
Efficient Federated Learning with Self-Regulating Clients

Zahidur Talukder
University of Texas at Arlington

Mohammad A. Islam
University of Texas at Arlington

1. INTRODUCTION
Motivation. Since its inception [1], Federated Learning

(FL) has been enjoying a strong interest from the privacy-
preserving AI research community. FL also has been com-
mercially implemented in popular applications such as Google’s
Gboard and Apple Siri. In FL, Machine Learning (ML)
models are trained cooperatively by many clients (e.g., mo-
bile phones) without explicitly sharing their identity and
private data. The training is done through iterative commu-
nication rounds between a central parameter/model server
and clients. In each communication round, the global model
is supplied to a subset of clients who use their private data
to do local training on their respective devices. The updated
models from each participating client are anonymously sent
back to the central server and aggregated to get the global
model for the next communication round.

Due to its siloed decentralized training on locally gener-
ated client data, FL suffers from data heterogeneity where
the statistical differences (i.e., non-IID) between the train-
ing samples for local model updates cause model drifting
during aggregation at the central server and affect conver-
gence. The data heterogeneity is prevalent in FL as different
clients collect the training data from different data sources
using different hardware/sensors. FL clients, therefore, have
a varying degree of reliability in terms of their data quality.
They can even be malicious. However, the aggregation ap-
proach proposed in [1], known as Federated Averaging or
FedAvg, does not directly address data heterogeneity. Fe-
dAvg uses a weighted averaging where clients get weights
proportional to the size of their respective training data set.

Limitations of existing approaches. A prominent line
of work to circumvent the data heterogeneity issues focuses
on controlling the aggregation weights at the central server
[2, 3, 4]. The foundational idea here is to put a lower weight
on the updates that are “unfriendly” for the central model.
However, for the clients receiving a low model aggregation
weights, and hence, contributing little to the central model,
the computation cost of local model training and the com-
munication cost of sending the model update to the central
server can be perceived as a “waste of resources”, especially
since clients’ devices in FL setup are typically considered to
be resource-constrained.

Our contribution. Our goal in this work is to avoid
the aforementioned resource waste by stopping the clients
from participating in model update rounds if their updates
are destined to make little to no impact. More impor-
tantly, we want the clients themselves to be able to antic-
ipate this type of resource waste and refrain from partici-
pating in the model updates (in the FL rounds they are se-
lected). We propose a novel FL approach, Federated Learn-
ing with Self-Regulating Clients (FedSRC) where clients im-

Copyright is held by author/owner(s).

Clients Pre-train
Accuracy

Check
point-1

Local
Training

Model
Aggregation

Global Model, Median Accuracy

Global
Server

Check
point-2

Model
Updates,
Accuracy

Post-train
Accuracy

Figure 1: FedSRC adds two checkpoints based on pre-train
and post-train model accuracy to enable self-regulated client
participation.

plement checkpoints along their local training path to deter-
mine whether they should exit from participation. FedSRC’s
design is motivated by our empirical observation that, simi-
lar to reducing aggregation weights, discarding clients with
“bad data” improves the global model (Fig. 2). We also
observe that the clients with bad data suffer from worse
model accuracy than others. Based on these observations,
in FedSRC, client checkpoints are designed to evaluate the
model accuracy and compare with the previous round’s me-
dian training accuracy provided by the central server. The
overhead of FedSRC’s checkpoints implementation is low as
they only require lightweight inference on a small data set.
Also, at the end of each update round, participating clients
need to send only one additional parameter, training accu-
racy, to the central server. Fig. 1 illustrates the working
principle of FedSRC.

We evaluate FedSRC using three different data sets. We
show that with the same number of communication rounds,
FedSRC can save as much as 39% on the communication and
37% on the computation.

Merits of FedSRC. By design, FedSRC can improve the
overall communication, and computation-efficiency of FL
with weighted model aggregations [1, 2, 3, 4]. More impor-
tantly, FedSRC can work seamlessly with other communica-
tion efficient FL approaches such as model compression and
structured update [5]. FedSRC can also be integrated with
techniques that tackle model and data poisoning attacks at
the central server. In fact, FedSRC can assist thwarting data
poisoning attacks where the client’s FL steps (i.e., client
firmware) are not compromised. In any case, FedSRC does
not introduce any new attack vector and performs no worse
than existing approaches.

Parallels with client selection in FL. FedSRC’s ap-
proach has some similarities with active client selection [6,
7]. However, FedSRC is fundamentally different from client
selection where the central server creates client profiles to
select the suitable clients in each communication round.
Client selection approaches need to tag client updates with
their client IDs. Therefore, they cannot maintain client
anonymity diminishing FL’s privacy. In FedSRC, on the
other hand, all client updates are sent to the central server
anonymously following standard FL protocols.

2. BACKGROUND

2.1 Federated Learning (FedAVG)
We here formalize FL in the context of neural network

based ML system. A neural network can be represented
as a function f(x,Θ) = y that maps input x to an out-
put y, where Θ ∈ Rk is the parameters of f . An ob-
served pair 〈x, y〉 represents a training sample and a train-
ing set with m samples is a collection D = {〈xi, yi〉 i =
1, · · · ,m}. The loss function on a training set Lf (D,Θ) =
1
|D|
∑
〈xi,yi〉∈D lf (xi, yi,Θ) where lf (xi, yi,Θ) is the loss of

prediction for sample 〈xi, yi〉 with model parameter Θ. A
popular choice for the loss function is squared L2 norm, i.e.,
lf (xi, yi,Θ) = (yi − f(xi,Θ))2. The training objective here
is to tune Θ to minimize Lf (D,Θ).

In FL setting, each user u ∈ U holds a private subset of
training sample Du where D = ∪u∈UDu. The loss func-

tion can be rewritten as L(D,Θ) =
∑
u∈U

|Du|
|D| Lf (Du,Θ)

where Lf (Du,Θ) = 1
|Du|

∑
〈xi,yi〉∈Du

lf (xi, yi,Θ). To run

stochastic gradient descent at communication round k, a
random subset of users Uk ⊂ U is chosen to form a mini-
batch Bk = ∪u∈UkDu. In practice, |Uk| � U and a subset

of user’s local samples Du may be chosen for Bk. With
this the loss gradient ∆Lf (Bk,Θk) = 1

|Bk|

∑
u∈Uk δ

k
u where

δku = |Du|∆Lf (Du,Θ
k). With a learning rate of η the gra-

dient descent step at the central model server is

Θk+1 ← Θk − η
∑
u∈Uk δ

k
u∑

u∈Uk |Du|
, (1)

which only requires
〈
|Du|, δku

〉
from each user to be sent

to the central server. After each minibatch training, the
updated model Θk+1 is synchronized with all users and then
a new round of minibatch update is commenced with a new
random set of users. Hence, each user is responsible (in the
minibatch rounds it is chosen for gradient descent update)
for calculating the loss gradient δtu using their local data.
Data privacy is greatly enhanced in FL since raw user data
never leaves the user devices. Moreover, Eqn. (1) does not
require user identity and hence users can send their updates
(
〈
|Du|, δku

〉
) anonymously without any meta-data.

2.2 Motivating Example
As a foundation of our approach, we hypothesize that par-

ticipation from unreliable clients with bad data quality is
harmful to the overall accuracy and convergence in the cen-
tral model aggregation. To support our hypothesis, we run
experiments on the CIFAR10 data set with 10 clients. We
vary the number of clients with corrupted data and check
the accuracy of the global model after each communication
round. We consider all data of an unreliable client are mis-
labeled. For the purpose of better illustrating, here we con-
sider clients with 100% data corruption to amplify the im-
pact of clients’ data quality on global model’s performance.

Fig. 2(a) shows the impact of bad clients on the global
accuracy. As the number of bad clients increases, accuracy
and convergence greatly suffer. Next, in Fig. 2(b) we show
the global accuracy where we discard (i.e., set weights to
zero) the bad clients from central model aggregation. Here,
we see that the global accuracy and convergence is not ad-
versely affected if we can identify and discard bad clients
from model updates, thereby supporting our hypothesis that

0 50 100 150 200
Rounds of Training

0
15
30
45
60
75

A
cc

ur
ac

y(
%

)

All good
1 bad

2 bad
3 bad

4 bad
5 bad

(a) FedAVG

0 50 100 150 200
Rounds of Training

0
15
30
45
60
75

A
cc

ur
ac

y(
%

)

All good
1 bad

2 bad
3 bad

4 bad
5 bad

(b) Client discarding

Figure 2: (a) Accuracy of the global model with different
number of unreliable clients with bad data. (b) Impact of
discarding bad client on the global model.

filtering out imperfect clients helps the global model. More-
over, we also identify that bad clients suffer from low model
accuracy due to their bad data quality.

3. FedSRC
Here we present FedSRC where clients self-regulate their

participation in model updates towards improved commu-
nication and computation efficiency without sacrificing, in
some cases improving, the accuracy of the global model.

Working principle. In FedSRC, after being selected
by the central model server, a client determines whether
to participate in the model update based on two check-
points placed along its processing path. The first check-
point (Checkpoint-1) is after the client receives the updated
model from the central server. In Checkpoint-1 , the client
determines whether to proceed with local training or remove
itself from the model update of the current round. The sec-
ond checkpoint (Checkpoint-2) is after the local training is
completed. In Checkpoint-2 , the client determines if the
model update should be sent to the central server or not.
If a client exits from an update round in Checkpoint-1 , it
saves the computation for local training and communica-
tion to send the update to the central server. On the other
hand, a client exiting the model update at Checkpoint-2 only
saves on the communication. Next, we describe how the two
checkpoints work.

Added steps for checkpoints implementation. For
our checkpoints implementation, we add two additional steps
on the client where a test data set Dk

u ⊂ Du is used to
determine the model accuracy before and after the local
training. With central model Θk the pre-train accuracy is
Aku,pre = A(Dk

u,Θ
k), where A(Dk

u,Θ
k) calculates the accu-

racy of model Θk using test set Dk
u. The post-train accuracy

is Aku,post = A(Dk
u,Θ

k+1
u), where Θk+1

u = Θk − η δku
|Du| .

In addition, during model update, clients also report the
post-train accuracy Aku,post to the central server. The central

server determines the median post-train accuracy Ãkpost =

Medu∈Uk (Aku,post) and sends it to the clients selected for the

next round along with the updated model Θk.
Client checkpoints for self-regulation. In Checkpoint-

1 , pre-train accuracy Aku,pre is compared against the pre-

vious round’s median post-train accuracy Ãk−1
post. A client

moves on to local training if Aku,pre > Ãk−1
post − α, where α is

a FedSRC parameter that controls how aggressively clients
regulate themselves. After local training, Checkpoint-2 al-
lows model update

〈
|Du|, δku, Aku,post

〉
to be sent to the cen-

tral server if Abs(Aku,pre −Aku,post) > β, where β is another
FedSRC parameter regulating Checkpoint-2 ’s effectiveness.

0 50 100 150 200
Rounds of Training

0

15

30

45

60
A

cc
ur

ac
y(

%
)

FedAVG
Trimmed mean
FedAVG+FedSRC
Trimmed mean+FedSRC

(a) CIFAR10, α = 0.05, β = 0.15

0 50 100 150 200
Rounds of Training

0

20

40

60

80

A
cc

ur
ac

y(
%

)

FedAVG
Trimmed mean
FedAVG+FedSRC
Trimmed mean+FedSRC

(b) MNIST, α = 0.05, β = 0.15

0 50 100 150 200 250
Rounds of Training

0

20

40

60

80

A
cc

ur
ac

y(
%

)

FedAVG
Trimmed mean
FedAVG+FedSRC
Trimmed mean+FedSRC

(c) FEMNIST, α = σ, β = 2σ

Figure 3: FedSRC performs equally or better than existing FL approaches with communication and computation savings.

CIFAR10 MNIST FEMNIST0

15

30

45

C
om

m
un

ic
at

io
n

 S
av

in
g

%

32%
38% 35%34%

39%
35%

FedAVG+FedSRC
TM+FedSRC

(a) Communication

CIFAR10 MNIST FEMNIST0

15

30

45

C
om

pu
ta

tio
n

 S
av

in
g

%

32%
36%

18%

31%
37%

20%

FedAVG+FedSRC
TM+FedSRC

(b) Computation

Figure 4: FedSRC’s saving compared to FedAVG.

0 50 100 150 200
Rounds of Training

0
25
50
75

100
125
150
175

#C
lie

nt
 B

lo
ck

good_blocked
bad_passed

(a) FedAVG+FedSRC

0 50 100 150 200
Rounds of Training

0
25
50
75

100
125
150
175

#C
lie

nt
 B

lo
ck

good_blocked
bad_passed

(b) TM+FedSRC

Figure 5: Number of good client blocked and bad client pass
by our fileter

4. EVALUATION
Experimental setup. We evaluate FedSRC using three

commonly used data sets with FL - CIFAR10/ 60,000/ 10,000/
100, MNIST/ 50,000/ 10,000/ 100, and FEMNIST/ 341,873/
40,832/ 3383 where the data set configuration is represented
as Name/ #training sample/ #test sample/ #clients. For
CIFAR10, we use one block VGG network, and for MNIST
and FEMNIST, we use a logistic regression classifier with
Tensorflow and Keras sequential model. We use small ML
models considering that in FL setup the client devices are
typically resource-constrained. We use two aggregation weight-
based benchmark algorithms - FedAvg and Trimmed Mean
(TM). We implement FedSRC on top of these two algorithms
- FedAvg+ FedSRC and TM+ FedSRC to see how much
benefit FedSRC brings to the existing FL approaches. We
consider 30% clients of each data set suffer from bad data
quality with 30% added Gaussian noise.

Execution of FedSRC. During the evaluation, we iden-
tify that the checkpoints in FedSRC need to be enabled after
a few tens of communication rounds to allow a stable me-
dian accuracy Ãk−1

post. We wait for 10 rounds for CIFAR10
and MNIST, and 50 rounds for FEMNIST. We use α = 0.05
and β = 0.15 for CIFAR10 and MNIST, while for FEMNIST
we use α = σk and β = 2σk where σk = Stdu∈Uk (Aku,post).

Results. Fig. 3 shows the accuracy of the global model
as we progress through communication rounds for the four
different algorithms. We see that for CIFAR10 (Fig. 3(a))
and MNIST (Fig. 3(b), FedSRC results in better accuracy.
Meanwhile, for FEMNIST, FedSRC retains a similar perfor-
mance as FedAvg and TM.

Fig, 4 shows FedSRC’s savings compared to FedAVG (which
is the same at TM) where there is no client-side control
is implemented. We calculate the savings based on how
many communication and computation events the clients
have averted using FedSRC compares to FedAVG. In Fig. 4(a),
we see more than 30% communication savings across all data
sets. Meanwhile, Fig. 4(b) shows that CIFAR10 and MINST
have computation savings comparable to the communica-
tion savings. For FEMNIST, however, we see a dip in com-
putation saving which indicates that for FEMNIST many
client updates crossed Checkpoint-1 , but got stopped at
Checkpoint-2 . Whereas for CIFAR10 and MNIST, their sim-
ilar communication and computation savings indicate the
updates that passed Checkpoint-1 , also passed Checkpoint-2
in most cases.

5. CONCLUDING REMARKS
In this paper, we presented our preliminary finding on a

novel approach, FedSRC, for improving communication and
computation efficiency of FL without sacrificing the global
model accuracy and client anonymity. To the best of our
knowledge, this is the first attempt to regulate client partic-
ipation from the client side.

Future work. With the motivating preliminary results,
we plan to improve FedSRC’s current implementation along
with the following directions. Convergence analysis. We
will conduct convergence analysis on our model’s accuracy-
based approach to establish theoretical performance guar-
antees for FedSRC. Reducing checkpoint overhead. Instead
of a separate inference step to calculate model accuracy for
FedSRC’s checkpoints, we plan to utilize the calculation done
in the forward pass during model training to extract the
model accuracy with minimal overhead. Parameter sensi-
tivity. We will study the impact of checkpoint parameters α
and β on FedSRC. We also plan to implement auto-tuning
for these two parameters. Extended evaluation. Finally, we
will also extend our evaluation to more data sets and com-
pare FedSRC with various benchmark algorithms, especially
with active client selection algorithms.

6. REFERENCES
[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A.

y Arcas, “Communication-efficient learning of deep networks
from decentralized data,” in AISTATS, 2017.

[2] S. Li, E. Ngai, F. Ye, and T. Voigt, “Auto-weighted robust
federated learning with corrupted data sources,” ACM
Trans. Intell. Syst. Technol., feb 2022.

[3] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich,
and A. T. Suresh, “Scaffold: Stochastic controlled averaging
for federated learning,” in ICML, 2020.

[4] D. Yin, Y. Chen, R. Kannan, and P. Bartlett,
“Byzantine-robust distributed learning: Towards optimal
statistical rates,” in ICML, 2018.

[5] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T.
Suresh, and D. Bacon, “Federated learning: Strategies for
improving communication efficiency,” arXiv preprint
arXiv:1610.05492, 2016.

[6] Y. J. Cho, J. Wang, and G. Joshi, “Client selection in
federated learning: Convergence analysis and
power-of-choice selection strategies,” AISTATS, 2022.

[7] J. Goetz, K. Malik, D. Bui, S. Moon, H. Liu, and A. Kumar,
“Active federated learning,” arXiv preprint
arXiv:1909.12641, 2019.

