message as a nonmember of the 
given set (reject time), and an allowable error frequency. 

The new methods are intended to reduce the amount of 
space required to contain the hash-coded information from 
that associated with conventional methods. The reduction in 
space is accomplished by exploiting the possibility that a 
small fraction of errors of commission may be tolerable in 
some applications, in particular, applications in which a large 
amount of data is involved and a core resident hash area is 
consequently not feasible using conventional methods. 

In such applications, it is envisaged that overall performance 
could be improved by using a smaller core resident hash area 
in conjunction with the new methods and, when necessary, by 
using some secondary and perhaps time-consuming test to 
"catch" the small fraction of errors associated with the new 
methods. An example is discussed which illustrates possible 
areas of application for the new methods. 

Analysis of the paradigm problem demonstrates that al- 
lowing a small number of test messages to be falsely identified 
as members of the given set will permit a much smaller hash 
area to be used without increasing reject time. 

KEY WORDS AND PHRASES: hash coding, hash addressing, scatter storage, 
searching, storage layout, retrieval trade-ofFs, retrieval efficiency, storage 
efficiency 
CR CATEGORIES: 3.73, 3.74, 3.79 

I n t r o d u c t i o n  

In conventional hash coding, a hash area is organized 
into cells, and an iterative pseudorandom computational 
process is used to generate, from the given set of messages, 
hash addresses of empty cells into which the messages 
are then stored. Messages are tested by a similar process of 

Work on this paper was in part performed while the author was 
affiliated with Computer Corporation of America, Cambridge, 
Massachusetts. 

iteratively generating hash addresses of cells. The  con- 
tents of these cells are then compared with the test mes- 
sages. A match indicates the test message is a member of 
the set; an empty cell indicates the opposite. The reader is 
assumed to be familiar with this and similar conventional 
hash-coding methods [1, 2, 3]. 

The  new hash-coding methods to be introduced are 
suggested for applications in which the great majori ty of 
messages to be tested will not belong to the given set. For  
these applications, it is appropriate to consider as a unit  of 
time (called reject time) the average t ime required to 
classify a test message as a nonmember of the given set. 
Furthermore,  since the contents of a cell can, in general, 
be recognized as not matching a test message by  examining 
only par t  of the message, an appropriate assumption will 
be introduced concerning the t ime required to access in- 
dividual bits of the hash area. 

In  addition to the two computational factors, reject 
t ime and space (i.e. hash area size), this paper considers a 
third computational factor, allowable fraction of errors. 
I t  will be shown tha t  allowing a small number  of test 
messages to be falsely identified as members of the given 
set will permit a much smaller hash area to be used without 
increasing the reject time. In  some practical applications, 
this reduction in hash area size may make the difference 
between maintaining the hash area in core, where it can 
be processed quickly, or having to put  it on a slow access 
bulk storage device such as a disk. 

Two methods of reducing hash area size by  allowing 
errors will be introduced. The trade-off between hash area 
size and fraction of allowable errors will be analyzed for 
each method, as well as their resulting space/t ime trade- 
offs. 

The reader should note tha t  the new methods are not  
intended as alternatives to conventional hash-coding meth- 
ods in any application area in which hash coding is cur- 
rently used (e.g. symbol table management [1]). Rather,  
they are intended to make it possible to exploit the bene- 
fits of hash-coding techniques in certain areas in which con- 
ventional error-free methods suffer from a need for hash 
areas too large to be core resident and consequently found 
to be infeasible. In  order to gain substantial reductions in 
hash area size, without introducing excessive reject times, 
the error-free performance associated with conventional 
methods is sacrificed. In  application areas where error-free 
performance is a necessity, these new methods are not 
applicable. 

A S a m p l e  A p p l i c a t i o n  

The type of application in which allowing errors is 
expected to permit a useful reduction in hash area size 
may  be characterized as follows. Suppose a program must 
perform a computational process for a large number  of 
distinct eases. Further,  suppose tha t  for a great majori ty 
of these cases the process is very simple, but  for a small 

422 Communications of the ACM Volume 13 / Number 7 / July, 1970 



difficult-to-identify minori ty the process is very compli- 
cated. Then, it  might  be useful to hash code identifiers 
for the minority set of cases so tha t  each case to be proc- 
essed could be more easily tested for membership in the 
minori ty set. I f  a particular case is rejected, as would hap- 
pen most  of the time, the simple process would be used. I f  a 
case is not rejected, it could then be subjected to a follow-up 
test  to determine if it is actually a member  of the minori ty 
set or an "allowable error." By allowing errors of this 
kind, the hash area may  be made small enough for this 
procedure to be practical. 

As one example of this type  of application, consider a 
program for automatic  hyphenation.  Let  us assume tha t  a 
few simple rules could properly hyphenate  90 percent of 
all English words, but  a dictionary lookup would be re- 
quired for the other 10 percent. Suppose this dictionary is 
too big to fit in available core memory  and is therefore 
kept on a disk. By allowing a few words to be falsely 
identified as belonging to the 10 percent, a hash area for 
the 10 percent might be made small enough to fit in core. 
When an "allowable error" occurred, the test  word would 
not be found on the disk, and the simple rules could be 
used to hyphenate  it. Needless disk access would be a 
rare occurrence with a frequency related to the size of the 
core resident hash area. This sample application will be 
analyzed in detail at  the end of this paper. 

A C o n v e n t i o n a l  H a s h - C o d i n g  M e t h o d  

As a point of departure, we will review a conventional 
hash-coding method where no errors are permitted.  Assume 
we are storing a set of n messages, each b bits long. First 
we organize the hash area into h cells of b + 1 bits each, 
h > n. The  extra bit  in each cell is used as a flag to in- 
dicate whether or not  the cell is empty.  For  this purpose, 
the message is t reated as a b + 1 bit  object with the first 
bit  always set to 1. The  storing procedure is then as fol- 
lows: 

Generate  a pseudorandom number  called a hash 
address, say k, (0 ~ /c ~ h - 1 ) in a manner  which de- 
pends on the message under consideration. Tben  
check the kth cell to see if it is empty.  I f  so, store the 
message in the kth cell. I f  not, continue to generate 
additional hash addresses until an empty  cell is found, 
into which the message is then stored. 

The  method of testing a new message for membership is 
similar to tha t  of storing a message. A sequence of hash 
addresses is generated, using the same random number  
generation technique as above, until one of the following 
occurs. 

1. A cell is found which has stored in it the identical 
message as tha t  being tested. In  this case, the new message 
belongs to the set and is said to be accepted. 

2. An empty  cell is found. In  this case the new message 
does not belong to the set and is said to be rejected. 

T w o  H a s h - C o d i n g  M e t h o d s  w i t h  Al lowable  Errors 

Method 1 is derived in a natural  way from the con- 
ventional error-free method. The hash area is organ- 
ized into cells as before, but  the cells are smaller, con- 
taining a code instead of the entire message. The code 
is generated from the message, and its size depends on the 
permissible fraction of errors. Intuit ively,  one can see tha t  
the cell size should increase as the allowable fraction of 
errors gets smaller. When the fraction of errors is suf- 
ficiently small (approximately 2--b), the cells will be large 
enough to contain the entire message itself, thereby re- 
sulting in no errors. I f  P represents the allowable fraction 
of errors, it is assumed tha t  1 >> P >> 2 -b. 

Having decided on the size of cell, say e < b, chosen so 
tha t  the expected fraction of errors will be close to and 
smaller than  P,  the hash area is organized into cells of c 
bits each. Then each message is coded into a c-bit code 
(not necessarily unique), and these codes are stored and 
tested in a manner  similar to tha t  used in the conventional 
error-free method. As before, the first bit  of every code is 
set to 1. Since the codes are not unique, as were the original 
messages, errors of commission may  arise. 

h~Iethod 2 comp]etely gets away from the conven- 
tional concept of organizing the hash area into cells. The  
hash area is considered as N individual addressable bits, 
with addresses 0 through N - 1. I t  is assumed tha t  
all bits in the hash area are first set to 0. Next,  each mes- 
sage in the set to be stored is hash coded into a number  of 
distinct bit  addresses, say a l ,  a2, . . . ,  ad. Finally, all d 
bits addressed by  al through ad are set to 1. 

To test  a new message a sequence of d bit  addresses, say 
P ! t 

a l ,  a2, • . .  , ad, is generated in the same manner  as for 
storing a message. I f  all d bits are 1, the new message is 
accepted. I f  any of these bits is zero, the message is re- 
jected. 

Intuit ively,  it can be seen tha t  up to a point of diminish- 
ing returns, the larger d is, the smaller will be the expected 
fraction of errors. This point of diminishing returns occurs 
when increasing d by  1 causes the fraction of 1 bits in 
the hash field to grow too large. The increased a priori 
likelihood of each bit  accessed being a 1 outweighs the 
effect of adding the additional bit  to be tested when half 
the bits in the hash field are 1 and half are 0, as will be 
shown later in this paper. Consequently, for any given 
hash field size N, there is a minimum possible expected 
fraction of errors, and method 2 therefore precludes the 
error-free performance possible by  modifying method 1 for 
a very small allowable fraction of errors 

C o m p u t a t i o n a l  Factors  

Allowable Fraction of Errors. This factor will be an- 
alyzed with respect to how the size of the hash area can 
be reduced by  permit t ing a few messages to be falsely 
identified as members  of a given set of messages. We repre- 

Volume 13 / Number 7 / July, 1970 Communications of the ACM 423 



sen~ the fraction of errors by 

P = (na - n ) / ( n t  - n ) ,  (1) 

where: n~ is the number of messages in the message space 
that  would be accepted as members of the given set; n is 
the number of messages in the given set; and n t  is the total 
number of distinct messages in the message space. 

Space .  The basic space factor is the number of bits, N, 
in the hash area. By analyzing the effect on the time factor 
of changing the value of N, a suitable normalized measure 
of the space factor will be introduced later. Using this 
normalized measure will separate the effects on time due to 
the number of messages in the given message set and the 
allowable fraction of errors from the effects on time due to 
the size of the hash area. This separation of effects will 
permit a clearer picture of the space/time trade-offs to be 
presented. 

T i m e .  The time factor is the average time required to 
reject a message as a member of the given set. In  measuring 
this factor, the unit used is the time required to calculate a 
single bit address in the hash area, to access the addressed 
bit, and to make an appropriate test of the bit 's contents. 

For the conventional hash-coding method, the test is a 
comparison of the addressed bit in the hash area with the 
corresponding bit of the message. For method 1, the test is 
a comparison of the hash area bit with a corresponding bit 
of a code derived from the message. For method 2, the 
test is simply to determine the contents of the hash area 
bit; e.g. is it 1? For the analysis to follow, it is assumed that  
the unit of time is the same for all three methods and for 

1 
all bits in the hash area. 

The time factor measured in these units is called the 
normalized time measure, and the space/time trade-offs 
will be analyzed with respect to this factor. The normalized 
time measure is 

T = mean (t~), (2) 
miEa 

where: M is the given set of messages; a is the set of 
messages identified (correctly or falsely) as members of M; 

1 The reader should note that this is a very strong assumption, 
since the time to generate the successive hash-coded bit addresses 
used in method 2 is assumed to be the same as the time to suc- 
cessively increment the single hash-coded cell address used in 
method 1. Furthermore, conventional computers are able to access 
memory and make comparisons in multibit chunks, i.e. bytes or 
words. The size of a chunk varies from one machine to another. In 
order to establish the desired mathematical comparisons, some 
fixed unit of accessibility and comparability is required, and it is 
simplest to use a single bit as this unit. If the reader wishes to 
analyze the comparative performance of the two methods for a 
machine with a multibit unit and wishes to include the effects of 
multiple hash codings per message, this can readily be done by 
following a similar method of analysis to the one used here for 
single-bit unit. ~ 

g is the set of messages identified as nonmembers of M; 
mi is the ith message; and ti is the time required to reject 
the ith message. 

A n a l y s i s  o f  t h e  C o n v e n t i o n a l  H a s h - C o d i n g  M e t h o d  

The hash area has N bits and is organized into h cells 
of b + 1 bits each, of which n cells are filled with the n 
messages in M. Let ¢ represent the fraction of cells which 
are empty. Then 

h - -  n N - -  n . (b  + 1) 
4' - h - N (3)  

Solving for N yields 

N - n - (b  A- 1) (4) 

Let us now calculate the normalized time measure, T. 
T represents the expected number of bits to be tested during 
a typical rejection procedure. T also equals the expected 
number of bits to be tested after a nonempty cell has been 
accessed and abandoned. That  is, if a hash-addressed cell 
contains a message other than the message to be tested, on 
the average this will be discovered after, say, E bits are 
tested. Then the procedure, in effect, starts over again. 

Since ~b represents the fraction of cells which are empty, 
then the probability of accessing a nonempty cell is 
(1 - ~b), and the probability of accessing an empty cell is 
~. If  an nonempty cell is accessed, the expected number of 
bits to be tested is E + T, since E represents the expected 
number of bits to be tested in rejecting the nonempty 
accessed cell, and T represents the expected number of 
bits to be tested when the procedure is repeated. If  an 
empty cell is accessed, then only one bit is tested to dis- 
cover this fact. Therefore 

T = (1 -- ¢ ) ( E  + T) + ~. (5) 

In  order to calculate a value for E, we note that  the con- 
ditional probability that  the first x bits of a cell match 
those of a message to be tested, and the (x + 1)th bit 
does not match, given that  the cell contains a message other 
than the message to be tested, is (½)~. (The reader should 
remember that  the first bit of a message always matches 
the first bit of a nonempty cell, and consequently the 
exponent is x rather than x + 1, as would otherwise be the 
case. ) Thus, for b >> 1, the expected value of E is approxi- 
mated by the following sum: 

(x + 1)-(½)x = 3. (6) 
z ~ l  

Therefore 

T = (3/¢) - 2, (7) 

N = n . ( b  + 1) -T +-----~ (8) 
T - - l "  

E q u a t i o n  (8) represents the space/time trade-off for the 
conventional hash-coding method. 

424 Communications o f t h e  ACM Volume 13 / Number 7 / July, 1970 



A n a l y s i s  o f  M e t h o d  1 

The hash area contains N '  bits and is organized into cells 
of c bits each. In  a manner  analogous to the conventional 
method, we establish the following equations: 

~b' = N '  - -  n . c  ~- the fraction of empty  cells. (9) 
N '  

N' - n.c (10) 
1 - ¢ "  

T '  = (3 /¢ ' )  - 2. (11) 

N '  T'  A- 2 (12) 
= n ' c ' T ' - -  1" 

I t  remains to derive relations for the corresponding ex- 
pected fraction of errors, P ' ,  in terms of c and T '  and in 
terms of N '  and T'. 

A message to be tested which is not a member  of the set 
of messages, M, will be erroneously accepted as a member  
of M when: 

(1) one of the sequence of hash addresses generated 
from the test message contains the same code, say C, 
as that  generated from the test  message; and 

(2) tha t  such a hash address is generated earlier in the 
sequence than the hash address of some empty  cell. 

The expected fraction of test  messages, not members of 
M, which are erroneously accepted is then 

P'  = (½)°-'/~b'. (13) 

Therefore 

TL_ c = - - log2P '  + 1 -t- logs -4- 2 (14) 
3 

n. - - l o g s  + 1 d- logs 2 -4- 2 - -  T ' - -  1" (15) 

Equation (15) represents the trade-offs among all three 
computational  factors for method 1. 

A n a l y s i s  o f  M e t h o d  2 

Let  ¢" represent the expected proportion of bits in the 
hash area of N"  bits still set to 0 after n messages have been 
hash stored, where d is the number  of distinct bits set to 
1 for each message in the given set. 

¢" = (1 -- d/N" ) ' .  (16) 

A message not in the given set will be falsely accepted if all 
d bits tested are l 's .  The expected fraction of test  messages, 
not in M, which result in such errors is then 

P "  = (1 -- ¢-)d. (17) 

Assuming d << N" ,  as is certainly the case, we take the 
log base 2 of both sides of eq. (16) and obtain approxi- 
mately  

logs ¢" = log~ (1 - d/N")n.logs e 

= --n. (d/N").logs e.  

Therefore 

N" p,, ) log2 e 
= n. (--log2 logs ¢"-logs (1 - -  ¢") " (19) 

We now derive a relationship for the normalized t ime 
measure T". x bits will be tested when the first x -- 1 bits 
tested are 1, and the xth tested bit is 0. This occurs with 
probabili ty ¢"-  (1 - ¢")*-1. For P "  << 1 and d >> 1, the 
approximate  value of T" (the expected value of the num- 
ber of bits tested for each rejected test  message) is then 

T" = ~ x.~". (1 - ~,,)~-1 = 1/~". (20) 

Therefore 

logs e . (21) 
N "  = n. ( - l o g s  P " ) "  logs (1 /T") . logs  (1 -- l IT")  

Equation (21) represents the trade-offs among the three 
computational factors for method 2. 

C o m p a r i s o n  o f  M e t h o d s  1 a n d  2 

To compare the relative space/ t ime trade-offs between 
methods 1 and 2, it will be useful to introduce a normalized 
space measure, 

S = g / ( - n . l o g s  P). (22) 

S is normalized to eliminate the influence of the size of the 
given set of messages, n, and the allowable fraction of 
errors, P. Substituting the relation (22) into eqs. (15) 
and (21) gives 

( S'  - T '  -4- 2 1 d- log2 , (23) 
T ' - I  1+ - - i ~  / 

S" = logs e (24) 
logs (1/T") . log2 (1 -- 1/T")" 

We note tha t  S '  > (T '  --? 2 ) / ( T '  -- 1), and 

lim S'  - T '  + 2 (25) 
~'-~0 T '  - -  1" 

The superiority of method 2 over method 1 can be seen 
directly by examining Figure 1, which is a graph of the 
S versus T curves for eq. (24) and the lower bound limit 
equation, eq. (25).2 The curves in Figure 1 illustrate the 
space/ t ime trade-offs for both methods assuming a fixed 
value for the expected fraction of errors, P,  and a fixed 
number  of messages, n. 

The reader should note that the superiority of method 2 over 
method 1 depends on the assumption of constant time of address- 
ing, accessing, and testing bits in the hash area. This result may 
no longer hold if the effects of accessing multibit "chunks" and of 
calculating additional hash-coded bit addresses are taken into 
a c c o u n t .  

Volume 13 / Number 7 / July, 1970 Communicat ions  of  the ACM 425 



For  method 2, an increase in T" corresponds to a de- 
crease in ¢", the fraction of 0 bits in the hash field after all 
n messages have been hash coded. To maintain a fixed 
value of P,  this decrease in ~b" corresponds to an increase in 
the number of bits tested per message, d, and an appro- 
priate adjustment to the hash area size, N" .  S" is directly 
proportional to the hash area size N",  as shown in eq. (22). 
As T" increases, and correspondingly, ¢" decreases, S and 
N" decrease until a point of diminishing returns is reached. 
This point  of diminishing returns is illustrated in Figure 1 
where S" is smallest for 1 / T "  = 1 -- 1 / T " ,  i.e. for T" = 2. 

I01 
81 

61 

• ~ 

'1 

i 
N 

] , 
METHOD2 ~ 

i i  i , i 

I i  
I 

i :  ' !  

I , 
I 

i 

\ 

[ L I L  

MiTHOD i I 
%.l I I 

] \  
i 

t ~  

L 

\ 
\ ,  

I.I 
1.01 1.02 1.05 I.I 1.2 1,3 1,4 1.5 2 3 4 6 7 8 II 

T - N O R M A L I Z E D  T I M E  M E A S U R E  

FIG. i 

Since ¢" = 1 / T " ,  this means that  the smallest hash area 
for which method 2 can be used occurs when half the bits 
are 1 and half are 0. The value of S" corresponding to 
T" = 2 is S" = log2e = 1.47. 

Analysis of Hyphenation Sample Application 

In  this section we will calculate a nominal size for a hash 
area for solving the sample automated hyphenation prob- 
lem. Since we have already concluded that  method 2 is 
bet ter  than method 1, we will compare the conventional 
method with method 2. 

Let  us assume that  there are about 500,000 words to be 
hyphenated by the program and that  450,000 of these words 

TABLE I. SUMmARr OF EXPECTED PERFORMANCE OF HYPHEN- 

ATION A P P L I C A T I O N  OF H A S H  C O D I N G  U S I N G  M E T H O D  2 FOR 

V A R I O U S  V A L U E S  OF A L L O W A B L E  F R A C T I O N  OF E R R O R S  

P = Allowable Fraction N = Size of  Hash Area Dish 
o] Errors (Bits) A ccesses Saved 

½ 72,800 45.0% 
145,600 67.5% 
218,400 78.7% 
291,200 84.4% 
364,000 87.2% 
509,800 88.5% 

can be hyphenated by application of a few simple rules. 
The other 50,000 words require reference to a dictionary. I t  
is reasonable to estimate tha t  at least 19 bits would, on the 
average, be required to represent each of these 50,000 words 
using a conventional hash-coding method. I f  we assume 
that  a t ime factor of T = 4 is acceptable, we find from eq. 
(9) tha t  the hash area would be 2,000,000 bits in size. This 
might very well  be too large for a practical core contained 
hash area. By using method 2 with an allowable error fre- 
quency of, say, P = 1/16, and using the smallest possible 
hash area by having T = 2, we see from eq. (22) tha t  the 
problem can be solved with a hash area of less than 300,000 
bits, a size which would very likely be suitable for a core 
hash area. 

With a choice for P of 1/16, an access would be required 
to the disk resident dictionary for approximately 50,000 
+ 450,000/16 ~ 78,000 of the 500,000 words to be hyphen- 
ated, i.e. for approximately 16 percent of the cases. This 
constitutes a reduction of 84 percent in the number of disk 
accesses from those required in a typical conventional ap- 
proach using a completely disk resident hash area and 
dictionary. 

Table I shows how alternative choices for the value of P 
affect the size of the core resident hash area and the per- 
centage of disk accesses saved as compared to the "typical  
conventional approach." 

Acknowledgments. The author wishes to express his 
thanks to Mr. Oliver Selfridge for his many helpful sug- 
gestions in the writing of this paper. 

R E C E I V E D  O C T O B E R ,  1969; R E V I S E D  A P R I L ,  1970  

REFERENCES 

1. BATSON, A. The organization of symbol tables. Comm. ACM 8, 
2 (Feb. 1965), 111-112. 

2. MAURER, W. D. An improved hash code for scatter storage. 
Comm. ACM 11, 1 (Jan. 1968), 35--38. 

3. MORRIS, R. Scatter storage techniques. Comm. ACM 11, 1 
(Jan. 1968), 38-44. 

426 C o m m u n i c a t i o n s  of  t h e  ACM Volume 13 / Number  7 / July,,•1970 


