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Abstract—Federated Learning (FL) offers a privacy-preserving
massively distributed Machine Learning (ML) paradigm where
many clients cooperatively work together towards training a
shared machine learning model. FL, however, is susceptible to
data heterogeneity problems as the FL clients have diverse data
sources. Prior works employ auto-weighted model aggregation
to mitigate the heterogeneity issue to minimize the impact of
unfavorable model updates. However, existing approaches require
extensive computation for statistical analysis of clients’ model
updates. To circumvent this, we propose, FedASL (Federated
Learning with Auto-weighted Aggregation based on Standard
Deviation of Training Loss) which uses only the local training
loss of FL clients for auto-weighting the model aggregation.
Our evaluation under three different datasets and various data
corruption scenarios reveals that FedASL can effectively thwart
data corruption from bad clients while causing as little as one-
tenth of the computation cost of existing approaches.

Index Terms—federated learning, model aggregation, data
heterogeneity, computational efficiency

I. INTRODUCTION

Motivation. Federated Learning (FL) has become a popular
technique for privacy-preserving Machine Learning (ML).
FL has been commercially deployed in several widely used
applications such as Google Gboard’s next-word prediction
[1], Apple Siri’s voice recognition [2], and WeBank’s lending
decisions [3]. Due to FL’s privacy enhancement, it is of great
interest in healthcare, where sensitive and private patient data
is used to train ML systems [4].

In FL, a global model is cooperatively trained by partici-
pating users/clients who share their model updates based on
local training with a central server that manages the global
model [5]. The global model is updated iteratively, wherein
each iteration, a subset of clients supply their model updates
based on the latest global model. The clients’ model updates
are aggregated at the central server to generate the new global
model for the next iteration. Fig. 1 illustrates the architecture
of FL. Unlike centralized ML training, where all training data
needs to be gathered in one place, in FL, the client’s private
data never leaves their devices. The clients only share the
model updates from their local training with the central server.
As a result, the client’s privacy is greatly enhanced while at the
same time, it can reap the benefit of a robustness ML model
trained using many training samples (from all participating
clients).

A critical step in FL is how the model updates are ag-
gregated at the central server to construct the global model
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Fig. 1. FL architecture showing distributed learning using local training.

for the next round of training. Proper aggregation is cru-
cial for the global model to converge and generate a stable
model for reliable use (i.e., inference). The state-of-the-art
model aggregation technique is called Federated Averaging
(FedAVG), where weighted aggregation is used with each
client’s model update, receiving a weight proportional to the
size of its training data set [5]. FedAVG has proven to be an
effective yet straightforward aggregation technique for client
data that exhibits iid (independent and identically distributed)
characteristics. With iid client data, model aggregation can
converge as clients’ model updates do not deviate much
from each other. However, such statistical coherence (i.e.,
iid client data) can seldom be ensured in practice. Different
clients collect the training data for FL from various data
sources. The data quality (e.g., noise) among clients may
also vary significantly due to variations and aging of the
hardware/sensors they use. The heterogeneous source of client
data hinders both the accuracy of FL models and model
convergence [6]. Another source of data heterogeneity is
the presence of adversarial or compromised clients which
intentionally send maliciously orchestrated model updates to
cause model divergence and degrade overall accuracy [6], [7].
Despite the inherent weaknesses against heterogeneous data
sources, FL offers unparalleled improvement of client privacy,
making it a compelling approach for privacy-preserving ML in
end-user-centric paradigms such as Internet-of-Things (IoT).
Consequently, addressing the data heterogeneity problem has
become a pressing issue toward widespread and generalized
adoption of FL.



Limitations of existing approaches. The mainstream tech-
nique for addressing FL’s heterogeneity problem is to dy-
namically tune the weights (i.e., auto-weighting) of the client
updates in the central model aggregation [8]–[11]. The general
approach in these techniques revolves around extracting aggre-
gation weights using statistical analysis of all model updates.
For instance, in the Trimmed Mean technique proposed in [9],
values of each parameter of the ML model are individually
updated by taking the average of client-supplied parameters
after discarding the statistical outliers. Employing a similar
fashion of model update, instead of using the average, [9]
also proposes to use the median while [10], [11] use the
geometric mean on the “clean” (i.e., without outliers) client
parameters to construct the updated global model. Krum in
[12], selects one of the user models as the representative of all
model updates and uses it as the global model for the next FL
iteration. Krum determines the representative model based on
the model’s Euclidean distance from other models. While these
techniques have various degrees of effectiveness in thwarting
the data heterogeneity issue, these are all computation heavy
and do not scale efficiently as the number of participating users
grows. Hence, these techniques are not suitable for resource-
constrained central servers, for instance, in an edge-computing
scenario where a lightweight edge-server acts as the central
server to mediate FL model updates of users in geographical
proximity. This computational burden can also be detrimental
for hierarchical FL [13], where intermediate edge devices are
responsible for aggregating user updates from their vicinity
and coordinating with a central server. An alternative to the
auto-weighting approach is active client selection [14], [15],
where instead of handling the model updates after they are sent
to the central server, the clients that send the model updates
are carefully chosen to handle data heterogeneity. Active
client selection can offer efficient communication over auto-
weighting-based approaches. However, active client selection
requires client profiling to determine the “good” clients, and
hence, breaks FL’s user anonymity. In this paper, we focus
on the auto-weighting approach and improve its computation
efficiency.

Our contribution. We circumvent the computation burden
of the prior auto-weighting approach by avoiding extensive
statistical analysis using the model parameters. Instead, in our
novel approach, we only use the client’s training loss to de-
termine the weights of their model updates. More specifically,
we ask each participating client in an update round to report
their training loss along with their model updates. We take all
clients’ training losses and employ an auto-weighting based
on how far a client’s training loss is from the median loss. We
set a “good region” around the median loss and assign equal
weights to all clients’ updates whose losses fall within the
good region. Clients outside the good region receive weights
inversely proportional to their distance from the median loss.
More importantly, however, we determine the good region
and the weight distribution among the clients inside and
outside the good region based on the standard deviation of the
clients’ training loss. We call our approach FedASL (Federated

Learning with Auto-weighted Aggregation based on Standard
Deviation of Training Loss).
FedASL saves on computation as it only needs to calculate

the median and standard deviation of the client’s local train-
ing loss. Also, our standard deviation-based weights change
dynamically as the FL model update goes through update
iterations. Moreover, FedASL acts as a filter to downplay
the updates from clients with unfavorable data in the model
aggregation. Hence, as FL progresses, the performance of
our statistical approach improves, i.e., FedASL increasingly
prioritizes the good updates over the bad ones.

We extensively evaluate FedASL with three prominently
used data sets for FL - CIFAR10, MNIST, and FEMNIST
using several different ways to introduce data heterogeneity.
We compare FedASL with FedAVG as well as other state-
of-the-art auto-weighting algorithms such as Trimmed Mean
and Median [9]. We show that FedASL offers better or
similar model accuracy compared to existing techniques while
avoiding the heavy computation for auto-weighing with as
little as one-tenth of their computation cost.

II. PRELIMINARIES

A. Federated Learning

FedAVG is the state of the art of FL technique where local
model updates are merged in a global server and sent back
again to the clients for further training [5]. The model is
updated synchronously in rounds of communication between
the server and clients. We use neural networks as an example
to discuss FedAVG. A neural network can be represented as a
function f(x,w) = y that maps input x to an output y, where
w ∈ Rn is the model weight parameters of f . An observed
pair 〈x, y〉 represents a training sample and a training set with
m samples is a collection D = {〈xi, yi〉 i = 1, · · · ,m} for a
particular client. Suppose there are N devices and ith device
has a local training dataset Di. Here, the aim of the client
devices is to collaboratively learn the model parameter and
minimize their defined loss. Specifically, the model weight
parameter w is obtained by solving the optimization problem:
minw

∑N
i=1 F(w,Di), where F(w,Di) is the objective func-

tion of ith device. The objective function may be different for
different classifiers such as logistic regression and deep neural
network. A popular choice for the loss function is squared L2
norm, i.e., lf (w, xi, yi) = (yi − f(xi, w))2.

Considering a certain round of training where the server
selects K clients among the N clients at random, where
K ≤ N . The local dataset of the kth client is Dk. Total data
points of the selected client is n =

∑K
k=1 |Dk|. The objective

function becomes

l(w) =

K∑
k=1

nk
n
Fk(w,Dk) with

F(w,Dk) =
1

nk

∑
i∈Dk

li(w, xi, yi) (1)

Minibatch stochastic gradient descent (SGD) can be used
to solve Eqn. (1). In the FL setup, the server sends the global
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Fig. 2. (a) Accuracy of the global model in FedAVG with different number of unreliable clients with bad data. (b) Average accuracy of the good and bad
clients, the global accuracy degrades due to bad clients. (c) Impact of discarding bad client by giving no weights on the global model using the same data.

model to the selected clients. At round t, the client used the
global model wt as their initialization for local training. Now
by using SGD, the local parameter is updated as follows-

wk
t ← wt − η∇F(wt, Dk) for all K clients (2)

where η is the learning rate and ∇F(wt) is the gradient of
the loss function with respect to weight parameters. Now the
global model for the round t + 1 is updated by taking the
weighted average of the local updates that are received from
the local clients as the global model-

wt+1 ←
K∑

k=1

nk
n
wk

t (3)

After updating the global model parameter, the global server
selects a new random set of clients for further training with
their local data. Hence, each individual client is responsible
for training the model with their local data and returning the
trained model to the server. Data privacy is greatly enhanced
in FL since raw user data never leaves the user devices.
Moreover, clients do not require user identity and hence can
send their updates anonymously without any meta-data.

B. Heterogeneity in FL

The data heterogeneity is prevalent in FL as different
clients collect the training data from different data sources
using different hardware/sensors. In case of IoT and edge
devices, the data collecting sensors are different both in quality
and age and are vulnerable to cyber-security attacks [16]. It
is observed that the quality of sensors degrades over time
[17]. In such cases, the data generated from those devices
may have corruption both in features and labels. In crowd-
sourcing scenarios, on the other hand, the data can be noisy
because of bad workers or biasing [18]. Moreover, due to the
decentralized nature of FL, the data distribution of clients can
also non-iid [19]. In worst-case scenarios, users can even be
malicious or corrupted. So data from all edge devices are not
of the same quality. Hence, if we blindly include these clients
in FL with the same weights as the good/reliable clients, the

global model performs poorly. We identify that the degradation
of the global model is due to different data distribution of the
corrupted client from good clients, causing model divergence.
FedAVG algorithm takes the weighted average of the clients’
model updates to construct the global model, and therefore,
fails to remove the effect of bad and noisy clients on the
system.

C. Motivating Example

As a foundation of our approach, we hypothesize that
participation from unreliable clients with bad data quality is
harmful to the overall accuracy and convergence in the central
model aggregation. To see the effect of data heterogeneity in
federated setup, we make a small experiment with only 10
clients.

Impact of client heterogeneity. To support our hypothesis,
we run experiments on the CIFAR10 data set with 10 clients.
We vary the number of clients with corrupted data and check
the accuracy of the global model after each communica-
tion round. We consider all data of an unreliable client are
mislabeled. For better illustration, here we consider clients
with 100% data corruption to amplify the impact of clients’
data quality on the global model’s performance. The model
is trained using FedAVG’s aggregation techniques. Fig. 2(a)
shows the impact of bad clients on global accuracy. As the
number of bad clients increases, accuracy and convergence
greatly suffer. Since FedAVG does not have any mechanism
to control the effect of bad clients in the system, there is no
way to mitigate the effects of bad clients.

Solution approach. To identify the client behavior during
training, we look into the accuracy of individual clients. We
find that the accuracies of all good clients are close to one
another and the accuracies of all the bad clients are behaving
differently. Fig 2(b) shows that bad clients suffer from low
model accuracy due to their bad data quality. The degraded
performance of the bad clients also hampers global accuracy.

To support our hypothesis that the bad clients are responsi-
ble for waning global accuracy, we next test the same model
by giving “zero” weights to the bad clients. In Fig 2(c), we
show the global accuracy where the bad clients are essentially
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Fig. 3. FedASL architecture. Here the good region is 2ασ and any clients
which reside within this zone gets the value βσ. Clients inside the good region
will always contribute more in the global model.

discarded from central model aggregation. Here, we see that
the global accuracy and convergence are not adversely affected
if we can identify and discard bad clients from model updates.

Challenges. Our motivating examples demonstrate that dis-
carding clients with bad data is an effective approach to
handling data heterogeneity problems. However, to employ
this approach in practice, we need to identify the bad clients.
Towards that, in the next section, we propose a novel and
computationally efficient approach where statistical analysis
of the user local update loss is utilized to separate bad clients.
We develop a auto-weighted aggregation called FedASL where
clients are penalized for their statistical abnormality (i.e., bad
clients) by assigning lower weights during model aggregation.

III. FedASL

In this section, we present the details of FedASL (Federated
Learning with Auto-weighted Aggregation based on Standard
Deviation of Training Loss).

Design principles. To enable a lightweight analysis, instead
of entire models with many parameters, we use only one
parameter per client - the client’s local training loss. In
each update round, we use the participating clients’ losses to
determine the quality of each client’s model updates based
on how far their loss is from the median loss. The clients’
updates get weights inversely proportional to their distance
from the median loss. However, directly using this approach
is too restrictive as it penalizes all but one client with the
median loss. In practice, there are many good client updates
which should be treated equally. To implement this, we set a
“good region” around the median loss and consider all clients
with loss in the good region as good client. We determine the
good region based on standard deviation of the model losses.
For instance, we can set the good region around one standard
deviation from the median loss. We also allow FedASL to
tune the relative weights of clients inside and outside the good
region. We use two tunable parameters, α and β, to control the

Algorithm 1 FedASL Algorithm
Server Side:
Initialize(w0, α, β)
for each round t = 0 to T do

Select a subset of St from N clients at random
Broadcast the Global Model wt to the selected client K
for each Client k ∈ K do

wk
t , Lk

t ← Client Update (wt)
end for
Update wt+1 according to Equation 9

end for
Client Side: // Run on selected client k on a training round
Client Update (wt)
for each local epochs i from 1 to E do

wk
t ← wt − η∇F(wt, Dk)

Lk
t← training loss

end for
return wk

t and Lk
t // sent to server

size of the good region and the weights of the clients inside
the good region.

Setting the good region. As described before, the good
region is set based on the median and standard deviation of
the clients’ local training loss. We first define the median of
the loss as

medloss =

{
L[K2 ], if K is even.
1
2

(
L[K−12 ] + L[K+1

2 ]
)
, if K is odd.

(4)

where L = {L1, L2, · · · , LK} is set of training losses reported
by the K clients sorted in ascending order. The standard
deviation σ is defined as

σ2 =
1

K

K∑
k=1

(
Lk −

1

K

K∑
k=1

Lk

)
(5)

Using the median and standard deviation from Eqns. (4) and
(5), respectively, we define the set of loss values in the good
region, Lgood, as follows

Lgood = {Lk : (medloss − α · σ) ≤ Lk ≤ (medloss + α · σ)}
(6)

Here, the tunable parameter α determines how restrictive
FedASL is in determining which updates to consider as good
updates. A small value of α will make FedASL more selective
and vice versa. With increasing value of α more and more
client updates are included in the good region. Sufficiently
large α renders FedASL to behave as FedAVG which considers
all client updates as good. Also note that, since in every round
a new set of clients participate in FL update, our good region
changes dynamically in every FL round.

Setting the client weights. We set the weights of each
client’s based on the value of d which is defined as follows

dk =

{
β · σ, where Lk ∈ Lgood

abs(medloss − Lk), where Lk /∈ Lgood

(7)



Here, 0 < β ≤ α is another tunable parameter that controls
the relative weight distribution among the clients inside and
outside the good region. The weight parameter of each client’s
model update, Ak, is set as

Ak =
d−1k∑K
k=1 d

−1
k

(8)

Note here that,
∑K

k=1Ak = 1 which ensures overall weights
remain the same across updates.

A smaller value of β in Eqn. (7) will increase the weights
of clients inside the good region resulting in FedASL heavily
discriminating clients outside the good region. The value of
β is restricted to go above α to avoid clients inside the good
region receiving lower weights than clients outside. With the
auto-weighting of each client, the FL model update can be
written as

wt+1 ←
K∑

k=1

Ak · wk
t (9)

Fig. 3 illustrates the good region and value of d for FedASL
while Algorithm 1 formally describes FedASL.

IV. EVALUATION

We evaluate our FedASL with a basic FL setup of one server
and N clients settings. In every communication round, a subset
of clients is randomly selected. We evaluate our model with
the base FedAVG, Trimmed Mean and Median algorithms in
various data corruption scenarios with three different datasets.

A. Evaluation Settings

1) Dataset: We adopt three popular datasets MNIST,
CIFAR10 and FEMNIST, which are commonly used in liter-
ature [6], [20].
MNIST: The MNIST dataset is a popular handwriting

dataset that consists of 70,000 grayscale images of size 28×28
pixels each. The dataset is divided into 60,000 training samples
and 10,000 test samples. The images are classified into 10
classes from 0 to 9. We uniformly divide the training dataset
among 100 clients, each getting 600 samples. We use the
original the test set for evaluating the model performance over
time.
CIFAR10: The CIFAR10 is another popular dataset con-

sisting of 60,000 colored images of size 32 × 32 pixels. The
dataset is divided into 50,000 training images and 10,000
images. These images are grouped into 10 separate classes.
We divide the dataset into 100 clients where each client gets
500 samples. We use the original test set for evaluating the
model performance over time.
FEMNIST: The FEMNIST dataset is taken from Tensorflow

federated which is derived from the LEAF [21] dataset. Here,
the dataset is divided into 3,383 true users. There are 341,873
train examples and 40,832 test examples of 28×28 pixels gray
images. The test set has at least one sample from each user.
This is a non-iid and heterogeneous dataset where each user
represents a different client.

TABLE I
DATASET DESCRIPTION AND MODEL USED

Dataset Training Test #Client Distribution Model
MNIST 60,000 10,000 100 IID LR
CIFAR10 50,000 10,000 100 IID CNN
FEMNIST 341,873 40,832 3383 Non-IID LR

2) Model parameters: We focus on an edge setup where
our clients are IoT devices. Hence, we choose simpler and
lightweight models as IoT devices have limited power and
computational capacity. The model parameters used for our
model training are discussed below.
MNIST: For the MNIST dataset, we use simple logistic

regression classifier with Tensorflow Keras sequential model.
The input feature is flattened before training and we take the
one hot encoding for the label. We use the ’softmax’ activation
function and L1=0.01 and L2=0.01 kernel regularizer, ’adam’
optimizer and ’categorical-crossentropy’ as loss function.
CIFAR10: For the CIFAR10 dataset, we use only 1

block VGG [22] network. The architecture consists of 3 × 3
convolutional layer (with 32 convolutional filters and ’relu’
activation function), followed by 2× 2 maxpooling, a dropout
layer (0.2); followed by a dense layer of size 128, ’relu’
activation function, dropout layer (0.5), and finally ’softmax’
activation function is used for finding 10 desired outputs. The
model remains simple to work around in Edge IoT devices.
FEMNIST: For the FEMNIST dataset, we use simple lo-

gistic regression classifier with Tensorflow Keras sequen-
tial model. We use ’relu’ activation function and a dense
layer of size 128, ’adam’ optimizer, and ’Sparse-categorical-
crossentropy’ as loss function. The model size remains small
based on our target the IoT devices.

3) Evaluation scenarios: We consider that due to the qual-
ity and aging of the sensors, there could be 3 different ways
the user data can be corrupted as described below.

Label Shuffling: In the label shuffling case, the label
interpretation of the corrupted sensor is wrong. So the sensor
labels the data randomly. In our experiment, we also vary the
percentage of clients whose label is randomly shuffled.

Label Flipping: In the label flipping case, the label from
a client is flipped to a random value i.e. all the labels in a
corrupted client is the same. In our experiment, we consider
a fraction of the sensors always give a fixed random label
output.

Noisy Data: In the noisy data scenario, labels are inter-
preted properly but the feature space is considered noisy. To
mimic this type of data corruption, we add Gaussian noise to
features. Before that, we normalize the input to the interval
[0, 1]. In this case, for the selected client we add Gaussian
noise x = x+ ε, where ε ∼ N(0, 0.7). Then we normalize the
resulting value again to the interval of [0, 1].

4) Benchmark algorithms: To evaluate FedASL’s perfor-
mance, we compare it with the following state of the art
techniques:
• FedAVG [5]: This is the standard federated averaging

techniques where client weights are determined based on their
dataset size.



TABLE II
ACCURACY OF ALL FL ALGORITHMS UNDER DIFFERENT LEVELS OF DATA CORRUPTION. IN EACH ROUND, 30% OF CLIENTS PARTICIPATED IN

CIFAR10 AND MNIST, AND 10% IN FEMNIST.

Data Type Clean Shuffling Flipping Noisy
Bad Client Per. 0% 10% 30% 40% 10% 30% 40% 10% 30% 40%

CIFAR10

FedAVG 63.55 59.83 53.53 44.8 60.19 52.5 49.31 62.16 58.73 56.14
Median 59.1 57.89 51.16 46.92 57.57 53.77 52.13 57.57 52.52 49.97
Trimmed Mean 62.51 59.65 54.02 46.87 60.39 52.96 47.57 59.95 54.57 53.06
FedASL 63.03 63.32 61.38 60.69 62.77 61.52 60.46 63.49 62.09 58.48

MNIST

FedAVG 82.5 82.02 76.05 71.64 81.77 80.15 79.5 82.16 80.63 79.9
Median 82.4 82.15 80.89 78.95 82.28 81.9 80.69 82.07 80.44 79.1
Trimmed Mean 82.42 82.16 78.52 72.27 82.24 80.8 79.56 82.1 80.46 79.38
FedASL 82.43 82.43 82.26 81.68 82.51 82.36 81.71 82.56 82.25 82.2

FEMNIST

FedAVG 78.25 77.58 74.31 69.62 77.43 74.41 72.31 77.57 75.69 74.75
Median 76.49 75.89 73.72 71.7 76.47 75.85 76.01 76.48 75.63 74.92
Trimmed Mean 77.63 77.18 74.75 71.56 71.85 75.88 73.63 77.68 75.63 75.1
FedASL 77.62 77.54 76.73 76.12 77.06 74.64 71.33 77.37 77.09 76.47

• Median [9]: This is one of the Byzantine robust aggre-
gation rule that aggregates each model parameter indepen-
dently. Specifically, for each ith model parameter, the global
server sorts the ith parameters of the K selected clients i.e.
w1i, w2i, w3i...wKi, where wki is the ith parameter of the kth

local clients. Then the server takes the median of the sorted
parameters as the ith model parameter for the global model.
• Trimmed Mean [9]: This is another Byzantine robust

aggregation rule that also aggregates each model parameter
independently. Specifically, for each ith model parameter, the
global server sorts the ith parameters of the K selected clients
i.e. w1i, w2i, w3i...wKi, where wki is the ith parameter of
the kth local clients. Then the server removes the largest and
smallest β of them and finally, takes the mean of the remaining
K − 2β as the ith parameter of the global server.

B. Evaluation Results

1) Comparison with benchmarks: Table II shows the
accuracy of different algorithms on the three different datasets
for different cases with different percentages of bad clients.
In each round of training, 30% of clients are randomly taken
for CIFAR10 and MNIST, and 10% of clients are randomly
taken for FEMNIST. As we can see in the table, our FedASL
algorithm is robust under different data corruption scenarios
and different corruption levels. It achieves the highest test
accuracy in most cases. Especially, if we look at the cases for
CIFAR10, the accuracy of the existing techniques decreases
a lot with a little introduction of corrupted clients. As we
can see, for the shuffling cases the test accuracy of FedAVG is
only 44.8%, Median is 46.92% and Trimmed Mean is 46.87%
for 40% corrupted clients, where our FedASL get 60.69%
test accuracy which is very close to the accuracy in a clean
environment. We see the same type of test accuracy in flipping
cases also, for FedAVG is only 49.31%, Median is 52.13%, and
Trimmed Mean is 47.57% for 40% corrupted clients, where
our FedASL gets 60.46% test accuracy which is very close to
the accuracy of the clean environment. In case of the noisy
clients, we also find FedASL can achieve higher accuracy
compared to the state-of-the-art techniques in all corruption
levels. Even for the clean environment, our model does not

degrade the model accuracy which indicates that we can use
FedASL even when there are no bad clients.

We see the same result for MNIST dataset as well. As we
have used a simple logistic regression model for the MNIST
dataset, the difference in test accuracy of different algorithms
is less. Even though, in all the corrupted cases our FedASL
algorithm outperforms the state-of-the-art techniques. As we
can see for the shuffling cases the test accuracy of FedAVG
is only 71.64%, Median is 78.95% and Trimmed Mean is
72.27% for 40% corrupted clients, where our FedASL gets
81.68% test accuracy which is very close to the accuracy of
the clean environment. For the MNIST flipping cases also, our
algorithm outperforms all the existing methods. In the noisy
data cases, FedASL performs better compared to the other
methods. Even for the clean environment, our method gives
almost the best result which also proves that in the normal
logistic regression model also, our model can be used in all
test cases.

For the FEMNIST dataset, the data is non-iid and the
number of data points among the client is also different.
Nonetheless, in most cases, our model outperforms the state-
of-the-art techniques. We also use the logistic regression for
the FEMNIST dataset and for the shuffling cases the test
accuracy of FedAVG is only 69.62%, Median is 71.7% and
Trimmed Mean is 71.56% for 40% corrupted clients, where
our FedASL gets 76.12% test accuracy which is very close to
the accuracy of the clean environment. But for the FEMNIST
flipping cases, we found that Trimmed Mean outperforms
other for 30% corrupted clients and Median outperforms in
40% corrupted clients scenarios. But for the noisy cases, we
can see with the increase in corrupted client percentage, our
FedASL algorithm outperforms the existing state-of-the-art.
Also for the clean environment, our model achieves quite a
similar accuracy to the best method which implies, it’s better
to use FedASL even without the presence of any bad clients.
One point to be noted is that mislabeling which we refer to
in our paper as shuffling is the most expected type of data
corruption compared to the flipping or same label for all the
data in the same clients. Since our model can attain higher
accuracy in shuffling and noisy scenarios, FedASL is the best
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(a) Clean, α = 1, β = 0.2
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(b) Shuffling, α = 0.9, β = 0.2
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(c) Flipping, α = 0.9, β = 0.2
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(d) Noisy, α = 0.9, β = 0.2

Fig. 4. Performance of different algorithms for CIFAR10 data corruption for 30% bad clients. In each round, 30% clients are selected at random.
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(a) Clean, α = 0.2, β = 0.05
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(b) Shuffling, α = 1, β = 0.2
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(c) Flipping, α = 0.9, β = 0.2

0 50 100 150 200
Rounds of Training

30

45

60

75

90

A
cc

ur
ac

y 
(%

)

FedAVG
FedASL
Trimmed Mean
Median

(d) Noisy, α = 0.9, β = 0.2

Fig. 5. Performance of different algorithms for MNIST data corruption for 30% bad clients. In each round, 30% clients are selected at random.

0 50 100 150 200 250
Rounds of Training

0

30

60

90

A
cc

ur
ac

y 
(%

)

FedAVG
FedASL
Trimmed Mean
Median

(a) Clean, α = 0.5, β = 0.2
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(b) Shuffling, α = 0.7, β = 0.2

0 50 100 150 200 250
Rounds of Training

0

30

60

90

A
cc

ur
ac

y 
(%

)

FedAVG
FedASL
Trimmed Mean
Median

(c) Flipping, α = 0.1, β = 0.01
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Fig. 6. Performance of different algortithms for FEMNIST data corruption for 30% bad clients. In each round, 10% clients are selected at random.

choice in data corruption scenarios even in non-iid cases.

2) Convergence analysis: We compare the convergence
of our model with the existing state-of-the-art techniques in
Figs. 4, 5, and 6, where we see the attaining accuracy vs
the rounds of training needed for attaining that accuracy.
The results are shown for 30% corrupted clients. As we can
see in Fig. 4(a), for CIFAR10 in the clean environment,
all the algorithms converge smoothly even though Median
based algorithm attains lower accuracy. For the CIFAR10
shuffling and flipping cases, FedASL converges faster with
high accuracy compared to the other techniques that struggle
in convergence. And for the CIFAR10 noisy cases also our
model attain higher accuracy with smooth convergence.

For the MNIST dataset, all the models converge smoothly in
a clean, flipping, and noisy environment. But for the shuffling
cases, our model converges more smoothly than others and
attains a higher test accuracy.

For the FEMNIST dataset, all the model converges smoothly

for the clean and noisy cases. But for the shuffling and flipping
cases, all the methods struggle a bit to converge. But in flipping
cases FedASL struggles more as in flipping cases bad clients
trends to be more in the α zone and removing them by
statistics becomes harder. And with proper tuning α and β
values, we expect to attain a better result.

3) Computation cost analysis: To compute the computa-
tion cost of the different algorithms, we see the server-side
computation time. We first run the algorithms in three models
for the three datasets. As mentioned earlier, we use a very
small model for MNIST and FEMNIST and those are the
logistic regression model. We find that the computation time
in server side for the FedAVG and FedASL is almost similar
as FedAVG needs to calculate the weighted sum of the model
as the global model on the server side and our model FedASL
needs to find the coefficient of weight from the reported
local losses for aggregation. This demonstrates FedASL does
not add any additional computation compared with standard
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Fig. 7. Server-side computation requirement for different algorithms. (a)
Comparison of computation requirement of FedASL with other algorithms
for different datasets. (b) Comparison of computation requirement of FedASL
with other algorithms for different models of CIFAR10 dataset.

FedAVG. However, for the Trimmed Mean and Median, since
they calculate the global model from each parameter of the
reported local models, the computation time is very high
compared to the FedAVG and FedASL. As we can see in
Fig. 7(a), the computation of Trimmed Mean and Median
is always higher compared to FedAVG and FedASL even in
the small model for MNIST and FEMNIST. The difference
in computation time for the CIFAR10 model is much higher
as we have used CNN model for that. In the CNN model,
the number of model parameters is much higher than the
simple logistic regression. This adds additional computation
to Trimmed Mean and Median algorithms. All the result is
shown as normalized to the FedASL algorithm computation
time.

Also, to see the behavior of our FedASL when the model
size is changed, we compare all the algorithms’ computation
times in 3 different CIFAR10 models, i.e. with the 1-VGG
layer, 2-VGG layer and 3-VGG layer in the CNN model.
The result for different CIFAR10 model computation costs is
shown in Fig. 7(b) where the computation costs are normalized
to that of FedASL. We see that FedAVG and FedASL are
unaffected by changing model size. In all the 3 cases, they
need time since the model parameter has a negligible role
in the aggregation techniques for the algorithm. However, for
the Trimmed Mean and Median, as they compute the global
model based on every model parameter, with the increase of
model size, their computation times increase. For VGG-3, the
calculation time for Trimmed Mean is around 12 times and
Median is around 21 times compared to FedASL. These results
show that our algorithm is lightweight and scalable, yet can
handle data corruption very well, making it a great choice for
various FL scenarios.

4) How good is FedASL for low-weighting bad clients?:
To demonstrate how well FedASL can identify the bad clients
and assign them lower weights, we track the average model
aggregation weight, Ak, of good clients and bad clients for
CIFAR10’s shuffling and flipping cases. In each round of
training, 30% of clients are selected randomly. Fig 8(a) shows
the weight coefficient in shuffling case and Fig 8(b) shows the
flipping case. The result shows that throughout the training
rounds our algorithm was able to give more weight to the
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Fig. 8. Auto weighting by FedASL. (a) Average weight coefficint of good
and bad client in CIFAR10 Shuffling. (b) Average weight coefficint of good
and bad client in CIFAR10 Flipping.
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Fig. 9. Effects of changing α and β in our algorithm. (a) The effect of
changing α is shown for label shuffling for CIFAR10 dataset. (b) The effect
of changing β is shown for label shuffling, label flipping, and noisy data cases
for CIFAR10 dataset.

good clients and low weight to the bad clients. So FedASL
conforms to our assumptions and auto-weights clients based
on their data quality over the FL training rounds.

5) Impact of α: To demonstrate the effect of changing the
value of α on the robustness of FedASL, we run an experiment
on CIFAR10 with 30% corrupted clients and apply shuffling
to corrupt the clients. Fig 9(a) shows FedASL’s accuracy as
we change the value of α from 0.01 to 3. For this experiment,
we set β = α. We see that when we use smaller values of α
resulting in smaller good regions, the accuracy is high. This is
because, with a narrow good region, most of the clients within
that region are more likely to be good clients. However, when
we choose an extremely small α (e.g., 0.01), the good region
is only 0.02σ wide and holds too few clients, and does not
represent the distribution of the overall system well.

6) Impact of β: To demonstrate the effect of changing the
value of β on the robustness of FedASL, we run an experiment
on CIFAR10 with 30% corrupted clients and apply shuffling,
flipping, and noising to corrupt the clients. Fig. 9(b) shows
the result for changing the value of β. In this experiment
keeping the α = 1σ, we change β value from 0.01 to 1.
The β value controls the client’s weight for being in the good
region. We see an interesting trend for FedASL in shuffling
case, if we give a very low β value, that means, clients outside
the good region have the least effect, but since good clients
may have been outside the good region also, excluding them
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Fig. 10. Effects of data corruption and percentage of client corruption in
different algorithms for CIFAR10 dataset.

completely decreased the overall accuracy. But after increasing
β value more, there is an optimum point where the effect of
good and bad clients that are outside the good region have an
optimum contribution to the global model. Beyond that point,
if we increase the β value, that means we are giving more
weights to the outside clients where most of them are bad, and
decrease the overall global accuracy. The same trend can be
seen in the FedASL flip case. Initially, with increasing β value,
the accuracy increases but after crossing the optimum point,
the accuracy starts to decrease as well. For the FedASL noise
cases, the pattern is similar but has some random increase in
accuracy. The reason is that there are more good clients outside
of the good region as well as more bad clients inside the good
region in case of noisy data. So, selecting β properly will have
a great effect on attaining good accuracy in our model.

7) Impact of percentage of bad data: To demonstrate the
effect of the percentage of bad data on the robustness of
FedASL, we run an experiment on CIFAR10 with 30% cor-
rupted clients with different levels of corrupted data. Fig. 10(a)
represents the result for the effect of the percentage of bad
data. We see that the accuracy of the existing algorithms
decreases with the increase of the percentage of bad data in
the corrupted clients. But for the FedASL, with the increase of
bad data, the accuracy remains almost the same. This means
our algorithm can successfully identify the clients with bad
data. We see a linear degradation of accuracy for the FedAVG
algorithm which suggest that with the increase of bad data
percentage, performance of FedAVG decreases. For Trimmed
Mean and Median algorithm, the accuracy remains the same
for 75% to 100% bad data levels. This analysis suggests that
even in the case of low data corruption, FedASL performs
better than the existing state of the arts.

8) Impact of percentage of bad clients: To demonstrate
the effect of the percentage of bad data on the robustness
FedASL, we run an experiment on CIFAR10 with different
levels of corrupted clients and apply shuffling to corrupt the
clients. Fig. 10(b) represents the result of the effect of the
percentage of bad clients for different algorithms. As we can
see in the figure, with the increase of bad clients percentage in
the system, the accuracy of the existing algorithms degrades.
For our FedASL, it can effectively handle up to 50% of bad
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Fig. 11. Performance of FedASL with up to 30% coordinated bad clients
for CIFAR10. (a) Coordinated shuffling with similar label alteration. (b)
Coordinated flipping with all bad clients flipping their label to class 5.

clients situation. As we used the statistics of the clients to
determine the good and bad clients, when the percentage of
bad clients is more than 50%, bad clients start to dominate.
It is obvious that any statistics-based approach would fail.
But below 50% situation, our FedASL can effectively gain
higher performance compared to the existing state-of-the-art
techniques. There is an interesting outcome that we get from
the analysis, even though Trimmed Mean and Median is said
to be Byzantine robust in case of bad clients, they perform
worse than FedAVG with a higher percentage of bad clients.
We found that after 50% bad data all the models diverged. In
a typical scenario, we expect the number of bad clients should
be less than 50%. In that case, FedASL is the best choice for
Federated learning.

9) Coordinated bad clients: To demonstrate how FedASL
can handle coordinated bad clients where the goal is to divert
the global model, we consider two scenarios - coordinated
shuffling and coordinated flipping. For coordinated shuffling,
we consider all bad clients to make the same alteration to
their labels. For example, in CIFAR10 a coordinated shuffling
causes all bad clients to change their label ”1” to ”9”. For
coordinated flipping, we consider bad clients to change all of
their labels to a single label to bias the global model to a
single class heavily. For example, in CIFAR10 a coordinated
flipping causes all bad clients to change all their labels to
”5”. The coordinated flipping is stronger coordination than
coordinated shuffling as it targets a single class.

As shown in Fig. 11(a) FedASL can successfully handle
coordinated shuffling for various degrees of coordinated bad
clients. The overall accuracy is more than 60% which indicates
that it is close to the accuracy of the non-coordinated case.
Fig. 11(b) demonstrates that our model can also handle the
coordinated label flipping as the overall accuracy is not af-
fected. We observe that the accuracy of the target label (Class
5 in CIFAR10 in this experiment) for coordinated flipping
has an increasing accuracy as we increase the percentage
of coordination. This is because, with coordinated flipping,
the global model gets biased towards class 5 and predicts
more instances as class 5, capturing classification cases missed
before. However, as shown in Fig. 11(b), this increase in
accuracy comes at the cost of decreased precision.



V. RELATED WORK

Federated learning is a collaborative machine learning
method to learn a model without collecting data from users
[23], [24]. In this paper, we focus on horizontal federated
learning where each client has data with the same features as
others but has personal data. In Federated Averaging(FedAVG),
introduced in 2017, a subset of clients is selected per round of
training for local training and the weighted average of those
trained models is sent back again to some other subset of
clients for further training. Thus over multiple rounds of com-
munication, a global model is learned [5]. But since the model
is trained from the data from remote clients, the data quality
is not ensured and due to the aging and quality of different
sensors, the data quality can be degraded. The performance
of FL degrades in presence of corrupted clients [6]. And it
is well studied that FedAVG can not handle the presence of
corrupted clients as it has no mechanism to mitigate the effects
of bad clients [6], [7]. To defend against corrupted clients,
various algorithms have been proposed in the literature for
attaining robust federated learning [11], [20], [25]. Among
these techniques some of the statistics-based approaches are
notable. One of the solutions is Krum [12] which selects one
of the local models as the global model which is similar to
the other models. The similarity is measured by finding the
Euclidean distance between all the models. Since Euclidean
distance can be largely influenced by a single model parameter,
Bulyan [8] was proposed which combines Krum and a variant
of Trimmed Mean [9] to solve the issue. But Bulyan is not also
scalable and computation hungry as it needs to compute Krum
as well as Trimmed Mean in every round of training. Among
other byzantine robust algorithms, Trimmed Mean [9] takes
each model independently to sort and remove some outliers
and find the average of the remaining model parameter as the
global model parameter. Another way of work is Median [9]
where like Trimmed Mean needs each of the model parameters
to be considered independently and the median of those
parameters is taken as the global model. Another line of work
uses Geometric Median(GM) [10], [11] to find out the model
parameter for the federated learning. The main limitations
of those approaches are that they are computationally heavy
and not suitable for FL at the Internet edge with resource
constraints. Federated reinforcement learning (FRL) based
approaches such as FedPG-BR [26] introduced recently offers
resilience to random systematic failure, adversarial attacks, and
Byzantine faults. But the main limitation of these approaches
is that it considers homogeneous learning agents where in
practicce most of the FRL agents are heterogeneous.

Another line of work uses client selection techniques which
select clients based on the client’s loss function. AFL [14]
uses a value function that can be evaluated on the client-
side and the server uses those valuations and converts them
to some probabilities to select in the next iteration. They
consider selecting clients with higher loss value as they mimic
having more minority data points. Power-of-Choice Selection
Strategies [15] is further work on the previous paper that also

selects the clients with the higher loss for the next training
phase. Client selection approaches need to tag client updates
with their client IDs. Therefore, they cannot maintain client
anonymity diminishing FL’s privacy.

In [3], [25], [27]–[29], a subset of trusted clients are
exploited to mitigate the effects of bad clients. In clustered
Federated learning, [25] proposed to separate the client popu-
lation into two groups i.e. benign and corrupted groups based
on the cosine similarity between model parameters. Li et al. [3]
uses an encoder-decoder-based approach to find out malicious
model updates. In FLTrust [27] suggests maintaining a root
dataset and server model that collects a clean small training
dataset from the clients. Since in a federated learning setup,
the credibility of the trusted clients or validation dataset is not
guaranteed, and due to communication and privacy constraints,
these approaches violate Federated learning protocols.

In contrast to prior works, we propose FedASL which
can automatically mitigate the effect of bad clients in every
round of training without any trusted clients or clients id.
FedASL is robust against various data corruption scenarios.
More importantly, FedASL is a lightweight approach and does
not add additional computation. FedASL is also suitable even
if there is no data corruption and attains similar accuracy as
the standard FL algorithms such as FedAVG.

VI. CONCLUDING REMARKS

In this paper, we presented FedASL, a novel and lightweight
auto-weighted aggregation-based FL technique. FedASL uti-
lizes local training loss of FL clients to identify clients with
corrupted data. We developed a novel region-based segregation
between clients with different quality of data. Using extensive
evaluation with three different datasets under various scenarios
we demonstrated the effectiveness of FedASL. We also showed
that FedASL adds no additional computation burden on the
central model server.

Limitations. While FedASL demonstrates its effective-
ness in addressing FL’s heterogeneity using efficient auto-
weighting, it also has certain limitations. FedASL is evaluated
in a cooperative setting where the clients truthfully report their
training loss. Hence, FedASL can be attacked by malicious
clients who send fabricated loss values to include their unfa-
vorable model updates in the aggregation. However, the weight
regions in FedASL are not disclosed to the FL clients. Also,
by tightening the good region, we can reduce the effectiveness
of these attacks. FedASL’s design is not robust in identifying
good and bad user data sources. For instance, a user with
biased but good data may fall outside the good region and
treated as a user with data corruption. We have not addressed
the strong class imbalance in user data which may lead to weak
statistical coherence between clients where FedASL cannot
effectively identify its weight regions. While not applicable
for all scenarios, FedASL offers a novel lightweight auto-
weighting approach that can handle data heterogeneity with
minimal additional computation.
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