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GreenColo.

8 CONCLUSION

In this paper, we address a critically important
problem of reducing carbon footprint of colocations
for greenness. We propose a carbon-aware incentive
mechanism to break the split-incentive hurdle be-
tween colocation operator and tenants. We show that
our proposed algorithm, GreenColo, can achieve 18%
carbon reduction and save tenants’ cost by up to
28%, while the colocation operator does not incur any
additional cost. Finally, using a scaled-down testbed
experiment, we validate the effectiveness of GreenColo
in real life, showing that participating tenants can
receive financial rewards without SLA violation and
that the colocation can reduce carbon emission by 24%
without incurring additional cost.

APPENDIX
ANALYTICAL BOUNDS ON GreenColo

We present the performance bound on GreenColo for
a given V in Theorem 1, whose proof builds upon
sample-path Lyapunov technique [18].

Theorem 1. For any T ∈ Z+ and H ∈ Z+ such that
K = HT , the following statements holds.

a. The long-term budget constraint is approximately
satisfied with a bounded deviation:
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b. The average carbon footprint c̄ of GreenColo satisfies:

c̄ ≤ 1
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,

where U and D are certain finite constants, c∗h is the min-
imum average carbon footprint achieved by the optimal al-
gorithm with offline T -slot lookahead information over time
slots hT, hT+1, · · · , (h+1)T−1, for h = 0, 1, · · · , H−1,
and cmin is the minimum carbon footprint per time slot that
can be achieved by any feasible decisions.

Proof of Theorem 1 Here we sketch the key steps
for proving Theorem 1. We start with defining a
quadratic Lyapunov function L(q(t)) , 1

2q
2(t), where

q(t) is our budget deficit queue tracking the backlog.
We then derive the maximum Lyapunov drift, i.e.,
the change in Lyapunov function between time slots.
Now, we will see that P-2 in Algorithm 1 is mini-
mizing the maximum Lyapunov drift plus the carbon
emission, i.e., the drift-plus-penalty in Lyapunov op-
timization. Proceeding from here we can arrive at the
two bounds on carbon emission (objective function)

and cost budget violation (queue backlog) following
similar steps in Chapter 3.2 (pages 37 to 43) and
Chapter 4.1 (pages 45 to 51) of [18].

Theorem 1a shows that, the deviation from the
long term cost capping increases with increase in V ,
while Theorem 1b shows that the performance gap
between GreenColo and the offline optimum decreases
when V becomes larger. We see that, in GreenColo,
there exists a trade-off between carbon footprint and
budget constraint satisfaction balanced by V . Increase
in V reduces the gap in carbon emission between
GreenColo and the offline algorithm, but may suffer
from larger deviation from long-term budget target,
and vice versa. �
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