
Practical Efficient Microservice Autoscaling

Md Rajib Hossen
University of Texas at Arlington

Mohammad A. Islam
University of Texas at Arlington

1. INTRODUCTION
Motivation. In recent years, the adoption of microser-
vices in production systems has been steadily growing. With
their loosely-coupled and lightweight components, microser-
vices are easier to manage than traditional monolithic ap-
plications. However, microservices introduce new challenges
towards efficient resource management because their high
number of individually manageable components creates a
large configuration space. Moreover, microservices have com-
plex inter-dependencies, making identifying “good” config-
urations harder. Even the same amount of resources can
result in different response latencies based on how the re-
source is distributed among different microservices. Mean-
while, existing cloud management approaches are designed
for monolithic deployments and cannot capture the complex
interactions between microservices.
Limitation of state-of-art approaches. Recently, sev-
eral Machine Learning (ML) based solutions have been pro-
posed where an ensemble of ML techniques are used to
extract the complex relationship between microservices re-
sources and performance [1, 2, 3, 4, 5]. However, these
ML-based approaches are fundamentally limited by their
dependency on extensive training on high-resolution data
(e.g., request level traces) to capture microservice dynamics.
More importantly, to identify and mitigate the root causes
of Service Level Objective (SLO) violations, ML-based so-
lutions intentionally cause or allow SLO violations that are
undesirable in commercial applications [1, 2, 4, 3]. Further,
time-consuming ML retraining may be triggered frequently
due to changes in microservices dynamics caused by software
updates and migration to servers with different hardware.
Our contributions. To circumvent the aforementioned
limitations, we develop PEMA (Practical Efficient Microservice
Autoscaling), a lightweight resource manager which does
not rely on extensive training. Instead, PEMA iteratively
interacts with the microservice application to find efficient
resource allocations. PEMA’s goal is not to directly provide
efficient resource configuration based on the system’s state,
rather it is designed to navigate the configuration space to
quickly find an efficient resource allocation.

To avoid intentional SLO violations, PEMA starts with
sufficient resource for all microservices and then focuses on
finding resource reduction opportunities while ensuring the
end-to-end performance i.e., SLO is not violated. Since
we start from ample resource, even when PEMA performs
poorly (i.e., fails to identify the resource reduction oppor-
tunities), the microservices retains enough resource, albeit
inefficient, to satisfy the SLO. To facilitate the opportunis-
tic resource reduction-based approach, we adopt a “mono-
tonic resource change” strategy where we do not mix re-
source reduction (for some microservices) and resource in-

Copyright is held by author/owner(s).

crease (for some other microservices) in the same iteration of
resource change. We observe that, despite the complex inter-
dependencies between microservices, monotonic resource change
results in a monotonic change in applications response time.
This allows us to use the response time as an indicator of re-
source reduction opportunity and make gradual resource re-
duction to navigate towards an efficient resource allocation.
In addition, experiments on our prototype microservice im-
plementation reveal that using only two microservice-level
performance metrics - CPU utilization and CPU throttling,
PEMA can avoid resource reduction from microservices ap-
proaching their bottleneck resource.

Our performance evaluation on three prototype microser-
vice implementations demonstrate that PEMA can attain
resource efficiency close to the optimum with a few tens of
iterations. We show that PEMA can save as much as 33%
resource compared to rule-based resource allocation strate-
gies of commercially available cluster managers such as the
Kubernetes.

2. DESIGN OF PEMA
Problem formulation. Using a discrete-time model

with a time step ∆t (e.g., one minute) where the microser-
vice resource allocation decisions are updated at the begin-
ning of each time step, we formalize our resource manage-
ment as the following optimization problem ORA (Optimum
Resource Allocation)

ORA: minimize
xt

N∑
i=1

xti (1)

subject to F(xt) ≤ R, (2)

Here, at time step t, xt = (xt1, x
t
2, · · · , xtN) is the resource

allocation vector of the N microservices, F(xt) is the end-
to-end latency response of the application for resource allo-
cation xt, and R is the response latency threshold defined in
the SLO. In what follows, we develop PEMA, a practical mi-
croservices resource manager that finds a provably efficient
solution to ORA.

Solution approach of PEMA. Solving PEMA can be in-
terpreted as tuning the application resources that will make
the response latency exactly equal to the SLO specified level.
Starting with ample resources for each microservices, PEMA
uses the difference between current application performance
and the SLO as an indicator of resource reduction oppor-
tunity. To identify the target microservices for resource
reduction, PEMA uses microservice-wise performance met-
rics. More specifically, PEMA uses the CPU utilization and
CPU throttling to filter out the microservices approaching
their bottleneck resource configuration and then implements
a randomized selection process where the probability of pick-
ing a microservice is determined by its CPU utilization.

Resource reduction. For resource reduction at time
step t, we first decide the number of microservices nt to

reduce resources from using

nt = N ·min

(
R− rt−1

αR
, 1

)
(3)

where, rt−1 = F(xt−1) is the response time in the previous
time step. α ≤ 1 is a user-defined non-negative parameter
that determines how aggressively we want to reduce the re-
source. Next, we decide how much resource we reduce in the
nt microservices in percentage using

∆t = β ·min

(
R− rt−1

αR
, 1

)
· 100%, (4)

where β ≤ 1 is another user defined parameter that decides
the maximum resource reduction for any microservice in one
time step. The parameters α and β determines how aggres-
sively we reduce the resource in every time step.

Avoiding bottleneck services. For the i-th microser-
vice we denote its utilization as ui with a bottleneck thresh-
old U th

i and CPU throttling as hi with a bottleneck thresh-
old Hth

i . To decide the nt candidate microservices, we first
take the set of microservices that has a CPU throttling less
than their respective thresholds. We denote the set of in-
dexes of these microservices as It = {i : ht−1

i ≤ Hth
i }. We

then normalize the utilization of each microservice in It to

their respective utilization threshold as u∗i
t−1 =

ut−1
i

Uth
i

and

update the probability of each microservice in It as follows

pti = 1− u∗i
t−1 −mini∈It(u

∗
i
t−1)

1−mini∈It(u
∗
i
t−1)

(5)

Here, mini∈It(u
∗
i
t−1) means the minimum normalized uti-

lization among all the microservices in It. We populate a
new candidate set I∗t with a inclusion probability of pti for
the i-th microservice. If the size of I∗t is equal to or smaller
than nt, we take the entire set I∗t and reduce each microser-
vice in I∗t and reduce their resource by ∆t. However, if the
size of I∗t is greater than nt we uniformly randomly choose
nt microservices from I∗t.

Updating bottleneck thresholds. We use online learn-
ing to find the bottleneck thresholds for utilization and CPU
throttling for each microservice. In PEMA, we begin with a
conservative estimation of utilization threshold set at 15%
and CPU throttling threshold of “zero” (i.e., no throttling)
for all microservices. Now as we gradually reduce the re-
source, the utilization and throttling of all microservices
eventually crosses their respective threshold limits. How-
ever, after any time step t− 1, if PEMA sees that there was
no SLO violation, it updates all the threshold limits for time
step t as follows

U th
i = max

(
U th

i , ut−1
i

)
, ∀i (6)

Hth
i = max

(
Hth

i , ht−1
i

)
, ∀i (7)

Iterative resource allocation. PEMA applies the re-
source reduction iteratively and saves all resource alloca-
tions, xt, and the response times, rt, in a “Resource Al-
location History Database (RHDb)”. The purpose of the
database is to allow PEMA to move back to a previous re-
source allocation in case of an SLO violation and enable
random exploration.

Escaping sub-optimum configurations. PEMA may
make unfavorable resource reductions at the beginning (e.g.,

Algorithm 1 PEMA

Input: SLO (R), affinity for resource reduction (α), maxi-
mum resource reduction limit (β), bottleneck utilization
(U th

i), and bottleneck CPU throttling (Hth
i) for all mi-

croservices, exploration probability parameters A and
B

Output: Resource allocation (x)
1: for each time-step t do
2: Performance metrics: Collect end-to-end response

time (rt−1), microservice utilization ut−1
i , CPU throt-

tling ht−1
i

3: Database update. Insert xt−1
i , rt−1, U th

i , and Hth
i

to resource allocation history data base with key t−1.
4: Handling SLO violation. If rt−1 > R, update re-

source allocation to configuration from the resource
allocation database with minimum resource and no
SLO violation. Go to Line 11.

5: Updating bottleneck thresholds. For all mi-
croservices, update bottleneck thresholds for uti-
lization, U th

i , and CPU throttling, Hth
i , following

Eqns. (6) and (7), respectively.
6: Exploration. With a probability pte defined in

Eqn. (8), update resource allocation, xt to a randomly
chosen configuration from database without SLO vio-
lation. Go to Line 11.

7: Resource reduction targets: Determine number of
microservice for resource reduction, nt, using Eqn. (3)
and resource reduction target for each microservice,
∆t using Eqn. (4).

8: Avoid bottleneck services: Get the set It of mi-
croservices that do not exceed CPU throttling thresh-
old.

9: Microservice-wise augmentation: Build a new set
I∗t from microservices in It with an inclusion proba-
bility of pti defined in Eqn. (5).

10: Resource reduction: If |I∗t| > nt, uniformly ran-
domly choose nt microservices from I∗t, else choose
all microservices from I∗t, and then update their re-
source to xt−1

i ·∆t.
11: end for

making particular microservice reach bottleneck) and set-
tle at inefficient resource allocation, even though other mi-
croservices have ample resources. To escape from such ineffi-
cient resource allocations, we implement random exploration
where PEMA with a probability pte rolls back to a uniformly
random previous resource allocation in RHDb. We set pte
based on the response latency as follows

pte = A ·min

(
R− rt−1

αR
, 1

)
+B (8)

Here, A and B are exploration parameters that decide the
maximum and the minimum probability of exploration, re-
spectively, and satisfy 0 ≤ B ≤ A ≤ 1 and A+ B ≤ 1. The
exploration probability decreases as PEMA’s response time
rt−1 approaches the SLO R. The random exploration also
allows PEMA to “walk back” the resource reduction path it
took and identify previously missed reduction opportunities.
Algorithm 1 summarizes the iterative steps and algorithm
flow of PEMA.

0 10 20 30 40 50 60 70
Iterations

0

10

20

30

40
To

ta
l C

PU
High Exploration
Low Exploration

(a) CPU allocation

0 10 20 30 40 50 60 70
Iterations

150

200

250

300

R
es

po
ns

e
(m

s)

High Exploration
Low Exploration

(b) Response time

Figure 1: Execution of PEMA on Sock Shop with different ex-
plorations. The exploration parameters in Eqn. (8) for high
exploration are A = 0.1, B = 0.01, and for low exploration,
A = 0.05, B = 0.005.

0 5 10 15 20 25 30 35
Iterations

30
40
50
60
70
80
90

To
ta

l C
PU

CPU

300
450
600
750
900
1050
1200

R
es

po
ns

e
(m

s)Response

(a) Train Ticket

0 5 10 15 20 25 30
Iterations

0
5

10
15
20
25

To
ta

l C
PU

CPU

10
20
30
40
50
60

R
es

po
ns

e
(m

s)Response

(b) Hotel Reservation

Figure 2: Execution of PEMA for Train Ticket and Hotel Reser-
vation.

3. EVALUATION
Experimental methodology. We use three prototype
microservices implementations widely used in academic re-
search on microservices [1, 2, 3]. We implement Train Ticket
consisting of 41 microservices, Sock Shop with 13 microser-
vices, and Hotel Reservation with 18 microservices. We de-
ploy these services in Docker containers managed by Kuber-
netes. Our Kubernetes cluster consists of five nodes with one
master node and four worker nodes. Each node is equipped
with two 10-core Intel Xeon processors, and 128 GB of Mem-
ory running Ubuntu 20.04.3 operating system.

Benchmark strategies. We compare the resource allo-
cation efficiency of PEMA against two benchmark strategies
- optimum (OPTM) and rule-based (RULE). In OPTM, we
use an exhaustive trial and error search to identify the best
possible resource allocation. It acts as the upper limit of re-
source efficiency achievable by any resource manager. RULE
is Kubernetes’ rule-based resource scaling. We chose RULE
as a commercially available resource allocation algorithm to
gauge PEMA’s efficiency improvement. We do not compare
PEMA to the ML-based resource allocation strategies as they
do not focus on resource allocation efficiency.

Execution of PEMA. Fig. 1(a) demonstrates the itera-
tive resource allocation and Fig. 1(b) shows the correspond-
ing response times for Sock Shop under a workload of 700
requests per second for two different sets of exploration pa-
rameters. We see a few SLO violations in Fig. 1(b) which
are mitigated immediately by increases in CPU resource.
Figs. 2(a) and 2(b) show the iterative resource changes and
the corresponding response times for the microservices Train
Ticket and Hotel Reservation, respectively.

Comparison of resource allocation efficiency. We
run each of the three microservices applications using PEMA
and the two benchmark algorithms. We normalize each re-
source allocation for each workload level using the resource
allocation of OPTM. Figs. 3(a), 3(b), and 3(c) show the
resource allocations of Train Ticket, Sock Shop, and Hotel
Reservation, respectively for the three different algorithms.
We see that PEMA’s resource allocation efficiency is very

125 225 325
Workloads (RPS)

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 C
PU

OPTM
PEMA

RULE

(a) Train Ticket

300 700 1100
Workloads (RPS)

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 C
PU

OPTM
PEMA

RULE

(b) Sock Shop

400 600 800
Workloads (RPS)

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 C
PU

OPTM
PEMA

RULE

(c) Hotel Reserv

Figure 3: Performance comparison of PEMA against optimum
(OPTM) and commercial autoscaler (RULE).

close to OPTM. We also observe that PEMA’s efficiency
drifts away from OPTM with increasing workload. On the
other hand, PEMA consistently beats saving as much as 33%
on resource allocation for Sock Shop at high workloads.

The performance comparison results demonstrate that de-
spite being a lightweight resource manager, PEMA can de-
liver close to optimum resource allocation.

4. CONCLUDING REMARKS
In this paper, we proposed PEMA, an iterative feedback-

based approach to autoscale microservices. PEMA is lightweight
as it only requires the application’s end-to-end performance
and microservice-level CPU utilization and CPU throttling
to navigate to efficient microservice resource allocation.

Limitations of PEMA’s approach. Due to its non ML-
heavy approaches, PEMA’s design loses on capturing com-
plex interdependencies between microservices, and there-
fore, is limited on the absolute best resource efficiency it
can achieve. Also, due to a randomized exploration based
search, PEMA offers provably efficient management and can
result in arbitrarily inefficient resource allocations at times.

Future work. PEMA’s implementation has several limi-
tations that we plan to address. First, after an unintentional
SLO violation, PEMA rolls back to a previous configuration
in the next time step (Line 4 in Algorithm 1). Hence, the
application suffers from bad performance during one full up-
date interval. Second, PEMA does not take into account the
extent of SLO violation during roll back, rather it rolls back
to the most recent SLO satisfying configuration. Third, we
do not actively utilize the RHDb which logs resource allo-
cation and performance data that can offer insights into the
behavior of the microservice application. Finally, PEMA in
this study only considers CPU resource allocation and does
not explicitly address vertical and horizontal scaling.

5. REFERENCES
[1] H. Qiu, S. S. Banerjee, S. Jha, Z. T. Kalbarczyk, and R. K.

Iyer, “FIRM: An intelligent fine-grained resource
management framework for slo-oriented microservices,” in
OSDI, 2020.

[2] Y. Zhang, W. Hua, Z. Zhou, G. E. Suh, and C. Delimitrou,
“Sinan: Ml-based and qos-aware resource management for
cloud microservices,” in ASPLOS, 2021.

[3] Y. Gan, M. Liang, S. Dev, D. Lo, and C. Delimitrou, “Sage:
practical and scalable ml-driven performance debugging in
microservices,” in ASPLOS, 2021.

[4] Y. Gan, Y. Zhang, K. Hu, D. Cheng, Y. He, M. Pancholi,
and C. Delimitrou, “Seer: Leveraging big data to navigate
the complexity of performance debugging in cloud
microservices,” in ASPLOS, 2019.

[5] X. Hou, C. Li, J. Liu, L. Zhang, S. Ren, J. Leng, Q. Chen,
and M. Guo, “Alphar: learning-powered resource
management for irregular, dynamic microservice graph,” in
IPDPS, 2021.

