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Greening Colocation Data Centers
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Abstract—The massive energy consumption of data centers worldwide has resulted in a large carbon footprint, raising serious
concerns to sustainable IT initiatives and attracting a great amount of research attention. Nonetheless, the current efforts to
date, despite encouraging, have been primarily centered around owner-operated data centers (e.g., Google data center), leaving
out another major segment of data center industry — colocation data centers — much less explored. As a major hindrance to
carbon efficiency desired by the operator, colocation suffers from “split incentive”: tenants may not be willing to manage their
servers for carbon efficiency. In this paper, we aim at minimizing the carbon footprint of geo-distributed colocation data centers,
while ensuring that the operator’s cost meets a long-term budget constraint. We overcome the “split incentive” hurdle by devising
a novel online carbon-aware incentive mechanism, called GreenColo, in which tenants voluntarily bid for energy reduction at
self-determined prices and will receive financial rewards if their bids are accepted at runtime. Using trace based simulation we
show that GreenColo results in a carbon footprint fairly close (23% vs 18%) to the optimal offline solution with future information,
while being able to satisfy the colocation operator’s long-term budget constraint. We demonstrate the effectiveness of GreenColo
in practical scenarios via both simulation studies and scaled-down prototype experiments. Our results show that GreenColo can
reduce the carbon footprint by up to 24% without incurring any additional cost for the colocation operator (compared to the
no-incentive baseline case), while tenants receive financial rewards for “free” without violating service level agreement.

Index Terms—Carbon reduction, Colocation, Cost budgeting, Data center energy management
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1 INTRODUCTION

To support the exploding IT demands across all sec-
tors, data centers are growing in both numbers and
sizes, thereby consuming a tremendous amount of
electricity and raising serious environmental concerns
[1]. Despite the recent encouraging progress in re-
ducing data center carbon footprint (referred to as
“greenness” in this paper) [2]–[6], the existing efforts
have been primarily focused on owner-operated data
centers (e.g., Google and Amazon), while leaving a
critical segment of data center industry — multi-
tenant colocation data centers – much less explored.

Colocation data centers, often simply referred to as
“colocation” or “colo”, provide reliable power and
cooling to multiple tenants who individually man-
age their own servers in the shared space. While it
varies among different operators, a widely-adopted
pricing model is based on power subscription that
charges tenants for how much peak power they re-
serve [7], [8]. Some colocations also charge tenants
based on their metered energy usage as additional
costs. Nonetheless, the current pricing models do not
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reflect the time-varying carbon efficiency resulting
from temporal changes in fuel mixes or motivate
tenants to save energy at the appropriate times (e.g.,
when electricity is carbon-intensive), thus resulting in
an unnecessarily high carbon footprint for colocations
and hindering the sustainability of the data center
industry.

Why does colocation need attention? Colocations
are an important segment of the global data center
industry, consuming nearly as five times energy as
Google-type data centers all combined together [9].
It provides an appealing alternative for companies
that do not want to build self-owned data centers or
completely outsource their computing needs to public
cloud providers [10]. Colocations also serve as physi-
cal homes for many private clouds serving individual
enterprises, and public cloud services offered by many
medium-scale cloud providers (e.g., Salesforce, Box)
that are not “large” enough to build megascale data
centers on their own. Even the largest IT companies
house some of their servers in colocations: Microsoft
and Google have recently leased large capacities in
colocations for service expansion [11], while 25% of
Apple’s servers are housed in colocations [12]. By one
estimate [13], there are more than 1,400 colocation
data centers in the U.S., and the combined peak power
demand by such facilities in New York areas are
estimated to exceed 400MW (comparable to Google’s
global data center power demand). Importantly, the
recent surge of edge computing has placed an increas-
ingly high demand on data centers in the edge of the
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Internet, where service providers house a distributed
set of servers in third-party colocations [14].

Why is greening colocations important? Despite
its critical role in the data center industry and fast-
growing pace, colocations have been lagging far be-
hind owner-operated data centers in terms of sustain-
ability. Greenpeace, a global environmental organiza-
tion, has included large colocations in its latest data
center sustainability report “Clicking Clean” released
in 2017, indicating very poor energy and carbon ef-
ficiencies of colocations [10]. Indeed, because of the
massive global footprint, colocations bear a tremen-
dous impact on building a greener Internet, even
greater impact than today’s sustainability leaders like
Google [10]. On the other hand, colocation operators
are well motivated to reduce dirty energy consump-
tion and carbon footprints, in voluntary pursuit of
utility incentives and green certifications (e.g., LEED
program offering tax benefits and brightening public
image [15]) and/or compelled by pro-sustainability
tenants such as Apple and Akamai [16], [17]. Thus,
it is at a critical point for colocation data centers to
get on board to build a green digital economy.

In this paper, we address the urgent problem of
reducing carbon footprints in geo-distributed coloca-
tions. While the research problem at hand is clear, it
poses the following unique challenges.
• First, while many power management techniques

exist and are proven to be carbon-efficient for owner-
operated data centers [3], [4], they cannot be di-
rectly applied to colocations due to the operator’s
lack of control over tenants’ servers. On the other
hand, tenants may not be willing to manage their
servers for the best carbon efficiency, especially under
the widely-adopted power subscription-based pricing
that provides no incentives for tenants to save energy.1

Hence, colocations suffer from “split incentive”: the
operator desires carbon efficiency but has no control
over tenants’ servers, whereas tenants manage the
servers but have no incentives for carbon efficiency.
• Second, colocation operator needs to keep its long-

term (e.g., yearly or monthly) operation cost under
budget, and hence cannot always offer arbitrarily
high financial rewards to tenants for energy reduc-
tion. That is, the total budget needs to be carefully
allocated to different time periods (e.g., offers more
incentives during carbon inefficient time periods), but
the optimal budgeting requires complete information
(e.g., future carbon emission rate) which is unknown
in practice, thereby necessitating an efficient online
approach.

We take the position that greening colocation data
centers require joint efforts by both tenants and the
operator. To address the above challenges and over-

1. As shown in our simulations, even directly passing energy bills
to tenants based on energy usage cannot lead to the best carbon
efficiency, because carbon emission rate varies over time and is not
reflected by the utility pricing.

come the “split incentive” hurdle, we propose a novel
carbon-aware incentive framework, called GreenColo,
which financially rewards the participating tenants
for energy reduction while being able to satisfy the
desired long-term budget constraint for the coloca-
tion operator. Based on supply bidding where energy
reduction is treated as a resource supplied by the
tenants to the colocation operator, GreenColo is im-
plemented online and enables tenants to dynamically
bid for energy reduction while requesting monetary
benefits. After receiving the bids, the colocation op-
erator determines the winning bids with the goal
of minimizing carbon footprint while meeting the
budget constraint. To address the lack of complete
offline information (e.g., tenants’ future bids, carbon
emission rate), we leverage the recently-developed
Lyapunov technique [18] and employ a cost tracking
mechanism with the intuition that more weight is
given to cost saving during the process of selecting
winning bids if the cost thus far has deviated much
from the desired budget constraint. We also jointly
optimize the colocation operator’s own server man-
agement to further reduce carbon footprint.

We first demonstrate the effectiveness of GreenColo
via simulations, showing that carbon footprint can be
reduced by 18% without any additional cost (com-
pared to the baseline case in which no incentive is
provided), while tenants may save up to 28% of
their colocation cost by participating in GreenColo. We
also implement GreenColo in a scaled-down prototype
to corroborate the simulations, demonstrating that
GreenColo can reduce carbon footprint by 24% with
no additional cost to the colocation operator while
tenants receive financial rewards for “free” without
violating their Service Level Agreement (SLA).

2 OVERVIEW OF GREENCOLO
GreenColo is an online carbon-aware incentive mecha-
nism based on supply bidding [19], with the following
sequence of actions during each execution.
• Bidding: At the beginning of a time slot, each

participating tenant submits a set of bids. Each bid
contains energy reduction that the tenant is willing
to carry out, along with the corresponding incentive
payment he wants. Participation in GreenColo is vol-
untarily, and there is no restriction on the number of
bids in the bidding set as well.
• Deciding winning bids: The colocation operator

inputs the received bids into an online optimizer (as
detailed in Section 4), whose output specifies one
winning bid from each bidding set (hence for each
tenant one winning bid).
• Energy reduction and reward: The bidding re-

sults are then sent back by the colocation operator
to corresponding participating tenants. Finally, the
tenants carry out the energy reduction as committed
in the winning bids and receive the corresponding
rewards.
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TABLE 1
List of key notations.

Notation Description
L No. of data center locations
Ni No. of tenants in data center i
τij Tenant j in data center i
λij Workload arrival rate of tenant τij
µij Service rate of tenant τij ’s server
ηij Server power toggling cost for tenant τij
γi PUE of data center i
φi Carbon efficiency at data center i
ri Onsite renewable at data center i
φri Carbon efficiency of renewable at data center i
Pi Total electricity usage of data center i
ci Total carbon emission of data center i
e Operator’s electricity cost
h Operator’s incentive payout
Z Long-term cost constraint
q Cost budget deficit queue

Conceptually, our bidding-based mechanism can
be viewed as supply function bidding (SFB): power
reduction is a product demanded by the data center
operator and supplied by tenants (suppliers). In the
language of SFB, suppliers inform the purchaser of
how much demand they would like to fulfill and at
what price, translating into “if given x dollars, I want
to reduce y energy” in our context.

While SFB (or equivalently, demand function bid-
ding in some contexts) does not enforce truthful bid-
ding, it is the de facto mechanism used in many real
markets, such as electricity market [20] and Amazon
spot instance market (where users bid for virtual ma-
chines by proposing the prices they are willing to pay)
[21]. SFB also has an advantage over direct pricing
mechanism when there exist large uncertainties in the
supply, as it eliminates the need of predicting how
much demand suppliers can fulfill. In our context,
tenants have time-varying workloads and hence, even
given the same pricing signal, may respond differ-
ently over time, exhibiting a large degree of uncer-
tainty to the colocation operator. For these reasons,
we design GreenColo based on SFB so as to coordinate
the tenants’ energy reduction without predicting their
responses a priori.

While tenants’ participation in GreenColo is fully
voluntary, we take the position that the mounting
pressure from environmental groups (e.g., Green-
peace) to reduce carbon footprint [10], combined with
the financial rewards and increasingly mature tech-
niques for server power management, can incentivize
(some of) the tenants to cooperate with the coloca-
tion operator in greening colocations. Our position is
further corroborated by the recent commitments from
large IT companies such as Akamai (which has a large
colocation footprint worldwide) and Apple, which
have pledged to become greener in their partnering
colocations [16], [17].

3 MODELING

In this section, we formally model the colocation data
center and tenants, while the key notations used are
listed in Table 1. We first specify the data center’s en-
ergy usage, electricity cost and carbon emission, and
then present a model for guiding tenants to decide
their bids. We divide the timescale of interest into K
equal-length time slots indexed by k = 0, 1, · · · ,K−1.
The duration of each time slot is decided based on
how frequently the bidding process is executed. Time
index is dropped, wherever applicable, to maintain
the neatness of notations.

3.1 Data Center
We consider a colocation operator managing L colo-
cation data centers, each having Ni tenants for i =
1, 2, · · ·L. The data centers are possibly located at
different locations and connected to different power
utilities, subject to different electricity prices. For nota-
tional convenience, we denote tenant j in data center
i as τij for j = 1, 2, · · ·Ni.

Energy consumption and electricity cost. As in
any reward-based mechanisms [22], [23], in order to
determine the financial rewards, the operator needs
to know the reference energy usage eij by tenant
τij when GreenColo is not applied. In our case, the
operator can either estimate the reference or pre-set
a target value, which is announced to the tenants.
Consequently, if the tenants use less energy than eij ,
they will be considered as contributing to energy
reduction and hence credited/rewarded accordingly;
otherwise, they are neither rewarded nor penalized,
provided that they keep their power usage under
the subscribed capacity. We denote êij as the energy
reduction accounted for tenant τij , while êij ≤ 0
means that tenant τij is not considered as reducing
energy.2 Thus, the total IT energy consumption at data

center i can be expressed as P ITi =
Ni∑
j=1

(eij − êij).

Next, by capturing the non-IT energy consumption
using power usage effectiveness (PUE, measuring the
ratio of total energy to IT energy) and considering
that an amount of ri on-site intermittent renewable
energy (e.g., solar panels) is available at data center
i, we obtain the total electricity usage of data center
i as Pi =

[
γi · P ITi − ri

]+, where γi is the PUE and
[ · ]+ = max{·, 0} indicates non-negative net electricity
usage. Denoting wi as the (possibly time-varying)
utility-dependent electricity price, the electricity cost
for the colocation operator at data center i can be
derived as

Ei = wi · Pi = wi ·
[
γi · P ITi − ri

]+
. (1)

For large consumers like data centers, power utilities
also impose a “demand charge” which accounts for

2. Tenants do not need to bid if êij ≤ 0.
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the cost of power distribution infrastructure [24], [25].
It is charged based on the peak power usage during a
billing cycle. The demand charge is fairly predictable,
typically matching that of the previous billing cycle.
While we do not explicitly incorporate it, demand
charge can be handled by adding a penalty for exceed-
ing the anticipated peak power in the optimization
objective [25]. In addition, note that we consider the
operator can accurately predict the renewable energy
for the next time slot in (1). While it is orthogonal
to our work, the operator can seamlessly integrate
any suitable forecasting technique from the existing
literature [26]. Nonetheless, we also show in our
results that prediction errors in renewable energy do
not significantly affect our proposed solution.

Carbon emission. Data centers indirectly contribute
to carbon emission by consuming electricity from the
power grid that has a significant carbon footprint
due to heavy use of carbon-intensive fuels in elec-
tricity generation [27]. Since the source becomes in-
distinguishable when the electricity enters the power
grid, we estimate the grid’s carbon efficiency using a
weighted sum of carbon efficiencies of different fuel
types [4]. The weight of a fuel type is determined
based on that fuel’s relative contribution to the grid.
We use the following formula to derive the average
carbon efficiency (with a unit of g/kWh) at data center
location i with F different types of fuels

Φi =
F∑
f=1

[
φf ·

bfi∑F
f=1 bfi

]
, (2)

where φf is the carbon efficiency of fuel type f and
bfi is the total electricity generation from fuel type
f at the power grid serving data center i. Due to
different carbon efficiencies associated with different
fuel types, the carbon emission rate of the grid power
changes with the fuel mix. Also, as shown in Fig. 1(c),
the fuel mix of power grid exhibits a temporal diver-
sity, as electricity generations from different fuels are
continuously regulated in the power grid to maintain
the balance between supply and demand. Hence, the
grid’s carbon efficiency also varies with time. Thus,
considering φri as the carbon emission rate of onsite
renewable, data center i’s carbon emission is

ci = Φi · Pi + φri · ri. (3)

3.2 Tenant
In GreenColo, tenants can voluntarily bid for energy
reduction and specify the corresponding incentives
they want. There is no restriction on how the tenants
devise their bids, like in any SFB-based mechanisms
(e.g., the one used in Amazon spot market [21]). Here,
we express the bidding set of tenant τij as

Bij ∈ {(êlij , hlij(êij)|l = 1, 2, · · ·Lij}, (4)

where êij and hij(êij) represent the energy reduction
and requested financial compensation, respectively,
and Lij is the total number of bidding tuples by
tenant τij (i.e., the number of different energy sav-
ing schemes). Although tenants have the freedom to
choose very high payment bids, they are more likely
to be rejected by the colocation operator and receive
no rewards at all. This is analogous to the case of
Amazon, where very low bids on virtual machines
submitted by over-greedy users will be turned down.

4 ALGORITHM FOR GREENCOLO

In this section, we first present the problem formu-
lation for GreenColo and then, in view of the lack
of complete offline information, propose a provably-
efficient online algorithm that can decide winning
bids without foreseeing the far future information. We
also extend GreenColo by including the colocation op-
erator’s self-managed servers to further reduce carbon
footprint.

4.1 Problem Formulation
The focus of our study is to make colocations
“greener”: optimally decide the winning bids to min-
imize carbon footprint while ensuring that the coloca-
tion operator’s long-term cost is kept under budget.
We consider the operational cost rather than capital
cost (e.g., building the data center). We formulate the
problem as follows:

P-1 : min
bids

c̄ =
1

K

K−1∑
k=0

L∑
i=1

ci(k) (5)

s.t.
K−1∑
k=0

[E(k) + h(k)] ≤ Z, (6)

[êij , hij(êij)] ∈ Bij(k), ∀ i, j, k. (7)

where the objective is to minimize the long-term
average carbon footprint, the constraint (6) is the long-
term operational cost which consists of the electricity
cost E(k) =

∑L
i=1Ei(k) and total incentive paid to

tenants h(k) =
∑
i

∑
j hij(k). The second constraint

(7) requires that only those bids voluntarily submitted
by tenants can be chosen (i.e., colocation operator
cannot force tenants to turn off certain number of
servers against tenants’ will).

The long-term constraint (6) couples the winning
bid decisions over all the time slots of the budget-
ing period, thereby requiring the complete offline
information. In practice, however, it is not feasible to
obtain all the future bids of the tenants over the entire
budgeting period (e.g. month or year). The far future
on-site renewable energy generation and power grid’s
carbon emission rate are also very difficult, if not
impossible, to predict. To address this challenge, we
propose an online algorithm GreenColo which solves
P-1 with a provable bound on the deviation from the
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Algorithm 1 GreenColo

1: Inputs: total cost budget Z, budgeting period K,
Vinit, Vmin, V update interval ϑ ≤ K and α

2: Initiate: q(0) = 0, V = Vinit
3: for k = 0 to K − 1 do
4: for i = 1 to L do
5: Input: Φi(k), wi(k) and ri(k)
6: for j = 1 to Ni do
7: Input: Bij(k)
8: end for
9: end for

10: Decide winning bids to minimize

P-2 : V ·
L∑
i=1

ci(k) + q(k) ·
L∑
i=1

[Ei(k) + hi(k)]

subject to constraint (7)

11: Update q(k + 1) according to (8)
12: if k mod ϑ = 0 then

13: zk = Z
K −

1
k

k∑
t=0

[E(t) + h(t)]

14: V = max{V + α · zk, Vmin}
15: end if
16: end for

solution with future information. Next, we present
GreenColo and its operation principle.

4.2 GreenColo
Based on the extended sample-path Lyapunov opti-
mization technique [18], we propose an online algo-
rithm, GreenColo, which eliminates the necessity of far
future information to solve P-1. GreenColo decouples
the long-term cost capping constraint (6), by con-
structing a virtual cost budget deficit queue that tracks
the deviation from the budget. The cost budget deficit
queue evolves over time as follows

q(k + 1) =

[
q(k) + E(k) + h(k)− Z

K

]+
, (8)

where the queue length q(k) indicates the colocation’s
operational cost surplus over the allocated budget
thus far. Thus, a positive queue length implies that
a larger budget deficit and hence the colocation oper-
ator needs to give more weight on cost saving to meet
the long-term budget constraint. Leveraging this intu-
ition and using the budget deficit queue as a guidance,
we present the online algorithm in Algorithm 1.

4.2.1 Working principle of GreenColo
As shown in Algorithm 1, we construct a new opti-
mization problem consisting of the original objective
function scaled by a control parameter V ≥ Vmin > 0
plus the operational cost multiplied by the budget
deficit queue shown in (9). The queue acts as the
weighting parameter for cost saving relative to carbon

reduction. If the colocation operator incurs a higher
cost than the budgeted amount thus far, the queue
length grows and biases the optimization in consec-
utive time slots to nullify the difference. As we do
not impose any hard constraint on long term budget,
using the budget deficit queue as guiding mechanism
approximately satisfies the cost budget. However, as
shown in Theorem 1 in Appendix, there is an analyti-
cal bound on the maximum deviation from the budget
as well as on the average carbon footprint.

The impact of the queue length on the optimiza-
tion outcome is regulated by V . A larger V causes
the change in queue length to have a less impact
on the optimization, and as a result, the deviation
from long-term target needs to be mitigated over a
greater number of time slots and hence the potential
deviation from the budget constraint may be higher. A
smaller V , on the other hand, indicates that the queue
has a higher impact on the optimization result and
the budget surplus (deviation) is therefore quickly
rectified.

The parameter V essentially determines GreenColo’s
performance, and regulates the trade-off between
meeting the long-term budget constraint and mini-
mizing carbon emission. However, it is difficult to
choose/find the appropriate V in practice without the
complete offline information [18]. In Line 12 to 15 of
Algorithm 1, we incorporate method to periodically
(i.e., in every ϑ slots) update V at runtime in response
to the operation need. Specifically, we begin with
an initial value of V = Vinit, and after every ϑ
slots we calculate zk (in Line 13) which if negative
indicates the budget constraint is falling short (i.e.,
cost is more than the budgeted amount) and vice
versa. For failing budget constraint V needs to be
reduced and for surplussing budget V needs to be
increased. This is integrated in Line 14 of Algorithm 1
where α > 0 is a scaling parameter and Vmin > 0 is
the smallest possible value of V . Using the proposed
method, GreenColo can be applied based on online
information and, with an initial input of V which does
not need to be accurate, will automatically guide itself
towards budget constraint satisfaction. We show the
impact of initial V on GreenColo through simulations
in subsequent sections.

On top of removing the requirement of far future
information, GreenColo also lessens the computational
complexity of P-1 which involves constrained integer
programming whose complexity grows exponentially
with the number of participating tenants. Specifically,
P-2 in Algorithm 1 can be decomposed over the par-
ticipating tenants and, as a result, the computational
complexity only grows linearly O(n).

4.3 Sizing Self-Managed Servers

In addition to providing facility support for multiple
tenants, it is common that the colocation operator also
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provides a variety of other services, e.g., cloud com-
puting, using its self-managed physical servers. The
benefits of energy-efficient operation of self-managed
servers are two-folds. First, it naturally contributes to
colocation’s carbon footprint reduction. Second, some
of the cost saving resulting from self-managed servers
can be passed down to tenants such that tenants
are more willing to reduce energy, further reducing
the carbon footprint without violating the colocation
operator’s budget constraint. To formalize the idea,
we denote the total number of self-managed servers at
data center i by Mio, and consider that the colocation
operator can turn off some servers to reduce energy
consumption subject to constraints on quality of ser-
vice. Denoting the number of self-managed servers
turned off by mio and the average utilization by uio,
the total server energy consumption at data center i
now becomes

P ITi =

Ni∑
j=1

(eij − êij) + (Mio −mio) · (psio + pcio · uio) (9)

where psio and pcio are the static and computing power
consumptions of each self-managed server respec-
tively. By incorporating the energy consumption of
self-managed servers into the model, the online al-
gorithm can be developed in a similar way as Al-
gorithm 1 and hence we omit the details for brevity.
Note, however, that the following delay performance
constraint needs to be satisfied davgio (k) ≤ dmax

io ,∀i, k,
where davgio (k) =

(
µio − λio(k)

Mio−mio(k)

)−1

, derived based
on M/M/1 queueing model [2], specifies the average
delay performance for the colocation operator’s self-
managed services at data center i, with µio and λio
being the service rate and workload arrival rate, re-
spectively.

4.4 Bidding Strategy

Thus far, the algorithm in GreenColo has focused on
the colocation operator’s decision — deciding the
winning bids. To complete the design of GreenColo,
an important issue is how participating tenants deter-
mine their bids. In general, tenants have the freedom
to bid arbitrarily, although over-greedy bids are likely
turned down by the colocation operator and hence do
not necessarily benefit the tenants. Here, we provide
an example bidding strategy that may be used by
the tenants to specify their bids in GreenColo. This
is only to facilitate a clearer understanding of how
tenants may participate in GreenColo, while they can
choose their bidding strategies completely at their
own discretion.

In our setting, we consider a well-studied approach
of “turning unused servers off” as tenants’ energy
saving technique [2], [28], while many other knobs
(e.g., scaling down CPU frequencies) are also available
for energy saving. A variant of this approach, called

“Autoscale”, has already been used in Facebook’s
production system for energy saving [29]. Formally,
tenant τij has Mij servers in data center i, and turning
off mij servers can save an energy of êij = mijp

s
ij ,

where psij is the static energy consumption of a server
per time slot.

Tenants may incur costs when shedding energy and
hence, need to be financially compensated. Concretely,
following the literature [2], we consider two types of
rewards requested by tenants for energy reduction: in-
convenience reward and delay reward, as detailed below.

Inconvenience reward. We use inconvenience re-
ward to collectively compensate for the possible wear-
and-tear caused by server power toggling, as well
as the reduced processing capacity for the tenants
to tackle sudden surge in workloads [2]. We model
the inconvenience reward of tenants by an increasing
function ηi,j · mi,j , where ηi,j > 0 is a scaling factor
decided by the tenants.

Delay reward. The tenants turn off servers by
consolidating workloads into fewer servers, which
may result in delay performance degradation for
applications and causing “cost” to tenants [2]. We
represent the delay reward of tenant τij by dij , which
compensates tenant’s performance loss and intuitively
increases with the number of servers mij turned off
and the tenant’ workload arrival rate λij . As a con-
crete example, we employ a widely-applied queuing-
theoretic model by considering an M/M/1 queue at
each active server [2], [3], [30]. Considering that the
total traffic λij is equally distributed among all the
active servers, we express the delay cost of tenant τij
as

dij(mij , λij) = βij · λij ·

 1

µij − λij

Mij−mij

− dthij

+

, (10)

where Mij is tenant τij ’s total number of servers, µij is
the service rate of each server (measuring the amount
of workloads that can be processed in a unit time),
βij is a factor converting the experienced delay to
an equivalent monetary value, the operator ( · )+ =
max{ · , 0}, and dthi,j is the soft average delay threshold
(i.e., users are indifferent of the delay performance
below this threshold). We also consider that each
tenant has a maximum average delay constraint,

Mij −mij

µij(Mij −mij)− λij
≤ d̄max

ij . (11)

The maximum delay constraint in (11) essentially
defines the upper limit on the number of servers that
may be turned off, and hence bounds the maximum
server utilization. Although not applicable for all
application scenarios, the delay model used in (10)
provides a tenable estimation of the resulting delay
performance and hence is widely used for perfor-
mance analysis [2], [30].
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TABLE 2
Simulation parameters (in U.S. currency).

Tenant 1 Tenant 2 Tenant 3
Delay cost β (¢/s/job) 0.015 0.01 0.005
η ($ per server-hour) 0.03 0.03 0.03
Power cost ($/kW/month) 145 145 145
Service rate (jobs/hour) 360,000 180,000 30
Soft threshold on avg. delay 10 ms 20 ms 150 s
Avg. delay constraint 20 ms 30 ms 250 s

By combining both delay and inconvenience re-
wards, the total reward requested by tenant τij is
expressed as

hij(êij) = hij(mijp
s
ij) = ηij ·mi,j + dij(mij , λij). (12)

We consider the above bidding strategy because
different tenants may have different cost impacts for
the same energy reduction. Naturally, a tenant with a
lower performance degradation should reduce energy
at a lower reward rate and vice versa. In addition,
while in our example bidding strategy a tenant with
a higher performance degradation may ask for more
rewards, it is not over-rewarded as the colocation
operator chooses the winning bids and a tenant asking
for more rewards will be asked to reduce less energy
(or even none at all). Further, the operator has a
budget constraint which also limits its expenditure on
rewards.

There also exist several alternative approaches for
tenants to quantify their costs (e.g., [4], [31]) incurred
for energy shedding and decide their bids accordingly.
In any case, just like users on Amazon spot market
[21], participating tenants can choose their preferred
approaches to bid in GreenColo at their own discretion.

5 SIMULATION STUDY

In this section, we present a trace-based simulation to
demonstrate the effectiveness of GreenColo, showing
that GreenColo can reduce carbon emission by 18% and
save tenants’ cost by up to 28%, while incurring no
additional operational cost for the colocation operator
(compared to the no-incentive case). We first present
our simulation setup and then show the evaluation
results. While the actual results depend on particu-
lar simulation settings, our qualitative insight holds
broadly: GreenColo unifies the interests of both the colo-
cation operator and tenants towards making colocations
greener.

5.1 Setup
We consider three colocation data centers located at
Silicon Valley (CA), New York City (NY) and Chicago
(IL), all of which are major colocation markets [13].
Each data center houses three participating tenants,
which have 2,000 servers each. This is typical in
wholesale colocation data centers, where each tenant
subscribes a large capacity. The tenants of these three

data centers are considered to have various delay
performance requirements, with the first tenant run-
ning highly delay-sensitive, the second tenant running
moderately delay-sensitive, and the third one running
delay-tolerant workloads. The tenants of these data
centers are numbered sequentially: tenants #1 to #3
are in CA data center, tenant #4 to #6 are in NY data
center and tenant #7 to #9 are in IL data center. The
modeling parameters for tenants are shown in Table 2.

— The parameter β converts delay performance
to monetary value and quantifies the tenant’s aver-
age cost (i.e., requested incentive payment) per job,
if the resulting average delay exceeds the software
threshold by one second. As shown in simulations,
the values of β in Table 2 are already high enough
to ensure that application performances are not no-
ticeably affected. Similar model is also considered in
prior work [3].

— The parameter η specifies the server unavail-
ability cost for turning off each server for one hour.
While there is no public disclosure of such data, we
believe that $0.03 per server-hour is reasonable: with
a 150W idle power for each server (in our setting), 3
cent/server/hour is already higher than the electricity
cost saving achieved by turning off a server, had
the tenants run servers in their own data centers
(assuming a fair electricity price of 15 ¢/KWh). In
other words, if tenants would like to turn off idle
servers for cost saving in their own data centers (as
extensively studied [2]), they should be more willing
to do so in colocations.

— We consider the prevailing pricing model based
on power subscription [32], and 145 U.S.$/kW/month
in all of the three data centers, which is a fair mar-
ket value [8], [33]. Service rates indicate the average
number of jobs that can be processed by one server,
the soft delay threshold indicates the average delay
below which users are indifferent with the service
quality, and the average delay constraint specifies the
acceptable service quality.

We consider that each server has an idle power of
150W and peak power of 250W. The budgeting period
of our simulation is considered to be the first quarter
of 2014 (January to March) with each time slot equal
to 1 hour. The default quarterly budget constraint is
set to 1.3 million U.S. dollars, which is the total cost
the colocation incurs when no incentive is provided
and all servers are turned on as the status quo. The
peak power of each of the 3 colocations is 2.4MW with
PUE equal to 1.6, which is a fair value for colocations
although some owner-operated data centers such as
Google have reached a much lower PUE.
•Workload. We use three different workload traces

for the tenants. The workload identified as “Hotmail”
is taken from a 48-hour trace of 8 servers of Hotmail
[34]. “Wikipedia” traces are taken from [35], which
contain 10% of all user requests issued to Wikipedia
from a 30-day period of September 2007, and “MSR”



2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2767043, IEEE
Transactions on Cloud Computing

8

0
0.1
0.2
0.3
0.4
0.5

0 24 48 72 96 120 144 168

No
rm

. W
or

klo
ad

Hour

Hotmail Wikipedia MSR
(a) Normalized workload traces

0

100

200

300

400

0 24 48 72 96 120 144 168

$
/M

W
h

Hour

CA NY IL

(b) Electricity price

0

10

20

30

40

50

0 24 48 72

E
le

ct
ri

ci
ty

 (
G

W
)

Hour

Hydro
Imports
Thermal
Nuclear
Renewable

(c) Fuel mix data for CA

300

500

700

900

0 24 48 72

C
a

rb
o

n
 (

g
m

/k
W

h
)

Hour

CA NY IL

(d) Carbon emission rate of
power grid

Fig. 1. Trace data used in the simulations.

workload is a 1-week I/O trace of 6 RAID volumes at
Microsoft Research Cambridge [34]. Due to the lack
of available traces for the entire budgeting period,
we add up to 30% random variations and extend the
available traces to get the 3-month trace. We then take
these 3-month traces and make three copies to have
9 traces. We add 20% randomness in each of these 9
traces to use as the workload trace for the 9 tenants.
The workloads are normalized to corresponding ten-
ant’s maximum processing capacity and a snap shot
of the traces is shown in Fig. 1(a).
•Electricity price and on-site renewable energy.

We take the electricity price of non-residential cus-
tomer from the utilities that serve the 3 data center
locations. The electricity price trace of the first 48
hours is shown in Fig. 1(b). We collect the solar power
generation data from [27] for California and use it
as the trace for on-site renewable energy of the 3
data centers after adding up to 20% random variation.
We re-scale the data so that the maximum on-site
renewable energy is 10% of the maximum peak power
of the considered data centers.
• Carbon emission rate: Due to lack of utility-level

energy fuel mix data, we collect the fuel mix data
from California ISO [27], and use carbon efficiency
for fuel types presented in [36] to calculate carbon
emission rate for CA data center. For the NY and IL
data center, we estimate the hourly carbon emission
rate from the annual average fuel mix and exploiting
the fact that during peak load the carbon emission is
higher because the peak load serving generators are
typically run on oil and gas, and the daily average
carbon emission rate is approximately 60% of the peak
carbon emission [4], [37]. The energy fuel mix and
carbon emission rates for the first 3 days are shown
in Fig. 1(c) and 1(d).

5.2 Results
We present our simulation results below. First,
we introduce three baselines with which we com-
pare GreenColo. Then, we examine the execution of
GreenColo and show the performance comparison.
Finally, we demonstrate the applicability of GreenColo
in different scenarios. Unless otherwise stated, all the
results are hourly values.

5.2.1 Baselines
We consider three baselines as below.

• No Incentive (N-INC): This is a baseline case in
which no incentive is provided and the colocation
is operated following the existing practice with no
tenants’ servers turned off.
• Direct Incentive (D-INC): In D-INC, the coloca-

tion operator directly forwards the current electricity
price multiplied by the effective PUE (reflecting the
additional facility energy saving) to the tenants as an
incentive for energy saving. Tenants individually de-
termine their energy reduction to maximize their own
benefits (i.e., difference between incentive received
and cost incurred).
• Optimal Offline (OPT): This is the optimum

algorithm which, with complete future information
(e.g., future bids submitted by tenants), solves the
offline problem P-1 and minimizes the carbon foot-
print subject to long-term budget constraint. OPT is
not feasible in practice, but provides a lower bound
on the carbon footprint that can be possibly achieved
by GreenColo.

5.2.2 Execution of GreenColo

We first show the impact of control parameter V on
the performance of GreenColo in Fig. 2(a) and Fig. 2(b).
It can be seen that V governs the trade-off between
carbon footprint reduction and budget constraint sat-
isfaction: when V increases, GreenColo focuses more
on reducing carbon footprint while caring less about
operational cost, and vice versa. When V ≈ 125, the
desired budget constraint is satisfied, while the carbon
footprint is significantly reduced compared to N-INC
(by 17.7%).

Next, Fig. 2(c) shows the dynamic change of V
with different initial V . We see in Fig. 2(e) that re-
gardless of the initial values, the operational costs are
very close to the N-INC case, satisfying the long-term
budget constraint. However, as shown in Fig. 2(d),
because V is regulated progressively to meet the
budget target, changing V dynamically results into
a slightly higher carbon emission (still less than 3%
deviation) compared to the case with a fixed V that
is chosen in advance to satisfy the budget constraint.
This demonstrates that the parameter V can be au-
tonomously adjusted for satisfying budget constraint,
which is important for applying GreenColo in practical
systems since the optimal constant V cannot be pre-
determined without accurately.
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Fig. 3. Performance comparison between GreenColo and baselines. Cost saving by GreenColo is close to the OPT
and significantly higher than D-INC. There is as much as 29% cost savings by tenants without much impact on
performance, whereas the data centers reduce carbon emission by more than 17%.

5.2.3 Performance comparison

In Fig. 3, we compare the performance of GreenColo
with the baseline algorithms.

Reduce tenants’ costs without noticeable perfor-
mance degradation. First, we show the cost savings
and delay performances of the tenants under different
algorithms. In cost saving percentages, we only con-
sider power subscription cost assuming that tenants
carefully subscribe to power based on their peak
server power; other costs, such as space and network
connectivity cost, are often lower than power costs
with a significant variation across tenants and hence
excluded from our consideration [7]. Fig. 3(a) shows
that using GreenColo, there is as much as 29% cost
saving by the tenants. We see a general trend that
the 3rd tenant in each data center (tenants #3, #6
and #9) enjoys higher cost savings than the other 2
tenants. This is because of their higher delay tolerance:
they have a low delay cost and can reduce more
energy for less incentive, consequently being favored
by GreenColo when deciding the wining bids. We see
in Fig. 3(b) that, these tenants turn off more servers
than the other tenants in the same data center. The
tenants at IL data center (tenant #7, #8 and #9) have
the least cost savings because the operator cannot
offer high incentive for energy reduction as the colo-
cation cannot save much from energy reduction due
to low electricity cost at IL. Also, cost saving for

D-INC is significantly lower than GreenColo, because
D-INC directly passes the electricity cost saving to
tenants without considering the time-varying nature
of carbon emission rates. In Fig. 3(c), we show the
average delay of the tenants. We see that there is no
significant increase in delay performance compared
to N-INC for the tenants when they participate in
GreenColo, reducing energy and saving cost. This is
because tenants typically accept cost saving and green
practices, only when application performance is not
compromised.

Reduce carbon footprint without increasing op-
erational cost. We see from Fig. 3(d) that all the
algorithms result in the same operational cost as
N-INC, which we use as a reference case. Moreover,
GreenColo provides a greater incentive payment to
tenants than D-INC, because GreenColo is able to per-
form a joint optimization across all tenants and data
centers by taking the advantage of heterogeneities
among tenants and data centers. In Fig. 3(e), we
show the average footprint reductions under different
incentive mechanisms compared to N-INC. We see
that GreenColo can reduce carbon emission by 17.7%
compared to 9.7% reduction by D-INC. Naturally, as
CA and NY tenants turn off more servers, these 2
data centers are dominant contributors towards the
carbon footprint reduction. We also observe that, in
terms of carbon footprint reduction, GreenColo is fairly
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Fig. 4. Impact of self-managed servers. Both carbon
reduction and cost savings opportunity increases as
the operator can pass on the savings from its own
servers to further incentivize the tenants for energy
reduction.

close to OPT (17.7% versus 22.6%), demonstrating the
effectiveness of GreenColo even though only online
information is available.

Energy efficiency of self-managed servers con-
tributes to carbon footprint reduction. Here, we
study the case where the colocation operator also
hosts its self-managed servers in colocations.We vary
the percentage of self-managed server in each data
center from 0 to 30% while keeping the total number
of servers same by rescaling tenant servers. We set the
data center total operational cost, incurred when no
servers (both tenants’ and self-managed) are turned
off, as the long-term budget constraint. In Fig. 4,
we see that both carbon reduction and tenants’ cost
savings increase with increase in the percentage of
self-managed servers in colocations, reaching up to
45% carbon reduction and 55% tenant cost savings
for 30% self-managed servers. This is because the
colocation operator can exploit the savings from its
self-managed servers to further incentivize tenants
and drive them into greater carbon reduction.

Insensitivity against renewable energy prediction
error. Here, we study the impact of renewable gener-
ation prediction error on GreenColo. Toward this end,
we consider that the operator inaccurately estimates
the renewable generation in each time slot. We study
the carbon reduction and tenants’ cost saving by
varying the degree of prediction errors from ±0% to
±50% and show the results in Fig. 5. We see that there
is virtually “zero” impact on carbon emission and cost
saving with prediction errors in the renewable gener-
ation. This is because the renewable generation acts as
an offset to the electricity cost, and the prediction error
is corrected with the actual renewable generation after
every time slot when the budget deficit queue is
updated.

6 PROTOTYPE EXPERIMENT

The previous section highlights the benefits of
GreenColo over existing solutions in simulation envi-
ronments. To corroborate the simulation and ensure
that GreenColo is practically applicable, we subject
GreenColo to a scaled-down prototype experiment and
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Fig. 5. Impact of renewable generation prediction error.
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Fig. 6. Tenant #1 processing Hadoop workload. The
Hadoop setup has one master node and eleven worker
nodes in two servers.

contrast it with the current no-incentive baseline ap-
proach. Next, we first describe the experiment setup,
followed by how the tenants devise their bids, and
then present the experiment results.

6.1 Setup

Testbed. Due to hardware constraints, we implement
a scaled-down colocation facility hosting two tenants
on a testbed consisting of five Dell PowerEdge R720
rack servers. Four of these servers each have one 6-
core Intel Xeon E-26XX Processor (210-ABVP), 32GB
RAM and four 320 GB hard drives in RAID 0 config-
uration. The 5th server has two Intel Xeon CPUs and
eight 320 GB hard drives in RAID 0. The 5th server
has significantly higher I/O capability and hence is
used to host the database VMS. Each server has six
VMs, using Xen-Server 6.2 as the virtualization plat-
form. The power consumption of each server is mea-
sured with WattsUpPro power meter. We implement
GreenColo in a separate HP tower server with Core
i7-3770 CPU and 16 GB of memory. This tower server
acts as the colocation operator’s control module for
executing GreenColo and communicates with tenants.

Tenant #1. As illustrated in Fig. 6, tenant#1
processes delay-tolerant Hadoop workloads in two
servers hosting 12 VMs in total. We configure 11
virtual machines as the worker node and one virtual
machine as the master node of the Hadoop system. We
implement a scaling module that can adjust and/or
consolidate the number of worker nodes to trade
for energy. Each Hadoop job consists of two parts:
first, generate a distributed random file using Ran-
domTextWriter (Hadoop’s default) on HDFS (Hadoop
Distributed File System); second, run sort benchmark
on the randomly generated file. The completion time
for each job is recorded as the performance metric of
interest.
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Tenant #2. Using the remaining three servers as
illustrated in Fig. 7, tenant #2 processes key-value-
store (KV) workload, which resembles a multi-tiered
web service such as social networking [38]. Our im-
plementation of Key-Value store has 4 tiers: front-
end load balancer, application, memory cache, and
database. The load balancer is a Java program that re-
ceives jobs from the generator and routes the requests
to the application servers. The application is imple-
mented in PHP running on an Apache web server. We
use Memcached, a distributed memory object caching
system, in the mid-end for improving the database
performance. We use MySQL as our database which
contains 100 million key value pairs. The server with
2 CPUs and high I/O capacity hosts Memcached
VMs, three replicated database VMs, three application
VMs, and a VM for load balancer. The other two
servers each host six application VMs. In a separate
server, we implement the job generator which can
send workloads of various job sizes following a Zipf
distribution.

We use the “MSR” trace as the Hadoop workload
and “Wikipedia” trace as the KV workload. The traces
are appropriately scaled down to have a 20% average
utilization. To avoid lengthy running, we scale down
each time slot to 10 minutes and run the experiment
for 48 time slots. We use the hourly electricity price
and carbon emission rate of CA. The total cost budget
for the 48 time slots (8 hours) is set to 61.16¢, which
is the total cost without any incentive.
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Fig. 9. Performance comparison between GreenColo
and N-INC. GreenColo have 24% carbon reduction,
while meeting the budget constraint by closely follow-
ing N-INC’s cost.

6.2 Power Management

Both tenants can adjust servers’ power states for
energy saving. We use three different power states
for each server: High Performance (H), Low Perfor-
mance (L), and Turned Off (Z). Note that, we do not
consider virtual machine migration and therefore our
VM placement in the servers are fixed. Consequently,
when a server is put to “turned off” or Z state, all
the VMs hosted on that server are also turned off.
The energy saving is done subject to SLA constraints.
In particular, tenant #1 running Hadoop jobs has an
SLA of 10 minutes for the maximum job completion
time, while tenant #2 running interactive jobs has
an SLA requirement of 500ms on 95-percentile delay
which is a reasonable setting as considered in prior
research [38]. Tenant #1 has two servers and Tenant #2
has three servers. Their processing capabilities under
different combinations of power states are shown in
Fig. 8. The power state can be adjusted in accordance
with incoming workload arrival rates subject to SLA,
as similarly adopted by Facebook’s production sys-
tems [29]. We also consider a 10% margin on SLA
requirement for both tenants (e.g., tenant #1 provi-
sions resources to serve workloads within 9 minutes,
whereas the actual SLA requirement is 10 minutes).
Tenant #1 asks for ¢10 per kWh energy reduction and
tenant #2 asks for ¢15 per kWh energy reduction. They
also add ¢0.05 for each server turned off.

6.3 Results

Here, we report the experimental results by compar-
ing GreenColo against N-INC, while noting that D-INC
has a similar behavior with the simulation result and
omitted for brevity.

We first show the energy consumption and cor-
responding carbon emission in Figs. 9(a) and 9(b),
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Fig. 10. (a) Job turn around time for tenant #1 running
Hadoop jobs. (b) 95% delay of tenant #2 processing
KV workloads. GreenColo reduces carbon footprint with-
out SLA violation.

respectively. We see that GreenColo can greatly re-
duce the energy consumption and carbon emission
compared to N-INC, resulting in an average of 24%
reduction. Fig. 9(c) shows the colocation operator’s
per-slot cost, demonstrating that GreenColo closely
follows N-INC to satisfy the budget constraint. This
is better illustrated in Fig. 9(d), where we show the
cumulative average budget deficit over time. It can be
seen that there is (almost) zero budget deficit at the
end of the experiment, confirming that GreenColo can
successfully satisfy the long-term budget constraint
without complete offline information. The experimen-
tal results show that GreenColo can be used in real life
successfully to reduce carbon emission of the coloca-
tion data center without any extra cost to the coloca-
tion operator. We also perform an offline simulation
with the same settings, models and traces used in the
experiment. We observe that the maximum deviation
of the experimental results from simulation is less
than 4%, which further corroborates our observations
and findings in the previous simulation studies.

We now show the tenants’ workload performance
during runtime in Fig. 10. We see that, using the
readily-available power management techniques de-
scribed above, both tenant #1 and tenant #2 can
participate in GreenColo without violating their respec-
tive SLA. In other words, GreenColo delivers financial
rewards to tenants for “free” under SLA, creating a
win-win situation benefiting both colocation operator
and tenants. Further, this embodies the great potential
of GreenColo in real systems.

7 RELATED WORK

In this section, we discuss the related work from the
following perspectives.
• Data center cost/carbon minimization: Making data

centers cost and/or carbon efficient has been studied
by many prior studies [2]–[4], [39]. For example,
dynamically scaling server capacity provisioning to
strike a balance between energy cost and perfor-
mance loss has been the primary focus of several
recent studies [2], [39]. Extending to a set of geo-
distributed data centers, [30], [40] consider geographic
load balancing to minimize the electricity cost and
[3]–[5] leverage spatio-temporal carbon efficiency to

make data centers greener. In addition, data center
demand response is also emerging to help stabilize the
grid operation (e.g., data center frequency regulation
[41], [42]). These studies, however, focus on owner-
operated data centers in with operator’s full control
of server power management, and cannot be directly
applied to colocation data centers unless tenants,
which manage servers by themselves, are properly
incentivized and coordinated.
• Incentive design: Incentive design has been success-

fully applied in various engineering domains, such
as time-dependant pricing in wireless networks [43],
real-time pricing in smart grid [44], and rebate-based
incentive in smart grid [23]. Economics theory has also
been applied in computer science, such as auction
in Amazon Spot Instance market [21], and market-
based scheduling in computer systems [45]. While
these works all leverage incentive mechanisms for
various purposes, none of them have considered the
unique context of colocation whose operator has a
natural long-term budgeting constraint and is striving
for minimizing carbon footprint.
• Data center demand response: Our study can be

also viewed as demand response within data centers
(i.e., using economic incentives to reshaping tenants’
demand), which has recently been studied for in
various contexts [22], [46]–[51]. For example, [46] and
[47] propose pricing-based methods to recoup costs
from cloud tenants and fairly split the energy cost, re-
spectively. Among the growing set of papers on colo-
cation demand response, [52] proposes a randomized
auction design for emergency demand response (i.e.,
colocation-wide energy shedding when requested by
the utility for grid stability during emergencies), [51]
studies fairly incentivizing tenants’ energy reduction
for emergency demand response, while [22] studies
SFB for green-aware colocation demand response un-
der both emergency and economic programs. How-
ever, these works often focuses on one-step optimiza-
tion, which cannot be applied or trivially extended
to satisfy the long-term budget constraint. While [50]
considers online randomized auction for emergency
demand response, it studies a very different problem
setting of emergency demand response, and the ran-
domized auction mechanism is tailored to the specific
problem. Furthermore, we use a different mechanism
based on a new variant of SFB, whereas the prior
research considers direct pricing [46], [48], auction
[50], [52], or a restricted family of parameterized SFB
that considers a particular form of supply function
[22], [31]. Last but not least, our focus on carbon
footprint minimization subject to long-term budget
constraint has not been studied in the literature.

Our study also advances [53] by: considering a geo-
distributed data centers; providing a thorough eval-
uation and self-tuning approach; exploiting coloca-
tion operator’s self-managed servers to further reduce
carbon footprint; prototype experiment to validate
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GreenColo.

8 CONCLUSION

In this paper, we address a critically important
problem of reducing carbon footprint of colocations
for greenness. We propose a carbon-aware incentive
mechanism to break the split-incentive hurdle be-
tween colocation operator and tenants. We show that
our proposed algorithm, GreenColo, can achieve 18%
carbon reduction and save tenants’ cost by up to
28%, while the colocation operator does not incur any
additional cost. Finally, using a scaled-down testbed
experiment, we validate the effectiveness of GreenColo
in real life, showing that participating tenants can
receive financial rewards without SLA violation and
that the colocation can reduce carbon emission by 24%
without incurring additional cost.

APPENDIX
ANALYTICAL BOUNDS ON GreenColo

We present the performance bound on GreenColo for
a given V in Theorem 1, whose proof builds upon
sample-path Lyapunov technique [18].

Theorem 1. For any T ∈ Z+ and H ∈ Z+ such that
K = HT , the following statements holds.

a. The long-term budget constraint is approximately
satisfied with a bounded deviation:

1

K

K−1∑
k=0

[E(k) + h(k)] ≤ Z

K
+√

U +D(T − 1) + V
H

∑H−1
h=0 (c∗h − cmin)

√
K

,

b. The average carbon footprint c̄ of GreenColo satisfies:

c̄ ≤ 1

R

H−1∑
h=0

c∗h +
U +D(T − 1)

V
,

where U and D are certain finite constants, c∗h is the min-
imum average carbon footprint achieved by the optimal al-
gorithm with offline T -slot lookahead information over time
slots hT, hT+1, · · · , (h+1)T−1, for h = 0, 1, · · · , H−1,
and cmin is the minimum carbon footprint per time slot that
can be achieved by any feasible decisions.

Proof of Theorem 1 Here we sketch the key steps
for proving Theorem 1. We start with defining a
quadratic Lyapunov function L(q(t)) , 1

2q
2(t), where

q(t) is our budget deficit queue tracking the backlog.
We then derive the maximum Lyapunov drift, i.e.,
the change in Lyapunov function between time slots.
Now, we will see that P-2 in Algorithm 1 is mini-
mizing the maximum Lyapunov drift plus the carbon
emission, i.e., the drift-plus-penalty in Lyapunov op-
timization. Proceeding from here we can arrive at the
two bounds on carbon emission (objective function)

and cost budget violation (queue backlog) following
similar steps in Chapter 3.2 (pages 37 to 43) and
Chapter 4.1 (pages 45 to 51) of [18].

Theorem 1a shows that, the deviation from the
long term cost capping increases with increase in V ,
while Theorem 1b shows that the performance gap
between GreenColo and the offline optimum decreases
when V becomes larger. We see that, in GreenColo,
there exists a trade-off between carbon footprint and
budget constraint satisfaction balanced by V . Increase
in V reduces the gap in carbon emission between
GreenColo and the offline algorithm, but may suffer
from larger deviation from long-term budget target,
and vice versa. �
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